
Visual Comput (2008) 24: 699–708
DOI 10.1007/s00371-008-0250-z O R I G I N A L A R T I C L E

Diego Rossinelli
Petros Koumoutsakos

Vortex methods for incompressible
flow simulations on the GPU

Published online: 17 May 2008
© Springer-Verlag 2008

D. Rossinelli (�) · P. Koumoutsakos
Chair of Computational Science, ETH
Zurich CH-8092, Switzerland
diegor@inf.ethz.ch, petros@ethz.ch

Abstract We present a remeshed
vortex particle method for incom-
pressible flow simulations on GPUs.
The particles are convected in a La-
grangian frame and are periodically
reinitialized on a regular grid. The
grid is used in addition to solve
for the velocity–vorticity Poisson
equation and for the computation of
the diffusion operators. In the present
GPU implementation of particle
methods, the remeshing and the
solution of the Poisson equation rely
on fast and efficient mesh-particle
interpolations. We demonstrate
that particle remeshing introduces
minimal artificial dissipation, it
enables a faster computation of
differential operators on particles

over grid-free techniques and it can
be efficiently implemented on GPUs.
The results demonstrate that, contrary
to common practice in particle
simulations, it is necessary to remesh
the (vortex) particle locations in order
to solve accurately the equations they
discretize, without compromising
the speed of the method. The present
method leads to simulations of
incompressible vortical flows on
GPUs with unprecedented accuracy
and efficiency.

Keywords Vortex methods ·
Particles · Fluids · Graphics
processors

1 Introduction

Flow simulations using particles have been used exten-
sively in computer graphics (CG) [7, 8, 24] and in com-
putational fluid dynamics (CFD) ([15] and references
therein). These two lines of research have progressed in-
dependently and a methodological gap exists between
particle flow simulations with requirements for visual real-
ism in CG and particle simulations, with accurate flow
physics in CFD. When we examine this gap we iden-
tify the loss of smooth particle overlap as the key source
of inaccuracy in grid-free particle methods [5]. The goal
of this paper is to bridge the gap by relaxing the grid-
free character of particle methods, while maintaining their
Lagrangian adaptivity, and by implementing remeshed
vortex particle methods on GPUs for fast and accurate
incompressible flow simulations.

1.1 Flow simulations on GPUs: grid free or accurate?

The use of GPUs has opened a new venue for fast simula-
tions of fluids in the CG community. Flow simulations on
GPUs using grid based methods have been first reported
in [16] along with particle methods for visualization. More
recent works [11, 23, 25] have focused on enhanced visual
realism rather than numerical accuracy while grid based
flow solvers with enhanced accuracy have been reported
in [9, 22, 26]. In the grid based methods the discretization
of the non-linear convection term is largely responsible
for numerical dissipation. The discretization of the non-
linear term is avoided by the Lagrangian formulation of
the flow equations and their discretization using particle
methods, such as smooth particle hydrodynamics (SPH)
([19] and references therein) and vortex methods (VM)
([5, 15] and references therein). SPH simulations have

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159153834?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

700 D. Rossinelli, P. Koumoutsakos

been used extensively for flow simulations in CG [20, 21]
while more recently SPH techniques have been imple-
mented in GPUs [1, 10, 12]. These flow simulations ex-
hibit visual realism, but they fail to accurately solve the
equations they discretize. This fact has been largely over-
looked in the CG community while in CFD SPH and vor-
tex techniques have been broadly recognized in the past as
modeling tools with unknown levels of uncertainty in their
numerical accuracy.

Inrecent years, starting from work in vortex methods
[14] and their extension to SPH [4], it has been shown that
regularization of the particle locations is necessary in order
for particle methods to converge to the solution of the equa-
tions that have been discretized. The particle remeshing in-
troduces artificial viscosity that can be reduced below the
dissipation introduced by the discrete solution of the equa-
tions of motion. In simulations of incompressible fluids,
SPH methodologies employ arbitrary pressure density re-
lations (e.g. a linear pressure-density relationship in [10])
that do not correspond to realistic liquids and they result in
incompatible sets of equations. In VM, incompressibility is
implicitly satisfied by using the vorticity–velocity formula-
tion, at the cost of solving a Poisson equation for deriving
the velocity field. Furthermore, VMs offer additional sav-
ings of computational elements in cases where the vorticity
field is limited in certain parts of the flows, as in the case
of flows past bluff obstacles. At the same time we note that
the remeshed particle locations can be used to discretize the
diffusion of the particles resulting in one order of magni-
tude increase in computational speed over grid-free SPH
methodologies. The remeshing and the need for solving
a Poisson equation rely on effective grid-particle interpo-
lations that requires their efficient implementation on the
GPUs, due to data-scattering associated with the particle-
mesh communications.

