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Abstract: The relation between random normal matrices and conformal mappings dis-
covered by Wiegmann and Zabrodin is made rigorous by restricting normal matrices to
have spectrum in a bounded set. It is shown that for a suitable class of potentials the
asymptotic density of eigenvalues is uniform with support in the interior domain of a
simple smooth curve.

1. Introduction

In recent work initiated by P. Wiegmann and A. Zabrodin [1–4], a connection between
the normal matrix model and conformal mappings was discovered. In this model one
considers random normal N ×N complex matrices with probability measure

PN(M) dM = Z−1
N exp{−(N/t0)tr(M∗M − p(M)− p(M)∗)} dM, (1)

where dM is a natural measure on the variety of normal matrices and ZN is the normal-
ization factor. The result is that, as N → ∞, the density of eigenvalues is 1/πt0 times
the characteristic function of a bounded domain in the complex plane. This domain is
characterized by the fact that its exterior harmonic moments are the coefficients tj of
the polynomial p appearing in the measure. Moreover, the Riemann mapping of the
exterior of the unit disk onto the exterior of the domain obeys, as a function of the tj ,
the equations of the integrable dispersionless Toda hierarchy.

These fascinating results remain however at the level of formal manipulations of
undefined objects, as the integrals diverge, except in the simplest case of a polynomial
p of degree 2, where the domain is bounded by an ellipse.

The purpose of this note is to give a setting in which the above statements make
mathematical sense and to give a proof of these statements.

The problem of divergence of the integral over normal matrices is solved in a naive
way, by restricting the integral to normal matrices whose eigenvalues lie in a compact
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domainD of the complex plane. Then for small t0 the results can be formulated in terms
of polynomial curves, i.e., curves in the complex plane admitting a parametrization of the
formw �→ h(w) = rw+∑n

j=0 ajw
−j , |w| = 1. For simple polynomial curves the prob-

lem of determining the curve out of its exterior harmonic moments tj = 1
2π i

∮
γ
z̄z−j dz

and the area πt0 of the interior domain (the interior domain is the bounded connected
component of the complement of the curve) has a unique solution for small t0, as we
show in Sect. 5. Our main result is then:

Theorem 1.1. Let D ⊂ C be the closure of a bounded open set containing the origin.
Let p(z) = t2z

2 + · · · + tn+1z
n+1 be a polynomial such that |z|2 − p(z) − p(z) has a

non-degenerate absolute minimum in D at z = 0. Then there exists a δ > 0 so that for
all 0 < t0 < δ,

(i) there exists a unique simple polynomial curve γ with exterior harmonic moments
t1 = 0, t2, . . . , tn+1, 0, 0, . . . and area of interior domain πt0;

(ii) the expectation value of the density of eigenvalues of random normal matrices with
spectrum in D and distribution (1) converges as N → ∞ to a uniform distribution
with support in the interior domain of γ .

The condition on p implies the Hessian condition |t2| < 1
2 and it is fulfilled if the

Hessian condition holds and t3, . . . , tn are sufficiently small. It then follows from results
of [5, 1] that the curve γ as a function of the tj in this range provides a solution of the
integrable dispersionless 2D Toda hierarchy obeying the string equation.

The paper is organized as follows: the basic definitions of the random normal matrix
model are recalled in Sect. 2. We then introduce the “equilibrium measure” as the unique
solution of a variational problem in Sect. 3 and show in Sect. 4 that the density of eigen-
values converges to it. These are either known results or adaptations of results known for
hermitian matrices to our case. In Sect. 5 we introduce the notion of polynomial curve
and prove Theorem 5.3, which is a stronger form of part (i) of Theorem 1.1. In Sect. 6
we prove part (ii) of Theorem 1.1, see Theorem 6.1, and discuss our results in Sect. 7.

2. Eigenvalues of Random Normal Matrices

We consider the probability measure

PN(M) dM = 1

ZN
e−N tr V (M) dM, ZN =

∫

NN(D)

PN(M) dM,

defined by a potential V , on the set

NN(D) = {M ∈ MatC(N) | [M,M∗] = 0, σ (M) ⊂ D}
of normal N ×N complex matrices with spectrum in some compact domain D ⊂ C.

The measure dM is the Riemannian volume form on (the smooth part of) NN(D)

with respect to the metric induced from the standard metric on the vector space C
N2

of
allN ×N matrices. In a parametrization by eigenvalues and unitary matrices it is given
by [6]

dM = dU
∏

1≤i<j≤N
|zi − zj |2

N∏

i=1

d2zi,
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where M = U diag
(
(zi)

N
i=1

)
U∗ and dU denotes the normalized U(N) invariant mea-

sure on U(N)/U(1)N .
This leads to the probability measure

PN
(
(zi)

N
i=1

) N∏

i=1

d2zi = 1

ZN
e−N∑N

i=1 V (zi )
∏

1≤i<j≤N
|zi − zj |2

N∏

i=1

d2zi,

ZN =
∫

DN
e−N∑N

i=1 V (zi )
∏

1≤i<j≤N
|zi − zj |2

N∏

i=1

d2zi

on the space of eigenvalues zi ∈ D, 1 ≤ i ≤ N .

3. The Equilibrium Measure

We are interested in the behavior of the function PN(z) asN → ∞. Because the proba-
bility that two eigenvalues are equal is always zero, we may consider PN as a function
on the set DN0 = {z ∈ DN | zi �= zj ∀ i �= j}.

