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Abstract A continuous surface stretched with velocity
uw=uw (x) and having the temperature distribution
Tw=Tw (x) interacts with the viscous fluid in which it is
immersed both mechanically and thermally. The thermal
interaction is characterized by the surface heat flux
qw=qw (x) and the mechanical one by the skin friction
sw=s w (x). In the whole previous theoretical research
concerned with such processes, either (uw and Tw) or (uw
and qw) have been prescribed as known boundary condi-
tions. The goal of the present paper is to initiate the
investigation of the boundary layer flows induced by
stretching processes for which either (s w and Tw ) or (sw
and qw) are the prescribed quantities. The case of an iso-
thermal surface stretched with constant skin friction,
(sw=const., Tw=const. „ T¥) is worked out in detail.
The corresponding flow and heat transfer characteristics
are compared to those obtained for the (well known) case
of a uniformly moving isothermal surface (uw=const.,
Tw=const. „ T¥).
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1 Introduction

During its manufacturing process a stretched sheet
interacts with the ambient fluid both thermally and
mechanically. The thermal interaction is governed by
the surface heat flux qw=qw (x). This quantity can either
be prescribed or it is the output of a process in which the
surface temperature distribution Tw=Tw (x) has been
prescribed. The mechanical interaction of a stretching
sheet with the ambient fluid is governed by the skin
friction s w=s w (x) which acts in general as a surface
drag. Similarly to the surface heat flux qw=qw (x), the
skin friction s w=s w (x) also can either be prescribed or
it is the result of a process in which the stretching
velocity of the surface uw=uw (x) has been prescribed.
Accordingly, for a comprehensive description of the
process four different combinations of the prescribed
mechanical and thermal boundary conditions must be
considered. These four kind of prescriptions are

uw; Twð Þ; ðIÞ

uw; qwð Þ; ðIIÞ

sw; Twð Þ; ðIIIÞ

sw; qwð Þ; ðIVÞ

While the boundary conditions of types I and II have
comprehensively been investigated in the previous liter-
ature, to the best of our knowledge the conditions of
types III and IV have not been considered until now.
The goal of the present paper is to initiate the research of
the heat transfer characteristics of boundary layers in-
duced by continuous stretching surfaces subjected to
boundary conditions of type III and IV. To this end, this
paper considers a special case of III in detail and com-
pares the results to the well known ones corresponding
to the conditions of type I. Within this topic our main
concern is to compare the heat transfer coefficient hI of a
process of type (I) in which both the stretching velocity
uw and the surface temperature Tw are prescribed con-
stants (uniformly moving isothermal surface), to the
heat transfer coefficient hIII of a process of type (III) in
which the same constant surface temperature Tw is
prescribed and the skin friction s w is also a prescribed
constant (isothermal surface stretched with constant
skin friction). Obviously, in the former case the skin
friction as an output associated with the prescribed
stretching velocity and in the latter case the stretching
velocity as an output corresponding to the prescribed
skin friction also are quantities of practical interest. It is
assumed throughout in this paper that the stretching
surface is impermeable and that buoyancy effects as well
as the effect of viscous dissipation can be neglected.

As a consequence of the absence of buoyancy forces
every one of the boundary value problems (I)–(IV) splits
into an independent flow boundary value problem and a

forced thermal convection problem, respectively. Owing
to a formal mathematical analogy, the results of the flow
boundary value problems with prescribed stretching
velocity or prescribed skin friction also apply to the
Darcy free convection boundary layer flows from verti-
cal surfaces adjacent to fluid saturated porous media,
with prescribed surface temperature distribution or
prescribed surface heat flux, respectively. However, the
present heat transfer problem has no analogue in the
case of porous media.

The investigation of boundary layer flows induced by
continuous stretching surfaces with prescribed stretching
velocity uw=uw (x) has been initiated by the pioneering
work of Sakiadis [1]. In the seminal paper of Banks [2] a
comprehensive analytical and numerical investigation of
the self-similar Sakiadis flows has been presented. For
later developments in this field, including detailed heat
transfer investigations the references [3–13] can be con-
sulted. Concerning the free convection boundary layer
flows from vertical surfaces adjacent to fluid saturated
porous media (to which a part of the results of the
present paper also applies), the first results have been
reported by Cheng and Minkowycz [14]. For later
developments, especially for the mathematical analogy
mentioned above see [15–21]. A vast material and a rich
list of references in this research field of porous media is
presented in the book of Nield and Bejan [22] as well as
in the recent monograph of Pop and Ingham [23].