In this paper we present the effects of remeshing
and non-remeshing particles in canonical fluid mechan-
ics problems and we present the first implementation ever,
to the best of our knowledge, of accurate vortex particle
methods in GPUs.

2 Vortex methods

Vortex methods discretize the Navier–Stokes equations of
an incompressible, viscous flow in a velocity–vorticity
(u, ω = ∇ ×u) formulation which in 2D is expressed in
a Lagrangian form as:

Dω

Dt
= ν∆ω, (1)

where D
Dt denotes the material derivative and ν the viscos-

ity of the flow. The velocity field u is obtained by solving
the Poisson equation

∆u = −∇ ×ω (2)

with suitable boundary conditions [5]. We can discretize
the vorticity field with a set of particles that have positions
{xp} and carry vorticity {ωp} as:

ωh
ε (x) =

∑

p

ωphdζε

(
x− xh

p

)
, (3)

where h denotes the interparticle distance and ζε is a ker-
nel with mollification/particle size ε. This approximation
implies smoothing and discretization of the vorticity flow
field with associated errors of O(εr) and O((h

ε
)m) respect-

ively [5]. The factor r depends on the moments of ζε

while m can be very large and depends on the quadrature
rule. This result implies that smooth particles must over-
lap, or in other words that the interparticle distance must
be smaller than the mollification kernel. This requirement
cannot be satisfied in general as particles deform accord-
ing to the velocity of the flow field. From Eq. 1 we can
derive the time evolution for the location and strength of
each computational element:
{

ẋp = uh
ε (xp)

ω̇p = ν∆ωh
ε (xp).

(4)

The velocity can be recovered from the vorticity field by
solving Eq. 2 on a grid. In this work we also take ad-
vantage of the presence of a grid to solve the diffusion
equation when particles have been remeshed on the grid
using a central finite difference scheme. Note that this
differentiation accelerates the computation of differential
operators for particle methods over techniques such as
SPH as it only requires a finite difference stencil with 5/7
points versus about 25/125 points (for a Gaussian kernel)
in 2D/3D simulations, respectively.

On a given set of particles {(ωp, xp)}, the particle-mesh
interpolation operation (denoted as IM

P) maps the particle
vorticity onto grid nodes with grid spacing h as

ωmesh
m =

∑

p

ωp · W

(
1

h

(
xmesh

m − xp
))

, (5)

where W is an interpolation kernel function. Given the
vorticity on the mesh one can recover the vorticity of each
particle by defining the mesh-particle operation I P

M :

ωp =
∑

m

ωmesh
i · W

(
1

h

(
xp − xmesh

m

))
. (6)

The interpolation kernel can be expressed as a tensorial
product W(x, y) = W(x)W(y). In the present study the M′

4
kernel is used.

M′
4(x) =

⎧
⎨

⎩

0 if |x| > 2
1
2(2−|x|)2(1−|x|) if 1 ≤ |x| ≤ 2
1− 5

2 x2 + 3
2 |x|3 if 1 ≥ |x|

(7)

Vortex methods for incompressible flow simulations on the GPU 701

This M′
4 interpolation kernel is equivalent to the Catmull–

Rom spline interpolation used in CG.

2.1 Remeshing

Particle methods, when applied to the Lagrangian formu-
lation of the convection–diffusion equation, enjoy auto-
matic adaptivity of the computational elements as dictated
by the flow map. This adaptation comes at the expense
of the regularity of the particle distribution because par-
ticles adapt to the gradient of the flow field. The numerical
analysis of vortex methods shows that the truncation error
of the method is amplified exponentially in time, at a rate
given by the first-order derivatives of the flow that are pre-
cisely related to the amount of flow strain. In practice,
particle distortion can result in the creation and evolu-
tion of spurious vortical structures due to the inaccurate
resolution of areas of high shear and to inaccurate approxi-
mations of the related derivative operators. To remedy this
situation, location processing techniques reinitialize the
distorted particle field onto a regularized set of particles
and simultaneously accurately transport the particle quan-
tities. The accuracy of remeshing has been thoroughly in-
vestigated in [14] and it was shown to introduce numerical
dissipation that is well below the dissipation introduced
by other temporal and spatial discretizations. One way to
regularize the particles is setting the new particle positions
to be on the grid node positions and recomputing the trans-
ported quantities with a particle-mesh operation.