Introducing the probability measure

δz(A) = 1

N

N∑

i=1

χA(zi), z = (zi)
N
i=1,

on D (χA shall denote the characteristic function of the set A), we write for z ∈ DN0 ,

PN(z) = 1

ZN
exp

(

−N2
(∫

V (ζ ) dδz(ζ )+
∫∫

ζ �= ξ
log |ζ − ξ |−1 dδz(ξ) dδz(ζ )

))

.

Letting N → ∞, only the infimum of the coefficient of −N2,

I0 := inf
µ∈M(D)

I (µ),

I (µ) :=
∫

V (z) dµ(z)+
∫∫

z �= ζ
log |z− ζ |−1 dµ(ζ ) dµ(z),

will be relevant. Here M(D) denotes the set of all Borel probability measures on D
without point masses (a measure with point masses could only arise from measures δz
with some zi = zj , but then PN(z) = 0). Therefore, we safely can neglect the restriction
on the double integral.

The precise sense in which the infimum of I controls the largeN behavior of PN will
be discussed in the next section. Here we consider this reasoning only as a motivation
for introducing the variational problem.

Because of I ( χD|D|λ) < ∞ (λ the Lebesgue measure on C and |D| = λ(D) the area
of D), I0 is finite.

Definition. An equilibrium measure for V on D ⊂ C is a Borel probability measure
µ on D without point masses so that I (µ) = I0.

Theorem 3.1. Every continuous function V on a compact subset D has a unique equi-
librium measure.
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In the remaining part of this section we prove this theorem, which is a known fact
from potential theory, see e.g. [7], and give necessary and sufficient conditions for µ
to be an equilibrium measure. The constructions are adapted from the corresponding
results for Hermitian matrices, see [9].

3.1. Existence. To show the infimum is achieved, we choose a sequence (µn)∞n=1 in
M(D) with I (µn) → I0.

Lemma 3.2. The space of all Borel probability measures onD is sequentially compact.

Proof. By the theorem of Riesz-Markov each Borel measure µ on D corresponds to
exactly one positive, linear functional φµ ∈ C(D)∗ and by the theorem of Alaoglu, the
closed unit-sphere in C(D)∗ is weak-*-compact. Therefore, for each sequence (µn)∞n=1
or Borel probability measures on D, the sequence (φµn)

∞
n=1 contains a weak-*-conver-

gent subsequence (φµn(k) )
∞
k=1, i.e.

∃φ ∈ C(D)∗ : φµn(k) (f ) → φ(f ) ∀f ∈ C(D).
Now we find a measure µ on D with φ = φµ. This measure fulfills

∫

f dµn(k) →
∫

f dµ (k → ∞) ∀f ∈ C(D),

and hence is again a Borel probability measure. ��
Because of this lemma there exists a convergent subsequence (µn(k)) of (µn) and a

Borel probability measure µ with µn(k) → µ.
To prove that I (µ) = I0, we estimate with an arbitrary real constant L,

lim
k→∞

I (µn(k)) = lim
k→∞

∫

V (z) dµn(k)(z)+ lim
k→∞

∫∫

log |z− ζ |−1 dµn(k)(ζ ) dµn(k)(z)

≥
∫

V (z) dµ(z)+ lim
k→∞

∫∫

min{log |z− ζ |−1, L} dµn(k)(ζ ) dµn(k)(z).

Approximating uniformly the second integrand according to the theorem of Stone-
Weierstraß up to ε > 0 with a polynomial in z, z̄, ζ and ζ̄ and using Fubini’s theo-
rem, we get a lower bound for the limit:

lim
k→∞

I (µn(k)) ≥
∫

V (z) dµ(z)+
∫∫

min{log |z− ζ |−1, L} dµ(ζ ) dµ(z)− 2ε.

Letting first ε → 0 and then L → ∞ shows that µ has no point masses (otherwise the
right-hand side would diverge) and I0 = I (µ).

3.2. Uniqueness. Next, we want to show that there is exactly one measure µ ∈ M(D)

with I (µ) = I0. So suppose µ̃ ∈ M(D) also fulfills I (µ̃) = I0. Then we consider the
family

µt = tµ̃+ (1 − t)µ = µ+ t (µ̃− µ), t ∈ [0, 1],

in M(D).
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Lemma 3.3. Let µ and µ̃ be probability measures such that the function log |z − ζ |−1

is integrable with respect to µ⊗ µ and to µ̃⊗ µ̃. Then log |z− ζ |−1 is also integrable
with respect to µ⊗ µ̃.

Additionally, we have the inequality
∫∫

log |z− ζ |−1 d(µ̃− µ)(ζ ) d(µ̃− µ)(z) ≥ 0, (2)

with equality if and only if µ = µ̃.

Proof. We start with the distributional identity
∫

log |z|−1�ϕ(z) d2z = −2πϕ(0)

for any Schwarz function ϕ. Introducing the Fourier transform ϕ̂ of ϕ, we find
∫

log |z|−1�ϕ(z) d2z = −
∫

1

|k|2 (|k|
2ϕ̂(k)) d2k

= 1

2π

∫
1

|k|2
∫

�ϕ(z)
(

e
i
2 (kz+k̄z̄) − f (k)

)
d2z d2k

= 1

2π

∫∫
1

|k|2
(

e
i
2 (kz+k̄z̄) − f (k)

)
d2k�ϕ(z) d2z,

where f denotes a real, continuous function which is one in the vicinity of zero and
becomes zero at infinity. So we have for all z ∈ C \ {0} the equation

log |z|−1 = 1

2π

∫
1

|k|2
(

e
i
2 (kz+k̄z̄) − f (k)

)
d2k + C(f )

with some real constant C(f ).
So, with Tonelli’s theorem, we see that

∫∫

log |z− ζ |−1 d(µ̃− µ)(ζ ) d(µ̃− µ)(z)