2 Basic balance equations and boundary conditions

When the buoyancy forces may be neglected, the steady
velocity and thermal boundary layers induced by a
continuous (in general non-isothermal) stretching sur-
face moving through a quiescent incompressible fluid of
constant temperature T¥ are governed in the boundary
layer approximation by the mass, momentum and en-
ergy balance equations (see e.g. [4–7]):

@u
@x
þ @v
@y
¼ 0;

u
@u
@x
þ v

@u
@y
¼ t

@2u
@y2

;

u
@T
@x
þ v

@T
@y
¼ a

@2T
@y2

:

ð1a; b; cÞ

The x-axis is directed along the continuous stretching
surface and points from the narrow extrusion slot in
toward +¥. The y-axis is perpendicular to x and to the
direction of the slot (z-axis). u and v are the x and y
components of the velocity field, respectively (Fig. 1). In
the usual manufacturing situation (shown in Fig. 1) the
surface issues from the slot and gives thus rise to a
‘‘forward boundary layer’’ flow (FBL) which moves
from the slot toward x=+¥. In this case the stretching
velocity u(x, 0) ” uw (x) is positive for any x ‡ 0. These
are the Sakiadis-type boundary layer flows [1]. In the
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opposite case in which the continuous surface coming
from x=+¥ enters the slot, i.e. u(x,0) ” uw (x) is
negative for any x ‡ 0, we are faced according to the
nomenclature introduced by Goldstein [24] with the
occurrence of a ‘‘backward boundary layer’’ flow (BBL)
which moves toward the slot (x=0). Such situations can
be encountered in thermal treatment (e.g. annealing) of
metallic sheets, wires, in the glass-fibre production, etc.
A concrete example of a free convection BBL induced
during the cooling of a vertically moving low-heat-
resistance sheet has been investigated by Kuiken [25].
The first results concerning the free convection BBLs
over cold semi-infinite vertically upwards projecting
surfaces adjacent to fluid saturated porous media have
recently been reported by Magyari and Keller [26].

As explained above, the process can be subjected to
each two types of mechanical and thermal boundary
conditions, respectively. For the momentum balance
either the stretching velocity uw (x) or the skin friction

swðxÞ ¼ l
@u
@y

x; 0ð Þ ð2Þ

can be prescribed. Similarly, for the thermal energy
balance of the process, either the surface temperature
distribution Tw=Tw (x) or the surface heat flux

qwðxÞ ¼ �k
@T
@y

x; 0ð Þ ð3Þ

can be prescribed. Accordingly, all the four combina-
tions (I)–(IV) of mechanical and thermal boundary
conditions listed in the Introduction are of practical
interest. Written down in detail these four types of
boundary conditions (for impermeable surfaces) read:

I. Prescribed stretching velocity and surface tempera-
ture distribution (uw, Tw):

u x; 0ð Þ ¼ uwðxÞ; v x; 0ð Þ ¼ 0; u x;1ð Þ ¼ 0;

ð4a; b; cÞ

T x; 0ð Þ ¼ TwðxÞ; T x;1ð Þ ¼ T1 ¼ const: ð5a; bÞ

II. Prescribed stretching velocity and surface heat flux
(uw, qw):

u x;0ð Þ¼ uwðxÞ; v x;0ð Þ¼ 0; u x;1ð Þ¼ 0; ð6a;b;cÞ

q x; 0ð Þ ¼ qwðxÞ; T x;1ð Þ ¼ T1 ¼ const: ð7a; bÞ

III. Prescribed skin friction and surface temperature
distribution (s w, Tw):

s x; 0ð Þ ¼ swðxÞ; v x; 0ð Þ ¼ 0; u x;1ð Þ ¼ 0;

ð8a; b; cÞ

T x; 0ð Þ ¼ TwðxÞ; T x;1ð Þ ¼ T1 ¼ const: ð9a; bÞ

IV. Prescribed skin friction and surface heat flux (sw, qw):

s x; 0ð Þ ¼ swðxÞ; v x; 0ð Þ ¼ 0; u x;1ð Þ ¼ 0;