The particle-mesh operation (IM
P) on a particle set S =

{(ωp, xp)} with an interpolation kernel W(.) is

Remeshing({(ωp, xp)}) = (
IM

P {(ωp, xp)},
{
xmesh

m

})
, (8)

with IM
P defined by Eq. 5.

2.2 Time integration

Particle locations and weights are updated in order to sat-
isfy in-turn convection and diffusion. For simplicity we
introduce the algorithm in the context of a first order time
integration scheme. Starting from particles on the grid
nodes Sn = {(ωn

p, xmesh
p)} at time t, we now compute the

next solution Sn+1, whose particle locations are also co-
inciding with the grid nodes at time t + δt. The first order
time integration proceeds as follows:

1. Update the transported vorticity of the particles:

ωn+1
p := ωn

p + δtν
∑

j∈〈p〉
adiffusion

j,p ωn
j .

2. Compute the right-hand side of the Poisson equation.
With particles on the mesh a finite difference stencil is
used:

−∇ ×ωh(
xmesh

p

) = −
∑

j∈〈p〉
acurl

j,p ωn
j .

3. Solve Eq. 2 on the mesh, for u(xmesh
p).

4. Move the particles:

xn+1
p := xmesh

p + δtu
(
xmesh

p

)
.

5. Remesh to obtain regularized particles:

Sn+1 = Remeshing
({(

ωn+1
p , xn+1

p

)})

where acurl
j,p , adiffusion

j,p are finite difference stencils approxi-
mating respectively the curl and Laplace operators; 〈p〉
denotes the set of neighbor particles of p.

We note here two important facts: this algorithm is fast
because every differential operation is performed on the
remeshed particle locations, without evaluating any ker-
nel. Furthermore, as particles do not obey a classical CFL
condition1 on u, we can take large time steps bounded by
δt ∼ 1/‖∇u‖2.

In the present work it is shown that higher order time
integration schemes are necessary in order to allow for
larger time steps and higher accuracy. For higher order
time integration schemes, starting from the particles Sn,
we have to evaluate the right-hand side in Eq. 4 multi-
ple times and store the results into temporary variables.
A basic difference besides the introduction of additional
memory required for the right-hand sides, is that this al-
gorithm also involves particle-mesh and mesh-particle op-
erations outside the remeshing step: at every sub-step we
have to map the particles onto a grid.

Note also that it is not required to remesh the particles
after every step, but it is essential to perform remeshing
steps periodically, e.g. after every n steps.

3 GPU implementation

In GPGPU the computational elements are often mapped
to textures. In the present work the computational elem-
ents are both regularly spaced grid nodes and particles at
arbitrary locations. Similar to [13] and [12], we employ
an RGB texture to represent a set of particles where each
texel contains the state of one particle. For two dimen-
sional flows the red and green channel of a given texel
represent the particle position, whereas the B channel in-
dicates the transported vorticity. A one-to-one mapping
between texels and grid nodes is used to represent the
computational mesh with a texture.

3.1 Solver overview

The main workflow of our GPU-solver is illustrated in
Fig. 1. The core components of the solver are shown in
blue, the gray component identifies a tool used as a “black
box”, whose subcomponents are not further explored.

1 Courant–Friedrichs–Lewy condition for hyperbolic partial differential
equations.

702 D. Rossinelli, P. Koumoutsakos

Fig. 1. The components of the GPU-solver with k-th order Runge–Kutta time integration

Each core component takes as input a set of textures and
produces as output another set of textures. The managed
data is represented with texture and is painted in orange
or yellow. The yellow color signifies that the texture rep-
resents a particle set, therefore the RGB channels are
(xp, yp, ωp). The orange color indicates that the texture
represents a grid, therefore it contains only ω. The green
box represents the particle-mesh operation. Additionally
to the texture texTmpParticles, the green box re-
quires a vertex array of the same size.

The particle-mesh operation is performed using a ten-
sorial product of one-dimensional interpolating kernels.
The contributions of all particles on each grid node are
computed iteratively. The use of interpolation kernels with
compact support implies that the contributing particles are
located close to the grid nodes. For each particle we can
locate which grid nodes are affected and therefore add
its respective contributions to these nodes. Based on this
observation we present a concise method to perform data-
scattering particle-mesh operations on the GPU.

