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Abstract This paper explores the joint extreme-value behavior of discontinu-
ous random variables. It is shown that as in the continuous case, the latter is
characterized by the weak limit of the normalized componentwise maxima and
the convergence of any compatible copula. Illustrations are provided and an
extension to the case of triangular arrays is considered which sheds new light
on recent work of Coles and Pauli (Stat Probab Lett 54:373–379, 2001) and
Mitov and Nadarajah (Extremes 8:357–370, 2005). This leads to considerations
on the meaning of the bivariate upper tail dependence coefficient of Joe
(Comput Stat Data Anal 16:279–297, 1993) in the discontinuous case.
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1 Introduction

Let (X1, . . . , Xd) be a random vector with cumulative distribution function
H and for each j ∈ {1, . . . , d} and x ∈ R, let F j(x) = P(X j � x). Given in-
dependent copies (X11, . . . , X1d), . . . , (Xn1, . . . , Xnd) of the random vector
(X1, . . . , Xd), write

Mnj = max(X1 j, . . . , Xnj) (1)

for every j ∈ {1, . . . , d}. Then H is said to belong to the domain of attraction
of a non-degenerate extreme-value distribution H∗, denoted H ∈ M (H∗), if
there exist constants anj, bnj ∈ R with bnj > 0 such that for all x1, . . . , xd ∈ R,

lim
n→∞ P

(
Mn1 − an1

bn1
� x1, . . . ,

Mnd − and

bnd
� xd

)
= H∗(x1, . . . , xd). (2)

In particular,

F∗
j (x) = lim

n→∞ P
(

Mnj − anj

bnj
� x

)
(3)

then belongs to the class of univariate extreme-value distributions charac-
terized by Fisher and Tippett (1928). The constants anj and bnj needed for
convergence in Eq. 2 are provided by univariate extreme-value theory.

Convergence of the margins is not sufficient to ensure that Eq. 2 holds,
however. Conditions on the joint distribution are needed; they may be found,
e.g., in the books by Resnick (1987) and Beirlant et al. (2004), or in the survey
paper by Fougères (2004). When the marginal distributions are continuous,
the condition can be expressed simply in terms of the unique copula associated
with H, i.e., the function C such that

H(x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)} (4)

for all x1, . . . , xd ∈ R. As shown, e.g., by Galambos (1987, Theorem 5.2.3),
Eq. 2 holds if and only if Eq. 3 is verified for every j ∈ {1, . . . , d} and if

lim
t→∞ Ct

(
u1/t

1 , . . . , u1/t
d

)
= C∗(u1, . . . , ud), (5)

for all u1, . . . , ud ∈ [0, 1], where C∗ is the copula associated with H∗. As
observed, e.g., by McNeil et al. (2005, Section 7.5.3), this is equivalent to saying
that for all x1, . . . , xd � 0, one has

lim
s→0

1 − C(1 − sx1, . . . , 1 − sxd)

s
= − log{C∗(e−x1 , . . . , e−xd)}. (6)

In practice, however, there are situations where the variables of interest
are discontinuous. In principle, these cases are covered by the existing theory
but as illustrated in Section 2, the conditions under which marginal distri-
butions have a non-degenerate extreme-value behavior are often not met.
This led Anderson et al. (1997) to consider triangular arrays, i.e., situations
where Mnj is still defined as in Eq. 1 but for each integer n � 1, the sample
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(X11:n, . . . , X1d:n), . . . , (Xn1:n, . . . , Xnd:n) comes from a distribution Hn with
margins Fn and Gn. This framework was also adopted, e.g., by Nadarajah and
Mitov (2002, 2004) and Mitov et al. (2003).

An additional difficulty associated with discontinuous margins is that Eq. 4
does not hold for a single C, but for an infinite collection of such functions, not
all of which are copulas; see, e.g., Genest and Nešlehová (2007). In the context
of extremes, this unidentifiability issue was explicitly recognized by Deheuvels
(1978) and later accounted for by Galambos (1987) and Hsing (1989). Their
results are summarized and complemented in Section 3.

An extension to triangular arrays is then presented in Section 4, which also
sheds new light on recent work of Coles and Pauli (2001) and Mitov and
Nadarajah (2005). Finally, Section 5 investigates properties of the bivariate
upper tail dependence coefficient of Joe (1993) for discontinuous random
variables. Concluding comments are made in Section 6 and mathematical
derivations are grouped in a series of Appendices.