= 1

2π

∫
1

|k|2
∣
∣
∣
∣

∫

e
i
2 (kz+k̄z̄) d(µ̃− µ)(z)

∣
∣
∣
∣

2

d2k

is non-negative and finite, which immediately implies the integrability of log |z− w|−1

with respect to µ⊗ µ̃. To achieve equality in (2), we need
∫

e
i
2 (kz+k̄z̄) dµ(z) =

∫

e
i
2 (kz+k̄z̄) dµ̃(z)

for all k ∈ C, which reads µ = µ̃. ��
So we can expand I (µt ) and obtain

I (µt ) = I (µ)+ t

∫ (

V (z)+ 2
∫

log |z− ζ |−1 dµ(ζ )

)

d(µ̃− µ)(z)

+t2
∫∫

log |z− ζ |−1 d(µ̃− µ)(ζ ) d(µ̃− µ)(z). (3)
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Lemma 3.3 now states that the coefficient of t2 is non-negative and so the function
t �→ I (µt ) is convex on [0, 1]. In particular,

I (µt ) ≤ tI (µ̃)+ (1 − t)I (µ) = I0,

which implies I (µt ) ≡ I0. This requires the last summand in (3) to vanish and so, again
with Lemma 3.3, we see that µ = µ̃.

3.3. A variational form. To determine if a given measure µ is the equilibrium measure
for the potential V on the domain D, we may check a variational principle.

Proposition 3.4. The probability measureµ is the equilibrium measure for the potential
V on the domain D if and only if the function

E(z) = V (z)+ 2
∫

log |z− ζ |−1 dµ(ζ ) (4)

fulfills the relation
∫

E(z) dµ̃(z) ≥
∫

E(z) dµ(z) =: E0 for all µ̃ ∈ M(D). (5)

Additionally, we have the property

E(z) ≡ E0 µ-almost everywhere. (6)

Proof. Let us first assume µ is the equilibrium measure. Then, for an arbitrary measure
µ̃ ∈ M(D), the condition

d

dt
I (µt )

∣
∣
t=0 ≥ 0, µt = tµ̃+ (1 − t)µ, t ∈ [0, 1],

has to hold. This means
∫ (

V (z)+ 2
∫

log |z− ζ |−1 dµ(ζ )

)

d(µ̃− µ)(z) ≥ 0,

which immediately implies Eq. (5).
Assume on the other sideµ fulfills condition (5). Then we obtain with the equilibrium

measure µ0,

I (µ0) = I (µ)+
∫ (

V (z)+ 2
∫

log |z− ζ |−1 dµ(ζ )

)

d(µ0 − µ)(z)

+
∫∫

log |z− ζ |−1 d(µ0 − µ)(ζ ) d(µ0 − µ)(z)

≥ I (µ),

and so µ = µ0.
To show the additional statement, we consider for the probability measure µ the set

B = {z ∈ D | E(z) < E0}.
If µ(B) > 0, the variational principle (5) for the measure µ̃ = χB

µ(B)
µ would yield

E0 ≤
∫

E(z)
χB(z)

µ(B)
dµ(z) < E0,

and so µ(B) has to vanish. Thus, we get condition (6). ��
Instead of verifying condition (5), we prefer to use the following statement:
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Corollary 3.5. If for a measure µ ∈ M(D) the function E, defined by Eq. (4), fulfills,
for some real constant E0, E(z) ≡ E0 on the support of µ and E(z) ≥ E0 everywhere,
then µ is the equilibrium measure.

4. The Eigenvalue Density

Definition. The k-point correlation function R(k) is given by

R
(k)
N

(
(zi)

k
i=1

) = N !

(N − k)!

∫

DN−k
PN
(
(zi)

N
i=1

) N∏

i=k+1

d2zi .

So, the one-point correlation function is up to normalization nothing but the density of
the eigenvalues.

As indicated in the previous section, all the correlation functions can be calculated in
the limit N → ∞ out of the equilibrium measure µ, as in the case of hermitian matrix
models, see [8, 9].

Theorem 4.1. For all φ ∈ C(Dk) we have the equality

lim
N→∞

∫

Dk

1

Nk
φ
(
(zi)

k
i=1

)
R
(k)
N

(
(zi)

k
i=1

) k∏

i=1

d2zi =
∫

φ
(
(zi)

k
i=1

) k∏

i=1

dµ(zi). (7)

I.e. the measure 1
Nk
R
(k)
N

(
(zi)

k
i=1

)∏k
i=1 d2zi on Dk converges weakly to

∏k
i=1 dµ(zi).

Proof. Substituting in the left-hand-side of Eq. (7) the definition of the correlation func-
tions and turning our attention to the highest order in N , we obtain (because PN is
invariant under the symmetric group)

〈

φ,
1

Nk
R
(k)
N

〉

= 1

Nk

∫

Dk
φ
(
(zi)

k
i=1

)
R
(k)
N

(
(zi)

k
i=1

) k∏

i=1

d2zi

= 1

Nk

N∑

i1,... ,ik=1

∫

Dk
φ
(
(zij )

k
j=1

)
PN
(
(zi)

N
i=1

) N∏

i=1

d2zi + o(1).

Since for large values of N the probability distribution localizes at values z ∈ DN0
with I (δz) ≈ I0, let us consider the sets

AN,η = {z ∈ DN0 | I (δz) ≤ I0 + η}, η > 0.

Lemma 4.2. The probability PN(DN \AN,η) drops for N → ∞ exponentially to zero.