Alternatives to this method would avoid direct data-
scattering by handling more complex data structures used
for location processing, as presented in [17]. One key
characteristic of the proposed method, similar to [12], is
to employ point-sprite2 primitives, which allow the use of
points rather than quads and are able to generate texture
coordinates which are interpolated across the point. We

2 www.opengl.org/registry/specs/ARB/point_sprite.txt

start by having the status of the particle set stored in a tex-
ture texParticles and a vertex array with the size of
texParticles. The output will be stored in the texture
texMesh. The algorithm has the following steps:

1. Set the point size equal to the support of W(·).
2. Enable the point-sprite drawing mode.
3. Attach the texMesh as a render target and clear it with

zeros.
4. Enable blending with 1 as source factor as well as des-

tination factor.
5. Set the graphics pipeline as follows:

Vertex shader:
Read (xp, yp, ωp) from texParticles. Store the
transported vorticity ωp as front color of the primitive
and the location coordinates as the position of the ver-
tex.
Geometry shader:
If a particle is close to the boundary, dynamically clone
the particle to reproduce the right boundary conditions.
If a particle has ωp = 0, discard the primitive.
Fragment shader:
Compute the vector distance d = (d1, d2) of the frag-
ment with respect to the center of the point-sprite to
produce color = W(d1)W(d2)ωp as a result, where ωp
is the vorticity of the current point sprite.

6. Draw the vertex array as point-sprites.

As we are drawing point sprites, each vertex will be ras-
terized in a quad made of several fragments and different

Vortex methods for incompressible flow simulations on the GPU 703

texture coordinate values. The distance between the center
of the point sprite and the generated fragments is known at
the fragment stage, and it is stored as a texture coordinate.
We re-scale appropriately the texture coordinate and we
use it as an argument of W(·). Since we know the quantity
carried by the particle (as it is stored as primitive color)
we multiply these together to obtain the contribution of the
particle to that grid node.

Enabling the blending mode, we can sum each con-
tribution from every particle to any node and obtain as
a result an interpolated grid from values transported by the
particle set. For a given framebuffer (destination) pixel,
the blending is performed as an atomic instruction. There-
fore it cannot be performed in parallel with respect to
the incoming source fragments. This could be a poten-
tial performance bottleneck. We can minimize however
this problem by reducing the maximal number of incom-
ing fragments per framebuffer pixel. This is possible if the
particles are not concentrated on a particular region so that
their contributions will be spread uniformly in the frame-
buffer. This is automatically guaranteed in the remeshing
stage: since by remeshing we uniformly redistribute the
particles in the domain, and thus avoid blending becoming
a critical bottleneck.

Since the mesh-particle operation is essentially a data-
gathering operation, it can be performed with a fragment
shader, reading a texture representing the mesh and at-
taching the particle set texture as a render target. At the
fragment stage we read a subset of mesh nodes by per-
forming texture dependent texture-fetches, and we com-
pute I P

M , eventually obtaining the carried quantity for each
particle.

3.2 Solving the Poisson equation

In order to solve the Poisson equation for the velocity
field u we developed a periodic 2D multigrid solver [3]
for the GPU. The GPU-Multigrid is designed for cell-
centered elements, and has prolongation and restriction of
order 4. We validated the GPU-Multigrid against differ-
ent test problems, and observed that on average (after 3–6
cycles), the relative residual was between 10−5 and 10−3

(in both L2 and L∞ norm). We noticed that, for the same
physical domain, higher resolution discretization causes
bigger residual (∼ 10−4). The most probable reason is the
single floating point precision limitation in the arithmetic.

We note that point-sprites are clipped automatically by
the graphics pipeline and this could be a problem in the
case of periodic boundary conditions, since contributions
from some particles are discarded. In order to overcome
this problem, we use a geometry shader to check if the
kernel assigned to each particle “touches” the boundary.
If this is the case, we create a new particle with the same
vorticity and with a position translated by one domain
length. In this way we can generate exactly the contri-
butions that are discarded at the rasterization stage. The

geometry shader is an elegant choice to solve this prob-
lem, however it is not the only one. We could perform
a four-pass rendering with blending, where in each pass,
a slightly shifted domain is considered and each particle
has to be redrawn. This method gives exactly the same re-
sult as the geometry shader but it is much more expensive
as every particle has to be rendered four times. Conversely,
with the geometry shader, only the particles at the bound-
ary have to be rendered twice (four times for the negligibly
small particle set at the corners).