ð10a; b; cÞ

q x; 0ð Þ ¼ qwðxÞ; T x;1ð Þ ¼ T1 ¼ const: ð11a; bÞ

Equations 1 lead (for every one of the four types of
boundary conditions) to an independent flow boundary
value problem and a forced thermal convection prob-
lem. In terms of the stream function w=w (x,y) defined
by u=¶w /¶y,v=� ¶w /¶x Eqs. 1 reduce to
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:

ð12a; bÞ

3 Similarity transformations

It is well known (see e.g. Schlichting and Gersten [27])
that a transformation of the form

w x; yð Þ ¼ AðxÞf gð Þ;
g ¼ BðxÞy;
T x; yð Þ ¼ T1 þ CðxÞh gð Þ;

ð13a; b; cÞ

where

AðxÞ 6¼ const: and BðxÞ > 0 ð14a; bÞ
leads to two basic types of similarity solutions of Eqs.
12. These are the similarity solutions of power law type
corresponding to

AðxÞ ¼ A0 � xmþ1=2; BðxÞ ¼ B0 � xm�1=2; m 6¼ �1;
CðxÞ ¼ C0 � xn ð15a; b; cÞ

and the similarity solutions of exponential type corre-
sponding to

AðxÞ ¼ A0 � eax; BðxÞ ¼ B0 � eax; CðxÞ ¼ C0 � ecx

ð16a; b; cÞ
(A0, B0, C0, n, m, a and c are real constants).

Fig. 1 Coordinate system and steady forward boundary layers
induced by a stretching wall issuing from a narrow slot
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The assumption B(x) > 0 which implies g‡ 0 can be
adopted without any further restriction of generality.
The assumption A(x) „ const. on the other hand, has a
basic significance. Indeed, as shown recently by Magyari
et al. [28], in the case A(x)=const. (which for the power
law similarity (15) means m=� 1) the transformation
(13a) is much to restrictive and the corresponding
boundary value problem does not admit solution (nei-
ther for impermeable nor for permeable surfaces).
However, if the surface is permeable and a suitable lat-
eral suction of the fluid is admitted this ‘‘missing’’
boundary layer solution can readily be found by a slight
extension of transformation (13a), [28].

In both of the above similarity cases the components
of the corresponding velocity fields are obtained as:

u x; yð Þ ¼ AðxÞBðxÞf 0 gð Þ; ð17Þ

v x; yð Þ ¼ �A0ðxÞ f gð Þ þ AðxÞ
A0ðxÞ

B0ðxÞ
BðxÞ gf 0 gð Þ

� �
ð18Þ

(the primes denote derivatives with respect to the argu-
ment).

According to Eq. 17 the (dimensional) stretching
velocity of the flow is given by

uwðxÞ ¼ AðxÞBðxÞf 0 0ð Þ: ð19Þ

Once the assumption B0 > 0 is adopted, the sign of
the product A0Æf ¢(0) decides about the sign of uw (x) i.e.
about the ‘‘forward’’ of ‘‘backward’’ character of the
boundary layer considered. The condition {uw (x) > 0, x
‡ 0} of FBLs requires

sgn A0ð Þ ¼ sgn f 0 0ð Þ½ � (FBLs) ð20Þ
and the condition {uw (x) < 0, x ‡ 0} of BBLs requires

sgn A0ð Þ ¼ �sgn f 0 0ð Þ½ � (BBLs): ð21Þ

These conditions become important in specifying the
differential equations and boundary conditions satisfied
by the dimensionless stream function f=f(g) (see below).

From Eq. 18 results for the (dimensional) entrain-
ment velocity

v x;1ð Þ ¼ �A0ðxÞ � f1; ð22Þ
where

f1 ¼ lim
g!1

f gð Þ ð23Þ

denotes the dimensionless entrainment velocity. For the
skin friction (2) and the wall heat flux (3) results

swðxÞ ¼ lAðxÞB2ðxÞf 00 0ð Þ ð24Þ
and

qwðxÞ ¼ �kCðxÞBðxÞh0 0ð Þ ð25Þ
respectively.