Proof. For an absolutely continuous1 equilibrium measure dµ(z) = ψ(z) d2z, we get
with Jensen’s theorem and

∫
I (δz)

∏
dµ(zi) = I0 + o(1),

ZN ≥
∫

{z∈DN |ψ(zi ) �= 0 ∀i}
e−N2I (δz)−

∑N
i=1 logψ(zi )

N∏

i=1

dµ(zi) ≥ e−N2I0+o(N2),

1 This case suffices for our needs, but the restriction is in fact not necessary. Indeed, we could perform
an analogous argument for the measures dµε(z) = ψε(z) d2z, ψε(z) = 1

πε2

∫
Bε(z)

dµ. In the limit
ε → 0, where I (µε) → I0, this would yield the desired statement.
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and therefore,

PN(D
N \ AN,η) ≤

∫

DN
eN

2I0+o(N2)−N2(I0+η)
N∏

i=1

d2zi = o(e−N2η/2). ��

Let the continuous function 1
Nk

∑
φ
(
(zij )

k
j=1

)
take its maximum on the compact set

AN,η at ζ , and set νN,η = δζ . Then,

〈

φ,
1

Nk
R
(k)
N

〉

≤ 1

Nk

N∑

i1,... ,ik=1

φ
(
(ζij )

k
j=1

) =
∫

φ
(
(zi)

k
i=1

) k∏

i=1

dνN,η(zi).

Because of Lemma 3.2, we find a convergent subsequence νN(n),η → νη (n → ∞)with

lim
N→∞

〈

φ,
1

Nk
R
(k)
N

〉

≤
∫

φ
(
(zi)

k
i=1

) k∏

i=1

dνη(zi).

Lemma 4.3. We have νη ∈ M(D) and, in the limit η → 0, I (νη) → I0.

Proof. Using ζ ∈ AN(n),η, we obtain with the cut-off L ∈ R:

I0 + η ≥ 1

N(n)

N(n)∑

i=1

V (ζi)+ 1

N(n)2

∑

1≤i �=j≤N(n)
min{log |ζi − ζj |−1, L}

=
∫

V (z) dνN(n),η(z)

+
∫∫

min{log |z− ζ |−1, L} dνN(n),η(ζ ) dνN(n),η(z)− L

N(n)
.

Sending first n and then L to infinity brings us to νη ∈ M(D) and therefore
I0 ≤ I (νη) ≤ I0 + η. ��

So, letting η → 0, a subsequence of νη converges to the equilibrium measure µ, and
thus,

lim
N→∞

〈

φ,
1

Nk
R
(k)
N

〉

≤
∫

φ
(
(zi)

k
i=1

) k∏

i=1

dµ(zi).

Arguing in the same way for the limes inferior concludes the proof. ��

5. Polynomial Curves

Definition. A polynomial curve of degree n is a smooth simple closed curve in the
complex plane with a parametrization h : S1 ⊂ C → C of the form

h(w) = rw + a0 + a1w
−1 + · · · + anw

−n, |w| = 1, (8)

with r > 0 and an �= 0. The standard (counterclockwise) orientation of the circle induces
an orientation on the curve. We say that a polynomial curve is positively oriented if this
orientation is counterclockwise, i.e., if the tangent vector to the curve makes one full
turn in the counterclockwise direction as we go around the unit circle.
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Proposition 5.1. Let γ be a positively oriented polynomial curve with parametrization h
of the form (8). Thenh, viewed as a homolorphic map on C

×, restricts to a biholomorphic
map from the exterior of the unit disk onto the exterior of γ .

Proof. We have to show that h′(w) �= 0 for allw in the complement of the unit disk. Let
t denote the tangent vector map w �→ t (w) = h′(w)iw = i(rw−∑

jajw
−j ). Since γ

is a simple closed curve, the map w �→ t (w)/|t (w)| is a map of degree 1 from the unit
circle to itself. Therefore we have

1 = 1

2π

∮

|w|=1
d arg(t (w))

= 1

2π i

∮

|w|=1

t ′(w)
t (w)

dw

= N + 1

2π i

∮

|w|=R
t ′(w)
t (w)

dw.

Here N ≥ 0 denotes the number of zeros of t (w), counted with multiplicity, in the
complement of the unit disk andR is so large that it contains them all. The latter integral
is 1 as can be seen by sending R to infinity. Thus N = 0, and h′ has no zeros in the
complement of the unit disk. ��

A simple consequence of this proposition is that a polynomial curve is uniquely
parametrized by a map of the form (8) with r > 0. Indeed, any other conformal map-
ping of the complement differs by an automorphism of the complement of the unit disk.
But non-trivial automorphisms are given by fractional linear transformations which do
not preserve the conditions.

From now on, we will only consider polynomial curves encircling the origin, i.e.,
such that the origin is contained in their interior domain. This can always be achieved
by a translation, i.e., a shift of a0.

Definition. The harmonic moments (tj )∞j=1 of the exterior domainD− of a polynomial
curve (or more generally of an analytic curve) encircling the origin are defined by

tj = − 1

πj

∫

D−
z−j d2z = 1

2π ij

∮

γ

z̄z−j dz,

where only the right integral should be taken as a definition for j ≤ 2.

Proposition 5.2. Let γ be a positively oriented polynomial curve of degree n encircling
the origin.

(i) The exterior harmonic moments tj of γ vanish for all j > n+ 1.
(ii) There exist universal polynomials Pj,k ∈ Z[r, a0, . . . , ak−j ], 1 ≤ j ≤ k, so that

for j = 1, . . . , n+ 1,

j tj = āj−1r
−j+1 +

n∑

k=j
ākr

−kPj,k(r, a0, . . . , ak−j ). (9)

Moreover, Pj,k is a homogeneous polynomial of degree k − j + 1 and it is also
weighted homogeneous of degree k − j + 1 for the assignment deg(aj ) = j + 1,
deg(r) = 0.
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(iii) The area of the domain enclosed by γ is πt0, where

t0 = r2 −
n∑

j=1

j |aj |2.