Furthermore, with the geometry shader we not only
have the capability to create particles on-demand, but also
to discard particles when they are unnecessary, i.e. when
the transported vorticity is zero. This adaptivity addition-
ally improves the performance of the proposed solver.
Even if the particle-mesh operations are cheap when com-
pared to other components of the solver, the performance
difference between these two approaches is significant.

4 Results

The proposed particle solver has been validated on three
benchmark flows. The GPU-solver was written in C++,
using OpenGL, and each simulation was run on NVIDIA
Quadro FX 5600.

4.1 The role of remeshing

In order to demonstrate the impact of the remeshing step,
we consider the vorticity equation without the diffusion
term (ν = 0).

In this case the vorticity evolves according to the Euler
equation Dω

Dt = 0. As the initial condition we set a radial
function:

ω0(x) = W ·max(0, 1−‖x‖/R), (9)

where W is the maximum vorticity and R controls the
support of ω0. Since the vorticity is radially symmet-
ric and there is no diffusion, the system is in a steady
state: the exact solution in time is just the initial condi-
tion (ω(t) = ω0). We can therefore use this problem as
validation and study “the importance of remeshing” the
particles during the simulation. Figure 2 shows the cru-
cial difference between performing and not performing the
remeshing step. In this case we used W = 100, R = 0.5,
and a time step δt = 5×10−3. When no remeshing step
is performed, the solver generates growing spurious struc-
tures which lead to a break in the radial symmetry of the
vorticity field. This break causes a rapidly increasing inac-
curacy of the computed solution.

4.2 Taylor–Green vortex

The Taylor–Green vortex problem represents the evolu-
tion of a complex vortical flow that admits an analytical

704 D. Rossinelli, P. Koumoutsakos

Fig. 2. The role of the remeshing step. Evolution of the vorticity at time t = 0.01, t = 0.10 and t = 0.15; using a second order time integra-
tor for the Euler equation. The initial condition, which is a radial function with compact support, is already a steady state solution, and thus
vorticity must not change in time. Without remeshing the simulation produces spurious artifacts that become progressively stronger (top).
The remeshing step will prevent the creation of these artificial structures (bottom), if it is performed frequently enough (every five steps
in this case)

solution. The vortices evolve in the unit square with peri-
odic boundary conditions and the analytical solution for
the velocity field is given by the following equations in
nondimensional form:
{

u(x, y, t) = −Uebt cos(2πx) sin(2πy)
v(x, y, t) = Uebt sin(2πx) cos(2πy).

(10)

Here, b = −8π2

Re and the viscosity ν is 1
Re , where Re is the

Reynolds number.
The problem has been tested in the past in the con-

text of smooth particle hydrodynamics in [4] where it was
shown that remeshing is essential for a particle method to
capture the evolution of the vorticity field. We performed
simulations using U = 0.5 and Re = 106 for a total time
of tend = 5×10−3 using a time step of δt = 10−5. The
convergence of the present method is depicted in Fig. 3.
We observe that the method exhibits second order conver-
gence in space. We note however that for high resolution
simulations, the rate of reduction decreases. This behavior
is attributed to the utilization of single precision arithmetic
available for the GPU. The comparison of different time
integration techniques indicates that high-order time inte-
grators are preferable over the Euler method providing up
to three orders of magnitude higher accuracy for the same
step size. In the right plot of Fig. 3 we observe that the
norm of the error has grown. In this case the time step was
δt = 2×10−4 and tend = 0.1. This behaviour is expected

as we have performed many steps (∼ 104) with our solver
and the time step was large compared with the one used for
the left plot in Fig. 3.

The advantage of Runge–Kutta methods over Euler is
again evident, even though in this case the error reduction
is limited to one order of magnitude.

4.3 Thin double shear layer

The thin double shear layer is a challenging benchmark for
incompressible flow solvers. Brown and Minion [18] have
demonstrated that in under-resolved simulations spurious
vortices infiltrate the numerical solution in discretizations
by various computational methods. We have used the
double shear layer benchmark to study the effects of low-
resolution simulations in vortex methods. The domain is
the unit square with periodic boundary conditions with the
initial condition for the velocity field u = (u, v) in the fol-
lowing non-dimensional form:
{

u(x, y) = tanh(ρ ·min(y −0.25, 0.75− y))
v(x, y) = δ · sin(2π(x +0.25)).