We restrict our further considerations to the case of
power-law similarity (15) with focus on the boundary
conditions (I) and (III). In this case the quantities of
physical interest become:

w x; yð Þ ¼ A0xmþ1=2f gð Þ;
g ¼ B0xm�1=2y; m 6¼ �1 and B0 > 0;

T x; yð Þ ¼ T1 þ C0xnh gð Þ;
ð26a; b; cÞ

u x; yð Þ ¼ A0B0xmf 0 gð Þ;

v x; yð Þ ¼ �A0xm�1=2 mþ 1

2
f gð Þ þ m� 1

2
gf 0 gð Þ

� �
;

ð27a; bÞ

uwðxÞ ¼ A0B0xmf 0 0ð Þ; v x;1ð Þ ¼ �A0
mþ 1

2
xm�1=2f1;

ð28a; bÞ

swðxÞ ¼ lA0B2
0x

3m�1=2f 00ð0Þ; ð29Þ

qwðxÞ ¼ kB0C0xmþ2n�1=2h0ð0Þ TwðxÞ ¼ T1 þ C0xnhð0Þ:
ð30a; bÞ

The balance equations (12) reduce to the ordinary
differential equations for f and h

bf 000 þ ff 00 � bf 02 ¼ 0;

b
Pr

h00 þ f h0 � cf 0h ¼ 0;
ð31a; bÞ

where

b ¼ 2tB0

mþ 1ð ÞA0
; b ¼ 2m

mþ 1
; c ¼ 2n

mþ 1
ð32a; b; cÞ

and Pr = t /a is the Prandtl number.
For the boundary conditions of types (I) and (III) the

value of h (0) can be chosen equal to +1 without any
further restriction of generality. Thus, the thermal
boundary conditions of types I and III become

h 0ð Þ ¼ 1; h 1ð Þ ¼ 0: ð33a; bÞ

Obviously, the thermal quantity of basic interest for
both of these types of boundary conditions is the
dimensionless heat transfer coefficient

h � �h0 0ð Þ: ð34Þ

Similarly, for the flow boundary conditions of types
(I) and (III) we can chose, respectively, f ¢(0)=+1 and
f ¢ ¢(0)=� 1 without any further restriction of generality.
Thus, the flow boundary conditions of types I and III
become

f 0ð Þ ¼ 0; f 0 0ð Þ ¼ þ1; f 0 1ð Þ ¼ 0; Type (I)

ð35a; b; cÞ
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and

f 0ð Þ ¼ 0; f 00 0ð Þ ¼ �1; f 0 1ð Þ ¼ 0; Type (III)

ð36a; b; cÞ
respectively. Now, the mechanical quantity of basic
interest is the skin friction

S � f 00 0ð Þ Type (I) ð37Þ
(associated with the prescribed stretching velocity uw)
for the boundary conditions of type (I) and the dimen-
sionless stretching velocity

p � f 0 0ð Þ Type (III) ð38Þ
(associated with the prescribed skin friction s w) for the
boundary conditions of type (III), respectively.

In order to restrict the large variety of possible
solutions, we consider hereafter in this paper the
FBLs only. According to Eqs. 20 and 35b, in the case
of boundary conditions of type (I) this restriction
implies

sgn A0ð Þ ¼ þ1 ð39Þ

We adopt this prescription also for the boundary
conditions of type (III). This implies in turn that in this
case the FBLs, which we are interested in correspond (as
expected) to positive values of the dimensionless
stretching velocity p=f ¢(0).

Now, choosing for the (positive) constant A0 the
value

A0 ¼
2tB0

mþ 1j j : ð40Þ

Equation (32a) implies

b ¼ sgn mþ 1ð Þ � s ð41Þ
and the basic differential equations (31) of our boundary
value problems become

sf 000 þ ff 00 � bf 02 ¼ 0; ð42Þ

s
Pr

h00 þ f h0 � cf 0h ¼ 0: ð43Þ

The flow boundary conditions of type (I) and (III) are
given by Eqs. 35 and 36, respectively. The thermal
boundary conditions are given in both of these cases by
the same Eqs. 33. The flow boundary value problems
(42), (35) and (42), (36) are mathematically equivalent to
the problem of Darcy free convection boundary layer
flows from vertical surfaces adjacent to fluid saturated
porous media with prescribed wall temperature and
prescribed wall heat flux, respectively (see e.g. [23]). In
the present context of the boundary layer flows induced
by stretching surfaces the first comprehensive investi-
gation of the problem (42), (35) for � ¥ < b <+¥
and s=+1 has been done by Banks [2]. In the range � 2