Proof. Since γ encircles the origin, h(w) never vanishes for |w| ≥ 1. Hence the contour
in the formula for tj may be computed by taking residues at infinity. For j ≥ 1,

j tj = 1

2π i

∮

|w|=1
h̄(w−1)h′(w)h(w)−j dw

= r−j
n∑

k=0

āk

2π i

∮

wk−j
(

r −
n∑

l=1

lalw
−l−1

)(

1 +
n∑

l=0

alw
−l−1/r

)−j
dw.

The integrals in this sum vanish if k ≤ j − 2. The formula for tj in terms of ak , r is
obtained by expanding the geometric series and picking the coefficient of w−1 in the
integrand. This proves (i) and the first part of (ii). The homogeneity property is clear.
The weighted homogeneity follows by rescaling w in the integral. The same formula
can be used to compute t0, but the first term rw−1 in h̄(w−1), which does not contribute
to the integral and was omitted for j ≥ 1, must be added here. ��
Examples. The terms in tj involving polynomials Pj,k with k ≤ 3 are

t1 = ā0 − r−1ā1a0 − r−2 ā2(2 a1r − a0
2 )+ r−3 ā3 (3 a0a1r − 3 a2r

2 − a0
3 )+ · · · ,

2 t2 = r−1ā1 − 2 r−2 ā2 a0 − 3 r−3 ā3 (a1r − a0
2 )+ · · · ,

3 t3 = r−2 ā2 − 3 r−3 ā3 a0 + · · · .
Theorem 5.3. Let t2, . . . , tn+1 be complex numbers so that |t2| < 1/2. Then there exists
an A0 = A0(t2, . . . , tn+1) > 0 so that for all A, t1 with 0 < A < A0 and |t1|2 <
A(1/2 − |t2|), there exists a unique positively oriented polynomial curve of degree ≤ n

encircling the origin, with areaA and exterior harmonic moments t1, . . . , tn+1, 0, 0, . . . .

Proof. The idea is to invert the map (r, a0, . . . , an) �→ (t0, . . . , tn+1) for small r and
a0. Set αj = r−j aj , ρ = r2 and consider instead the polynomial map

F : (ρ, α0, . . . , αn) → (t0, . . . , tn+1),

as a map from R × C
n+1 to itself. The first claim is that this map has a smooth inverse

in some neighborhood of any point t ∈ R × C
n+1 such that t0 = t1 = 0 and |t2| �= 1/2.

By Prop. 5.2, this map is given by

t0 = ρ −
n∑

j=1

ρj j |αj |2,

j tj = ᾱj−1 +
n∑

k=j
ᾱkPj,k(r, α0, rα1, . . . , r

k−jαk−j )

= ᾱj−1 +
n∑

k=j
ᾱkPj,k(ρ, α0, α1, . . . , αk−j ).
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From the contour integral representation of the harmonic moments we get the integral

Pj,k(ρ, α0, . . . , αk−j )

= 1

2πi

∮

|w|=R
wk−j

(

1 −
n∑

l=1

lαlρ
lw−l−1

)(

1 +
n∑

l=0

αlρ
lw−l−1

)−j
dw

for any sufficiently large R. By computing the residue at infinity, we can calculate Pj,k
and thus tj up to terms of at least second order in α0, ρ,

t0 = ρ (1 − |α1|2)+ · · · ,
j tj = ᾱj−1 − j ᾱjα0 − (j + 1)ρ ᾱj+1α1 + · · · , j ≥ 1.

Hence F(0, 0, 2 t̄2, . . . , (n+ 1) t̄n+1) = (0, 0, t2, . . . , tn+1) and the tangent map at this
point sends (ρ̇, α̇0, . . . , α̇n) to (ṫ0, . . . , ṫn) with

ṫ0 = (1 − 4|t2|2)ρ̇,
j ṫj = ¯̇αj−1 − j (j + 1) tj+1α̇0 − 2j (j + 1)(j + 2) tj+2t2ρ̇, j ≥ 1.

The tangent map is invertible if |t2| �= 1/2. By the inverse function theorem, F has a
smooth inverse on some neighborhood of (0, 0, t2, . . . , tn+1). If |t2| < 1/2, F preserves
the positivity of the first coordinate.

In terms of the original variables, this means that given any t = (t0, t1, t2, . . . , tn+1)

with small t0 > 0, t1 and such that |t2| �= 1/2, there is a curve w �→ h(w) with
h(w) = rw + α0 + rα1w

−1 + · · · + rnαnw
−n and αj � (j + 1) t̄j+1. It remains

to show that if r > 0 is small enough, h parametrizes a positively oriented simple
closed curve containing the origin. We first show that h is an immersion. Since h′(w) =
r − rα1w

−2 + O(r2) and limr→0 α1 = 2 t̄2, we see that as long as |t2| �= 1/2, h′(w)
does not vanish on the unit circle. Similarly, we show that h : S1 → C is injective: we
have

|h(w)− h(w′)|2 = r|w − w′ + 2 t̄2(w
−1 − w

′−1)| +O(r2)

= r|w − w′ + 2 t̄2(w̄ − w̄′)| +O(r2).