In the present simulations we set δ = 0.05, ρ = 80 and
a viscosity ν = 10−4.

All simulations were performed using the fourth order
Runge–Kutta with a timestep δt = 0.02 and tend = 1.0.
The numerical results are depicted in Fig. 4 in the form

Vortex methods for incompressible flow simulations on the GPU 705

Fig. 3. L2 errors (contiguous lines) and L∞ errors (dashed lines) for the simulation of the Taylor–Green Vortex in terms of the number
of computational elements. Euler time integration (blue lines) and fourth order Runge–Kutta (red lines). Settings: U = 0.5 and Re = 106,
final time of tend = 5×10−3 (left) and tend = 0.1 (right). Black lines denote a second order convergence

Fig. 4. Simulations of the thin double shear layer. Red denotes high positive vorticity, and blue denotes high negative vorticity. Left to
right: simulation using 256× 256, 512× 512 and 2048× 2048 particles. Note the development of a spurious vortex for the two lower
resolutions

of vorticity for three different resolutions. The spurious
vortices are eliminated by using 512 ×512 particles and
an associated grid of 512×512 nodes. Note however that
the solution shows some minor undulations instead of the
expected straight line [18], near to the center of the do-
main. This numerical artifact completely disappears using
2048×2048 computational elements.

4.4 Random vorticity

Finally, we addressed a case of viscous vorticity decay
from an initially uniform random distribution with an
average of zero vorticity and a maximum value of 400.
The domain is the unit square with periodic boundary
conditions, and the viscosity was set to ν = 10−7. The
first row of Fig. 5 shows the evolution of the flow ob-
tained for a remeshed VM with a first order time integrator
and a timestep δt = 0.001. The GPU-Multigrid configura-
tion for the Poisson’s equation consists of two V-Cycles

with two Jacobi relaxation iterations at each level per
timestep.

The second row shows the evolution of the same ini-
tial vorticity distribution when using the fourth order
Runge–Kutta time integrator and a remeshed VM. The
GPU-Multigrid configuration consists of four V-Cycles
with four Jacobi relaxation iterations at each level per
step. The timestep size was maintained at δt = 0.001.
In the last row of pictures we show the vorticity field
that we obtain without performing remeshing during the
simulation. Note that the field does not develop the ex-
pected large scale structures but remains chaotic, a situ-
ation which may be perceived in fact as visually realis-
tic but at the same time it represents a highly inaccu-
rate solution of the Navier–Stokes equations. The utiliza-
tion of a first order time integration scheme introduces
a large amount of numerical viscosity producing large,
weak vortex cores. On the other hand, the fourth order
Runge–Kutta scheme succeeds in restraining the effects of

706 D. Rossinelli, P. Koumoutsakos

Fig. 5. Evolution of the vorticity
starting from a uniform random
distribution with maximum of
400 and average of zero, using
a first order time integrator
(top), a fourth order time inte-
gration (middle), a fourth order
time integrator without remesh-
ing during the simulation (bot-
tom), at time t = 0.01, t = 0.1
and t = 0.2 (left to right)

numerical viscosity producing smaller vortices of higher
intensity.

4.5 Performance

The presented solver involves a number of computational
parameters, such as multigrid steps, order of time integra-
tion, etc. In order to quantify its performance we discuss
three representative sets of parameters resulting respect-
ively in: Fastest, Trade-Off and Most Accurate simula-
tions. The Fastest set of parameters consists of a first order
time integration, two V-Cycles with two Jacobi relaxation
iterations at each level, per time step; the Trade-Off con-
sists of a second order Runge–Kutta with two V-Cycles
(four Jacobi relaxation iterations per level) per step. The
last set of parameters corresponds to the one referred
into Fig. 5 (fourth order time integration, four V-Cycles
with four Jacobi relaxation iterations at each level, per
timestep). As indicated in Fig. 6, one can achieve more
than 25 FPS using a set of 1024 ×1024 particles with
the Fastest set of parameters. The Trade-off configura-
tion barely achieves ten FPS with the same number of
particles. The main decrease in performance is noticed

by passing from 1024 ×1024 to 2048 ×2048 particles.
For the Most Accurate configuration we observe the least
change in performance, revealing that the texture size is
not the most performance-critical parameter in this case.