< b £ +2 (i.e. � 1/2 < m £ +¥) the solutions de-
scribed by Banks [2] correspond to the usual forward
boundary layers. At b=� 2 (i.e. m=� 1/2) the solution
becomes singular and for � ¥ < b < � 2 (i.e. � 1 < m
< � 1/2) no solutions exist. Banks [2] also gives
numerical solutions for s=+1 andb-values in the range
b >+2 (i.e. m < � 1). It should be underlined, how-
ever, that these solutions do not correspond to forward
but to backward boundary layers. This can easily be
seen from Eq. 32a which for m< � 1 and b> 0 requires
A0 < 0, i.e. sgn uw (x)=� 1. It is also worth mentioning
here that in the physical context of free convection flows
in saturated porous media Ingham and Brown [29] have
proved rigorously that the problem (42), (35) does not
admit FBL solutions in the whole range m < � 1/2, i.e.
neither for � ¥ < b < � 2 (i.e. � 1 < m < � 1/2) nor
for b >+2 (i.e. m < � 1).

4 Uniformly moving isothermal surface

The FBLs induced by a continuous uniformly moving
(m=0) isothermal (n=0) surface are well known (see
e.g. [2] and [3]). They are obtained as solutions of the
flow and thermal boundary value problems of type I,

f 000I þ fI f 00I ¼ 0;

fI 0ð Þ ¼ 0; f 0I 0ð Þ ¼ 1; f 0I 1ð Þ ¼ 0
ð44Þ

and

1

Pr
h00I þ fIh

0
I ¼ 0;

hI 0ð Þ ¼ 1; hI 1ð Þ ¼ 0;
ð45Þ

respectively.
The quantities of interest are the skin friction (37), the

dimensionless entrainment velocity (23), the heat trans-
fer coefficient (34) as well as the dimensionless velocity
and temperature profiles f ¢I (g) and h I (g), respectively.
Obviously, hI and h I (g) depend on the Prandtl number
Pr. The dimensionless skin friction S, entrainment
velocity f¥, I and the velocity profile f ¢I (g) can easily be
determined by numerical integration of the problem
(44). The result for S and f¥, I is (see also [2])

S ¼ �0:62755488; f1;I ¼ 1:14277337 ð46a; bÞ

The velocity profile f ¢I (g) decreases monotonically
from 1 to zero as g increases from zero to infinity
(Fig. 2) In terms of f ¢I (g) the skin friction S can be
expressed by the integral formula

S ¼ �
Z1

0

exp �
Zg

0

fI g0ð Þdg0

2
4

3
5dg

0
@

1
A
�1

ð47Þ

(which has been obtained by integrating Eq. 44 twice
and taking into account of the corresponding boundary
conditions).
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Once the flow boundary value problem (44) is solved,
the solution of its thermal counterpart (45) results by
quadratures

hI gð Þ ¼ 1� hI �
Zg

0

exp �Pr �
Zg00

0

fI g0ð Þdg0

2
4

3
5dg00; ð48Þ

where the heat transfer coefficient hI=hI (Pr) is given by

hI Prð Þ ¼
Z1

0

exp �Pr �
Zg

0

fI g0ð Þdg0

2
4

3
5dg

0
@

1
A
�1

: ð49Þ

This equation shows that hI (Pr) > 0 for any value of
Pr. Furthermore, comparing Eq. 49 to Eq. 47 one
immediately sees that for Pr=1 the heat transfer coef-

ficient is connected to the skin friction by the simple
relationship

hI 1ð Þ ¼ �S ¼ 0:62755488: ð50Þ

This result is the manifestation of the Reynolds
analogy in the case of boundary layer flows induced by
continuous moving surfaces, [11]. In Fig. 3 the plot of
the function hI=hI (Pr) is shown for the range 0 < Pr
£ 100 of the Prandtl number. It has been obtained from
Eq. 49 with the aid of the numerical solution of the flow
problem (44) for fI(g).

Similarly to the velocity profile f ¢I (g), temperature
profiles h I (g) corresponding to given values of Pr and hI
(Pr) also decrease monotonically from 1 to zero as g
increases from zero to infinity (Fig. 4).