But the expression in the absolute value can only vanish forw �= w′ if |2 t̄2| = 1 which is
excluded by the hypothesis. Moreover h(w) = rw+ t̄1 +2r t̄2w−1 +O(r2). Therefore h
parametrizes a perturbation of an ellipse centered at t̄1. The condition on t1 is a sufficient
condition for this ellipse to contain the origin. ��

Example. Let k ≥ 3 and let us consider curves with tj = 0 for all j �= k. Then aj = 0
for all j �= k − 1, so that h(w) = rw + ak−1w

−k+1. The relation between (t0, tk) and
(r, ak−1) is t0 = r2 − (k − 1)|ak−1|2, k tk = āk−1r

−k+1. This map is a diffeomorphism
from the region 0 < r < (k − 1) |ak−1|, which is the condition for h(w) to be an
embedding of the unit circle, onto the region

0 < t0 < (k(k − 1)|tk|)−2/(k−2)(k − 2)/(k − 1).

As t0 approaches the upper bound for given tk , the curve develops cusp singularities.
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6. The Equilibrium Measure for a Polynomial Curve

In this section we evaluate the equilibrium measure corresponding to potentials

V (z) = 1

t0

(

|z|2 − 2 Re
n+1∑

k=1

tkz
k

)

. (10)

We anticipate the result:

Theorem 6.1. For any set (tk)∞k=1 ⊂ C with t1 = 0, |t2| < 1
2 and tk = 0 for k > n+ 1

and any compact domain D ⊂ C containing the origin as an interior point and such
that t0V , V given by Eq. (10), is positive on D \ {0}, there exists a δ > 0 so that for all
0 < t0 < δ the equilibrium measure µ for V on D is given by

µ = 1

πt0
χD+λ,

where D+ denotes the interior domain of the polynomial curve γ defined by the
harmonic moments (tk)∞k=0, and λ is the Lebesgue measure on C.

The rest of the section is dedicated to the proof of this theorem.

6.1. The Schwarz reflection. We first need the notion of a reflection on an analytic curve
(see e.g. [10]).

Definition. The Schwarz function of an analytic curve γ is defined as the analytic
continuation (in a neighbourhood of the curve) of the function S(z) = z̄ on γ . The
Schwarz reflection ρ for the analytic curve in this domain is the anti-holomorphic map
ρ(z) = S(z).

Definition. Under the critical radius R of the polynomial curve defined by the param-
etrization h we understand the value

R = max{|w| | h′(w) = 0, w ∈ C},

which, by definition of the map h, is less than 1.

Lemma 6.2. Let γ be a polynomial curve parametrized by h and R its critical radius.
Then the Schwarz function S and the Schwarz reflection ρ of the curve γ restricted to
h(B1/R \ B̄R), where BR denotes the open disk with radius R around zero, are biholo-
morphic respectively anti-biholomorphic maps. They are given by

S(z) = h̄

(
1

h−1(z)

)

and ρ(z) = h

(
1

h̄−1(z̄)

)

. (11)

Therefore, ρ maps γ identically on itself, h(B1 \ B̄R) to h(B1/R \ B̄1) and vice versa.
Also, we have ρ2 = id.
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Proof. By definition of the Schwarz function, in a neighborhood of |w| = 1,

S(h(w)) = h̄(w−1).

Because for w ∈ C \ B̄R the function h is biholomorphic, we may write

S(z) = h̄

(
1

h−1(z)

)

, ρ(z) = S(z) = h

(
1

h̄−1(z̄)

)

.

Taking the derivatives, we find that they do not vanish for R < |h−1(z)| < 1
R

. ��
Lemma 6.3. In the interior domain D+ of the polynomial curve defined by the param-
eters tk from (10) as its harmonic moments, the function

E(z) = V (z)+ 2

πt0

∫

D+
log

∣
∣
∣
∣
z

ζ
− 1

∣
∣
∣
∣

−1

d2ζ

is equal to zero and in the exterior domain D \D+, its gradient reads

∂z̄E(z) = 1

t0
(z− ρ(z)). (12)

Proof. To verify the first statement, we use Green’s theorem and obtain

2

π

∫

D+
log |z− ζ |−1 d2ζ = −|z|2 + Re

1

2π i

∮

γ

(

log |z− ζ |−1ζ̄ + |ζ |2
ζ − z

)

dζ.

Integrating by parts of the second integrand yields immediately

2

π

∫

D+
log |z− ζ |−1 d2ζ = −|z|2 − 2 Re

1

2π i

∮

γ

log(ζ − z)ζ̄ dζ,

and expanding the logarithm around z = 0 leads us to E(z) = 0 in D+.
For the proof of the second part we write S = Si +Se, where Si is analytic inD+ and

Se in the complement D \ D+. For the exterior function Se one finds with the Cauchy
integral and Stokes formula:

Se(z) = − 1

2π i

∮

γ

ζ̄ − Si(ζ )

ζ − z
dζ = 1

π

∫

D+

1

z− ζ
d2ζ, z ∈ D \D+.

Because we know E to be constant on D+,

0 = ∂zE(z) = 1

t0

(

z̄−
n+1∑

k=1

ktkz
k−1 − 1

π

∫

D+

1

z− ζ
d2ζ

)

for all z ∈ D+. So on im γ , and by analytic continuation in the entire domain where S is
holomorphic (which includes the exterior domain D \ D+), we have
Si(z) = ∑n+1

k=1 ktkz
k−1.