As we have mentioned, the remeshing step can be per-
formed either with a multi-pass approach or by utilizing
a geometry shader. The diagram on the right of Fig. 6 sum-
marizes the performance of solving the random vorticity
problem for both approaches as a function of the utilized
number of particles. It is obvious that the geometry shader
approach always is the fastest, in particular when we use
1024×1024 particles, where we obtain a speed up of 1.5,
as on average the geometry shader has to render each
particle just once. The multi-pass approach, on the other
hand, processes each particle four times (at least at the ver-
tex stage).

5 Discussion and conclusions

We have implemented a vortex method for the accurate
and efficient simulations of incompressible vortical flows

Vortex methods for incompressible flow simulations on the GPU 707

Fig. 6. Overall performance measurements: on the left we compare three different configurations of our solver: Fastest (Euler, with a rough
GPU-multigrid), Trade-Off (second order Runge–Kutta, with an accurate GPU-multigrid but few cycles) and most accurate (fourth order
Runge–Kutta, accurate GPU-multigrid). On the right we compare the performance of the remeshing by using a multi-pass rendering
method and by using a geometry shader

on GPUs. The solver relies on the remeshing of the par-
ticle locations, it runs exclusively on the GPU and it is
shown to have second order accuracy in space and up to
fourth order accuracy in time.

These methods have been validated in challenging
benchmark flow problems demonstrating for example that
even with the limitation of single precision arithmetic, we
are able to obtain a second order convergence in space
in the case of the Taylor–Green vortex and to recover
the correct solution for the evolution of a thin double
shear layer. Furthermore we have shown the importance of
adopting high-order time integration methods to achieve
accuracy. In turn we have demonstrated that the perform-
ance of the GPU-solver depends critically on the set of
computational parameters: The fastest set allows flow sim-
ulations with 1024 ×1024 particles at 25 FPS, whereas
the most accurate only achieves three FPS, albeit with
a significantly higher accuracy. The particle-mesh com-
munication is critical for the present method and it is per-
formed by using a geometry shader, texture fetch at the
vertex stage and the floating point framebuffer/blending.

The present method maintains the Lagrangian adaptiv-
ity of particle methods, it presents the first particle-mesh
technique for flow simulations on the GPU and it al-
lows for accurate, real time simulations of incompressible
flows.

Present work focuses on extending the solver to 3D do-
mains. One critical issue in this effort is associated with
the efficiency of the method, since texture-fetches of 3D
textures are not as fast as the 2D ones. In order to avoid
this deterioration of performance, a possible strategy in-
volves the use of representation of the 3D domain with
a set of 2D textures while ensuring consistency (by clip-
ping and particle replications) at the boundaries of each
subdomain.

Future work will focus on the GPU-implementation
of multiresolution vortex particle methods [2] and particle
methods capable of handling effectively complex, deform-
ing geometries [6]. We envision that such implementation
will help materialize the real time simulation of challeng-
ing fluid mechanics phenomena with visual realism and
accuracy of the flow physics.

References
1. Amada, T., Imura, M., Yasumuro, Y.,

Manabe, Y., Chihara, K.: Particle-based
fluid simulation on GPU. In: ACM
Workshop on General-Purpose Computing
on Graphics Processors and SIGGRAPH
2004. Los Angeles, CA (2004)

2. Bergdorf, M., Koumoutsakos, P.:
A Lagrangian particle-wavelet method.
Multiscale Model. Simul. 5(3), 980–995
(2006)

3. Briggs, W.L., Henson, V.E.,
McCormick, S.F.: A Multigrid Tutorial:

Second Edition. SIAM, Philadelphia, PA
(2000)

4. Chaniotis, A.K., Poulikakos, D.,
Koumoutsakos, P.: Remeshed smoothed
particle hydrodynamics for the simulation
of viscous and heat conducting flows.
J. Comput. Phys. 182(1), 67–90 (2002)

5. Cottet, G.H., Koumoutsakos, P.: Vortex
Methods, Theory and Practice. Cambridge
University Press (2000)

6. Cottet, G.H., Maitre, E.: A level set method
for fluid-structure interactions with

immersed surfaces. Math. Models Methods
Appl. Sci. 16(3), 415–438 (2006)

7. Foster, N., Metaxas, D.: Controlling fluid
animation. In: Proceedings CGI ’97,
pp. 178–188 (1997)

8. Georgii, J., Westermann, R.: Mass-spring
systems on the GPU. Simul. Model. Pract.
Theory 13(8), 693–702 (2005)

9. Hagen, T.R., Lie, K.A., Natvig, J.R.:
Solving the Euler equations on graphics
processing units. Comput. Sci. (ICCS 2006)
3994, 220–227 (2006)