Fig. 2 Plots of the
dimensionless down stream
velocities f ¢(g) as functions of
the similarity variable g for
a surface stretched with
constant velocity (f ¢I (0)=1,
f ¢ ¢I (0)=� 0.62755488, f¥, I=
1.14277337) and a surface
stretched with constant skin
friction (f ¢III (0)=1.13231319,
f ¢ ¢III (0)=� 1, f¥, III=
1.13030744), respectively

Fig. 3 The dimensionless heat
transfer coefficients plotted as
functions of the Prandtl number
for a surface stretched with
constant velocity, hI (Pr) and a
surface stretched with constant
skin friction, hIII (Pr),
respectively
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Finally, it is worth underlining that in the present
case (of uniformly moving isothermal surface) neither
the dimensional skin friction (29), nor the entrainment
velocity (28b), nor the wall heat flux (30a) are
constants. They depend on the wall coordinate x as
follows

sw,IðxÞ ¼ 2qt2B3
0x
�1=2S; vI x;1ð Þ ¼ �tB0x�1=2f1;I;

ð51a; bÞ

qw,IðxÞ ¼ kB0C0x�1=2hI Prð Þ: ð52Þ

The prescribed constant value of the stretching
velocity (28a) in this case is uw,I (x)=2t B2

0.

5 Isothermal surface stretched with constant
skin friction

According to Eq. 29 the dimensional skin friction be-
comes constant for the value m=+1/3 of the stretching
exponent. The surface being isothermal (n=0), the cor-
responding FBLs result as solutions of the flow and
thermal boundary value problems

f 000III þ fIIIf 00III �
1

2
f 02III ¼ 0;

fIII 0ð Þ ¼ 0; f 00III 0ð Þ ¼ �1; f 0III 1ð Þ ¼ 0

ð53Þ

and

1

Pr
h00III þ fIIIh

0
III ¼ 0;

hIII 0ð Þ ¼ 1; hIII 1ð Þ ¼ 0;
ð54Þ

respectively.

In this case the quantities of interest are the dimen-
sionless stretching velocity (38), the entrainment velocity
(23), the heat transfer coefficient (34) as well as the
dimensionless velocity and temperature profiles f ¢III (g)
and h III (g), respectively. The dimensionless stretching
velocity p, the entrainment velocity f¥, III and the
velocity profile f ¢III (g) can easily be determined also in
this case by numerical integration of the problem (51).
The result for p and f¥, III is (see also [17])

p ¼ 1:13231319; f1;III ¼ 1:13030744 ð55a; bÞ

The velocity profile f ¢III (g) decreases monotonically
from p to zero as g increases from zero to infinity (see
Fig. 2) In terms of f ¢III (g) the dimensionless stretching
velocity p can be expressed by the integral formula

p ¼ 5 �
Z1

0

fIII gð Þf 02III gð Þdg

0
@

1
A
þ1=2

: ð56Þ

Once the flow boundary value problem (53) is solved,
the solution of its thermal counterpart (54) results also
in this case by quadratures,

hIII gð Þ ¼ 1� hIII �
Zg

0

exp �Pr �
Zg00

0

fIII g0ð Þdg0

2
4

3
5dg00;

ð57Þ
where the heat transfer coefficient hIII=hIII (Pr) is given
by

hIII Prð Þ ¼
Z1

0

exp �Pr �
Zg

0

fIII g0ð Þdg0

2
4

3
5dg

0
@

1
A
�1

: ð58Þ

Fig. 4 Plots for Pr = 100 of the
dimensionless temperature
profiles h (g) as functions of the
similarity variable g for a
surface stretched with constant
velocity (h I (g); hI
(100)=7.8413) and a surface
stretched with constant skin
friction (h III (g); hIII
(100)=8.3001), respectively
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This equation shows that hIII (Pr) > 0 for any value of
Pr. The plot of the function hIII=hIII (Pr) is also shown in
Fig. 3 for the range 0 < Pr £ 100 of the Prandtl num-
ber. It has been obtained from Eq. 58 with the aid of the
numerical solution of the flow problem (43) for fIII (g).
Similarly to the velocity profile f ¢III (g), temperature
profiles h III (g) corresponding to given values of Pr and
hIII (Pr) also decrease monotonically from 1 to zero as g
increases from zero to infinity (Fig. 4).