Therefore, for all z ∈ D \D+,

∂z̄E(z) = 1

t0

(
z− Si(z)− Se(z)

)
= 1

t0
(z− ρ(z)) . ��
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Let us remark that this proof shows that the Schwarz function S has, at least around
infinity, the form

S(z) =
n+1∑

k=1

ktkz
k−1 + t0

z
+

∞∑

k=1

vkz
−k−1,

where the vk = 1
π

∫
D+ z

k d2z denote the harmonic moments of the interior domain
D+. This fact was already used in [2] to establish a connection between the harmonic
moments and the coefficients of the parametrization of γ . And as was shown in [2], we
find, with Theorems 4.1 and 6.1, that the vk are nothing but the expectation values of
t0
N

tr(Mk) with respect to the probability measure PN(M) dM in the limit N → ∞ and
hence, are completely determined by the harmonic moments of the exterior domain and
t0.

6.2. The Gaussian case. In this case, where the polynomial curve is an ellipse, we are
able to calculate the equilibrium measure on C explicitly.

Proposition 6.4. The equilibrium measure µ for the potential

V (z) = 1

t0
(|z|2 − t2z

2 − t̄2z̄
2), |t2| < 1

2
,

on C is

µ = 1

ab
χD+λ,

where D+ denotes the interior of the ellipse

Re(
√
t2z)

2

a2 + Im(
√
t2z)

2

b2 = |t2|, a =
√

1 + 2|t2|
1 − 2|t2| t0, b =

√
1 − 2|t2|
1 + 2|t2| t0. (13)

Proof. As a polynomial curve, the ellipse (13) has the parametrization

h(w) = r(w + 2t2w
−1), r = a + b

2
. (14)

We check that the given measureµ is the equilibrium measure by verifying the conditions
of Corollary 3.5. To this end, let us introduce for |w| > 1 the function

E(w) = E(h(w)), E(z) = V (z)+ 2

πt0

∫

D+
log

∣
∣
∣
∣
z

ζ
− 1

∣
∣
∣
∣

−1

d2ζ.

Integrating Eq. (12) and its complex conjugate analog we get for E(w) the expression

E(w) = 1

t0

(

|h(w)|2 − |h(1)|2 − 2 Re
∫ w

1
h̄(w−1)h′(w) dw

)

.
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Substituting in this expression relation (14) for h, we obtain

t0E(w) = r2(|w + 2t2w
−1|2 − |1 + 2t2|2

)

−2r2 Re(t̄2w
2 + (1 − 4|t2|2) logw + t2w

−2 − (t2 + t̄2))

= r2(|w|2 − 1 − 4|t2|2 + 4|t2|2|w|−2 + (1 − 4|t2|2) log(|w|−2)
)

+2r2 Re(2t2w̄w
−1 − t2(w̄w

−1)|w|−2 − t2(w̄w
−1)|w|2)

= r2(|w|2 − 1)(1 − 4|t2|2|w|−2)+ r2(1 − 4|t2|2) log(|w|−2)

−2r2(|w|2 − 1)(1 − |w|−2)Re(t2w̄w
−1)

= r2(|w|2 − 1)(1 − 2|t2|)(1 + 2|t2||w|−2)+ r2(1 − 4|t2|2) log(|w|−2)

+2r2(|w|2 − 1)(1 − |w|−2)(|t2| − Re(t2w̄w
−1)).

We are now ready to start estimating E(w) for |w| > 1 and |t2| < 1
2 . The last bracket

we can estimate by

|t2| − Re(t2w̄w
−1) ≥ |t2| − |t2w̄w−1| = 0.

It therefore remains to show

(|w|2 − 1)(1 + 2|t2||w|−2)+ (1 + 2|t2|2) log(|w|−2) ≥ 0,

which follows immediately out of the following lemma.

Lemma 6.5. For 0 ≤ α ≤ 1 the function

f (x) = (x − 1)(1 + αx−1)− (1 + α) log x

is non-negative on the interval [1,∞).

Proof. For the function f and its derivatives f ′ and f ′′ we have

f (1) = 0, f ′(1) = 0 and f ′′(x) = 1

x2

(

1 + α − 2α

x

)

≥ 0. ��

So we showed that E(z) ≥ 0 for all z ∈ C \ D+. Because of Lemma 6.3, we also
know that in the interior domain D+, E is zero and we therefore can apply Corollary
3.5 to see that µ is indeed the equilibrium measure for the potential V on C. ��

6.3. The proof of Theorem 6.1. As in the Gaussian case we are going to show that the
measure µ given in the theorem fulfills the conditions of Corollary 3.5 and is therefore
the uniquely defined equilibrium measure.

Because Theorem 6.1 is only valid for interior domains with small area, we are going
to consider the asymptotical behaviour t0 → 0, where the harmonic moments (tk)∞k=1 are
kept fixed. To catch the asymptotical behavior of the corresponding polynomial curve,
let us parametrize it as in the proof of Theorem 5.3:

h(w) = rw +
n∑

j=0

rjαjw
−j .

Then, for r → 0, we have r2 � t0, αj � (j +1)t̄j+1, j ≥ 1, and, because we set t1 = 0,
α0 � r2.
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Lemma 6.6. The critical radius of h is asymptotically constant for r → 0:

R =
√

|α1| + O(r).
Proof. The roots of the function h′(w) = r−rα1w

−2 −· · ·−nrnαnw−n−1 are in zeroth
order at ±√

α1 and (n− 1-times degenerated) at zero. ��
We consider now for z ∈ D respectively for w ∈ h−1(D \D+) the functions

E(z) = V (z)+
∫

D+
log

∣
∣
∣
∣
z

ζ
− 1

∣
∣
∣
∣

−1

d2ζ and (15)

E(w) = E(h(w)) = 1

t0

(

|h(w)|2 − |h(1)|2 + 2 Re
∫ w

1
h̄(w̃−1)h′(w̃) dw̃

)

. (16)

We already showed in Lemma 6.3 that E(z) ≡ 0 in D+, so the first condition of the
corollary is satisfied (this is essentially the way we have chosen our potential V ).