708 D. Rossinelli, P. Koumoutsakos

10. Harada, T., Koshizuka, S., Kawaguchi, Y.:
Smoothed particle hydrodynamics on
GPUs. In: Proc. of Computer Graphics
International, pp. 63–70 (2007)

11. Harris, M.J.: Fast fluid dynamics simulation
on the GPU. In: GPU Gems: Programming
Techniques, Tips, and Tricks for Real-Time
Graphics, pp. 637–665. Addison-Wesley
(2004)

12. Kolb, A., Cuntz, N.: Dynamic particle
coupling for GPU-based fluid simulation.
In: Proc. ASIM, pp. 722–727 (2005)

13. Kolb, A., Latta, L., Rezk-Salama, C.:
Hardware-based simulation and collision
detection for large particle systems. In:
Proc. Graphics Hardware, pp. 123–131.
ACM/Eurographics, Grenoble, France
(2004)

14. Koumoutsakos, P.: Inviscid
axisymmetrization of an elliptical vortex.
J. Comput. Phys. 138(2), 821–857 (1997)

15. Koumoutsakos, P.: Multiscale flow
simulations using particles. Annu. Rev.
Fluid Mech. 37, 457–487 (2005)

16. Krüger, J., Schiwietz, T., Kipfer, P.,
Westermann, R.: Numerical simulations on
PC graphics hardware. In: ParSim 2004
(Special Session of EuroPVM/MPI 2004)
(2004)

17. Hegeman, K., Carr, N.A., Miller, G.S.:
Particle-based fluid simulation on the GPU.
In: Computational Science – ICCS 2006,
vol. 3994, pp. 228–235. Springer,
Berlin/Heidelberg (2006)

18. Minion, M.L., Brown, D.L.: Performance of
under-resolved two-dimensional
incompressible flow simulations, ii.
J. Comput. Phys. 138, 734–765
(1997)

19. Monaghan, J.J.: Smoothed particle
hydrodynamics. Rep. Prog. Phys. 68(8),
1703–1759 (2005)

20. Müller, M., Charypar, D., Gross, M.:
Particle-based fluid simulation for
interactive applications. In: SCA ’03:
Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on
Computer Animation, pp. 154–159.

Eurographics Association, San Diego, CA
(2003)

21. Pfister, H., Gross, M.: Point-based computer
graphics. IEEE Comput. Graph. Appl.
24(4), 22–23 (2004)

22. Scheidegger, C.E., Comba, J.L.D., da
Cunha, R.D.: Practical CFD simulations on
programmable graphics hardware using
smac. Comput. Graph. Forum 24(4),
715–728 (2005)

23. Selle, A., Rasmussen, N., Fedkiw, R.:
A vortex particle method for smoke, water
and explosions. ACM Trans. Graph. 24(3),
910–914 (2005). http://doi.acm.org/

10.1145/1073204.1073282
24. Stam, J.: A simple fluid solver based on the

FFT. J. Graph. Tools 6(2), 43–52 (2001)
25. Treuille, A., Lewis, A., Popovic, Z.: Model

reduction for real-time fluids. ACM Trans.
Graph. 25(3), 826–834 (2006)

26. Wu, E.H., Zhu, H.B., Liu, X.H., Liu, Y.Q.:
Simulation and interaction of fluid
dynamics. Visual Comput. 23(5), 299–308
(2007)

DIEGO ROSSINELLI was born in 1982. He re-
ceived his master’s degree in Computer Science
in 2006 from ETHZ, Switzerland. Since 2006,
he is a Ph.D. student at the Chair of Computa-
tional Science, ETHZ, Switzerland. His field of
interests includes real-time simulations of fluids
and high performance computing.

PETROS KOUMOUTSAKOS received his Ph.D.
in Aeronautics and Applied Mathematics at
the California Institute of Technology in 1992.
He holds the Chair of Computational Science
(2000–) in the Department of Computer Science
and he is accredited with the Department of
Mechanical and Process Engineering at ETHZ.
His professional interests are in the develop-
ment of computational methods for the study
of diverse problems in Engineering and Life
Sciences. He leads a group of Ph.D. students,
post-doctoral fellows and visiting scientists
working in multiscale modeling and simula-
tion, high performance computing, bioinspired
optimization and design. Example applications
range from the reverse engineering of swimming
devices, to the design of nanosyringes and the
modeling of tumour induced angiogenesis.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