The dimensional stretching velocity (28a), the
entrainment velocity (28b), and the wall heat flux (30a)
are functions of the wall coordinate x,

uw;IIIðxÞ ¼
3

2
tB2

0x
þ1=3p; vIII x;1ð Þ ¼ �tB0x�1=3f1;III;

ð60a; bÞ

qw;IIIðxÞ ¼ kB0C0x�1=3hIII Prð Þ: ð61Þ

The prescribed constant value of the skin friction (29)
in this case is s w,III (x)=� 3q t 2 B3

0.

6 Discussion

The dimensionless quantities labeled by I and III and
plotted in Figs. 2, 3, 4 would suggest at a first sight that
the boundary layer flows induced by continuous iso-
thermal surfaces (Tw=const. „ T¥) which are stretched
with constant velocity (label I) and constant skin friction
(label III), respectively, do not differ substantially from
each other. Such an interpretation however is physically
misleading since it does not take into account that (i) in
Figs. 2 and 4 the dimensionless velocity and temperature
profiles I and III are compared to each other on different
scales of the physical coordinates x and y, and (ii) the
dimensional velocities, uI (x,y) and uIII (x,y) as well as
the dimensional wall heat fluxes qw,I (x) and qw,III (x)
scale with the wall coordinate differently. Accordingly

the dimensional quantities which are ‘‘seen’’ in an actual
stretching process will look quite differently. This is
easily seen by comparing Eqs. 26–30 taken for values
m=0 and m=+1/3 which correspond to the cases I and
III, respectively. Furthermore, the average wall heat flux
through a part of length L of the stretching surface,
expressed in units of kC0 /L,

Q ¼
Z1

0

qwðxÞ
kC0=Lð Þ dX ð62Þ

is given in the two cases by equations

QI Prð Þ ¼ 2hI Prð Þ and QIII Prð Þ ¼
3

2
hIII Prð Þ; ð63a; bÞ

respectively. Similarly, it is also interesting to compare
the average stretching velocities (expressed in units of
2t /L),

Uw;I ¼ 1 vs: Uw;III ¼
9p
16
¼ 0:6369 ð64a; bÞ

the average skin frictions (expressed in units of 3q t 2 /
2L2),

�sw;I ¼ �
8 Sj j
3
¼ �1:6735 vs: �sw;III ¼ �1 ð65a; bÞ

as well as the average entrainment velocities (expressed
in units of 2t /L),

VI 1ð Þ ¼ �f1;I ¼ �1:1427 vs:

VIII 1ð Þ ¼ �
3

4
f1;III ¼ �0:8477:

ð66a; bÞ

While according to Fig. 3 hI (Pr) < hIII (Pr), Fig. 5
shows that due to the different X scales of the wall heat
fluxes qw,I (x) and qw,III (x), for the average wall heat
fluxesQI (Pr) andQIII (Pr ) given by Eqs. 62 the converse
inequality QI (Pr) > QIII (Pr) holds. Obviously, the ac-
tual physical situation is described by the curves shown in

Fig. 5 The average wall heat
fluxes given by Eqs. 63 plotted
as functions of the Prandtl
number for a surface stretched
with constant velocity, QI (Pr),
and a surface stretched with
constant skin friction, QIII (Pr),
respectively
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Fig. 5. These results yield in fact the main motivation for
a further investigation of the flows induced by surfaces
stretching with a prescribed skin friction.

7 Summary and conclusions

In this paper the mechanical and thermal characteristics
of the boundary layer flows induced by continuous iso-
thermal surfaces stretched with constant skin friction
(label III) have been compared to those of the well-known
boundary layer flows induced by surfaces stretched with
constant velocity (label I). Compared on the different
scales of the two similarity variables g, the similar velocity
profiles f ¢I and f ¢III as well as the similar temperature
profiles h I and h III deviate only slightly from each other.
The same holds for the heat transfer coefficients hI (Pr)
and hIII (Pr) (see Figs.2, 3, 4). However, when compared
on the actual physical scales of the wall coordinate X and
the transversal coordinate Y, the velocity profiles uI and
uIII, the temperature profiles h I and h III as well as the wall
heat fluxes qw,I and qw,III, respectively, show in general
substantial deviations from each other. The same holds,
especially for large values of Pr for the average wall heat
fluxes QI and QIII (see Fig. 5). Since only the case of the
constant prescribed skin friction has been discussed
above, and in addition, the buoyancy as well as the effect
of viscous dissipation has been neglected, the present
paper leaves open several opportunities of practical
interest for a future research in this field.
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