Now, also with Lemma 6.3, we see that E ≥ 0 in the vicinity of the curve γ , strictly
speaking in the domain h(B1/R \ B̄1). Indeed, if we look at the connected components of
the contour lines of the function E (which are smooth curves in the considered domain
because there ∂z̄E �= 0), we see that the gradient vector ∂z̄E always points outwards,
i.e. in the exterior domain of the contour line. Therefore, the value of E on the contour
lines is increasing outwards as desired.

A bit farther from the curve, i.e. for 1/R ≤ |w| < r−α , 0 < α < 1
3 , the function

E equals asymptotically the one of the corresponding ellipse h(0)(w) = rw + α0 +
rα1w

−1, we denote it by E (0). Indeed, remarking that for the area of this ellipse we have
t
(0)
0 = t0 + O(r4) and that E (0)(w) = O(r−2α), we obtain, uniformly in w,

E(w)− E (0)(w) = 1

t0
(|h(w)|2 − |h(0)(w)|2 − |h(1)|2 + |h(0)(1)|2)

+ 2

t0
Re
∫ w

1
(h(w̃−1)− h(0)(w̃−1))h′(w̃) dw̃

+ 2

t0
Re
∫ w

1
(h′(w̃)− h(0)

′
(w̃))h(0)(w̃−1) dw̃

+ 1

t0

(
t
(0)
0 − t0

)
E (0)(w)

= O(r1−α)+ O(r1−3α)+ O(r1−2α)+ O(r2−2α)

→ 0 (r → 0).

Because E (0)(w) ≥ C > 0 for all |w| ≥ 1
R

and r > 0, we may choose r so small that
|E(w)− E (0)(w)| < E (0)(w) and so E(w) > 0 for all w ∈ Br−α \ B1/R .

The domain remains, where |w| ≥ r−α . For k ≥ 2, we obtain

h(w)k − (rw)k =
k∑

l=1

(
k

l

)

(rw)k−l



n∑

j=0

rjαjw
−j




l

=
k∑

l=1

(
k

l

)

rkwk−2l




n∑

j=0

rj−1αjw
1−j





l

= O(r2).
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And since

t0V (z) = |z|2 − t2z
2 − t̄2z̄

2 + o(|z|2)
= 1

2

(
|z− 2t2z̄|2 + (1 − 4|t2|2)|z|2

)
+ o(|z|2)

for z → 0 andV > 0 onD\{0}, we may find a constantC > 0 such that t0V (z) ≥ C|z|2
for all z in the compact domain D.

Therefore, for r → 0,

V (h(w)) = V (rw)+ O(1) ≥ C

t0
|rw|2 + O(1),

which tends to infinity at least as r−2α .
On the other side, the integral over the logarithm in (15) diverges for r → 0 only as

log r . So we have for r small enough E(h(w)) > 0 for all w ∈ h−1(D \D+) \ Br−α .
This proves now E(z) ≥ 0 for all z ∈ D and therefore, with Corollary 3.5, that µ is

the equilibrium measure.

6.4. Shifting the origin. As a little generalization, we consider the case where t1 �= 0.
This corresponds to a shift of the origin. Therefore, we like to define the harmonic
moments also for a curve which does not encircle the origin.

Definition. Let

h(w) = rw +
n∑

j=0

ajw
−j

parametrize a polynomial curve of degree n. Then the harmonic moments (tk)
n+1
k=1 are

given by the equation system (9). All other harmonic moments are set to zero.

Proposition 5.2 tells us that this definition coincides with the previous one if the
origin is in the interior domain of the curve.

Corollary 6.7. For any set (tk)∞k=1 ⊂ C with |t2| < 1
2 and tk = 0 for k > n + 1 and

any compact domain D ⊂ C such that U(z) = |z|2 − 2 Re
∑n+1
k=1 tkz

k has exactly one
absolute minimum in the interior of D, there exists a δ > 0 so that for all 0 < t0 < δ

the equilibrium measure µ for V = 1
t0
U on D is given by

µ = 1

πt0
χD+λ,

where D+ denotes the interior domain of the polynomial curve γ defined by the
harmonic moments (tk)∞k=0.

Proof. Let us first shift the origin by a0, such that V (z+ a0) has its absolute minimum
in 0. Thereby, the potential gets the form

V (z+ a0) = 1

t0

(

|z|2 − 2 Re
n+1∑

k=2

t ′kz
k

)

+ V (a0),

where the t ′k are the harmonic moments of the shifted curve γ − a0. Indeed, the coeffi-
cients of V and the harmonic moments depend polynomially on the shift a0. Because
we know them to coincide as long as the origin is inside D+, they do so for all a0.

Applying now Theorem 6.1 for the shifted potential gives the desired result. ��
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7. Discussion

We have shown that under suitable assumptions on the polynomial p appearing in the
potential and on the integration range D of the eigenvalues, the asymptotic density
is uniform with support on a domain uniquely determined by the coefficients of the
polynomial p.

It would be interesting to understand what happens at the range of validity of our
assumptions. If the potential V has more than one minimum inD then one should expect
for small t0 to have an equilibrium measure with disconnected support, so that a descrip-
tion by a polynomial curve cannot be valid. Also as t0 gets bigger, polynomial curves
develop singularities and become non-simple. The question is then what happens to
the eigenvalues. Finally we note that polynomial curves are (real sections of complex)
rational curves. Curves of higher genus should arise by replacing p by more general
holomorphic functions.
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