2 Extremal behavior of univariate discontinuous distributions

Let X be a random variable with distribution F and survival F̄. When X
is absolutely continuous, denote its density by f and let λ = f/F̄ be the
corresponding hazard rate. Because F may have jumps, it will be useful to
consider its left-continuous version,

F→(x) = lim
h↓0

F(x − h)

for all x ∈ R. Finally, xF = sup{x : F(x) < 1} denotes the right endpoint of F.
Let X1, . . . , Xn be independent copies of X and write Mn =

max(X1, . . . , Xn). Then F is said to belong to the domain of attraction
of a non-degenerate distribution F∗ if there exist constants an, bn ∈ R with
bn > 0 such that (Mn − an)/bn converges in law to F∗. As shown by Leadbetter
et al. (1983), this can only occur if

lim
x→xF

F̄(x)

1 − F→(x)
= 1. (7)

Thus if xF < ∞ and F→(xF) < F(xF) as for the binomial distribution, then

lim
x→xF

F̄(x)

1 − F→(x)
= 0.

Hence the limiting behavior of F is then degenerate. Embrechts et al. (1997,
Section 3.1) show that Eq. 7 also fails for the Poisson, geometric and negative
binomial distributions. Nonetheless, there are many examples of discrete
random variables that have a non-degenerate extreme-value behavior.

Example 1 Let X � 0 be an absolutely continuous random variable with
xF = ∞. Denote by �x� the integer part of x ∈ R and let 	x
 stand for
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the smallest integer n such that n � x. Consider the integer-valued random
variable 	X
 with distribution function 	F
(x) = F(�x�) for all x � 0. Observe
that since F̄ is decreasing,

0 � P(	X
=n)

1−	F
(n−1)
= F(n)−F(n − 1)

F̄(n−1)
=

∫ n

n−1
λ(u)

F̄(u)

F̄(n−1)
du �

∫ n

n−1
λ(u) du.

Thus if λ(x) → 0 as x → ∞, the right-hand side tends to zero as n → ∞.
Therefore,

lim
n→∞

1 − 	F
(n)

1 − 	F
(n − 1)
= 1 − lim

n→∞
P(	X
 = n)

1 − 	F
(n − 1)
= 1.

In other words, 	X
 satisfies Eq. 7. Furthermore, note that for x ∈ R+,

1 � 1 − 	F
(x)

1 − F(x)
� 1 − F(�x�)

1 − F(�x� + 1)
= exp

(∫ �x�+1

�x�
λ(t) dt

)
,

because F̄(x) = exp
(− ∫ x

0 λ(t) dt
)

for non-negative random variables. Thus the
same condition on λ ensures that {1 − 	F
(x)}/{1 − F(x)} → 1 as x → ∞, i.e.,
X and 	X
 are tail equivalent. In particular, therefore, if F is in the domain of
attraction of either the Fréchet or the Gumbel distribution, the same applies
to 	F
.

Distributions for which λ(x) → 0 as x → ∞ include:

(i) The Pareto distribution P(θ, α) with parameters θ, α > 0, distribution
function F(x) = 1 − (x/θ)−α and hazard rate λ(x) = α/x for x � θ .

(ii) The Weibull distribution W (μ, c) with parameters μ > 0 and c ∈ (0, 1),
distribution function F(x) = 1 − exp (−μxc) and hazard rate λ(x) =
μcxc−1 for x > 0.

3 Extremal behavior of vectors of discrete random variables

Consider a random vector (X1, . . . , Xd) from distribution H with margins
F1, . . . , Fd. Let C (H) be the class of copulas C for which Eq. 4 holds for
all x1, . . . , xd ∈ R. As mentioned, e.g., in Section 2.10 of Nelsen (2006), the
members of C (H) coincide with H{F−1

1 (u1), . . . , F−1
d (ud)} for all (u1, . . . , ud) ∈

Ran(F1) × · · · × Ran(Fd). Here,

F−1
j (u) = inf{x ∈ R : F j(x) � u},

Ran(F j) = {u ∈ [0, 1] : u = F j(x) for some x ∈ R},
for all j ∈ {1, . . . , d}. Thus if the marginal distributions are continuous, C (H)

reduces to a singleton, i.e., the copula C in Eq. 4 is unique.
In all other cases, however, the class C (H) of compatible copulas is infinitely

large and its members may differ considerably (Genest and Nešlehová 2007).
As pointed out, e.g., by Marshall (1996), it is then more difficult to charac-
terize weak convergence in terms of copulas. The following result, proved in
Appendix 1, clarifies the issue.
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Proposition 1 Consider a sequence (X11, . . . , X1d), (X21, . . . , X2d), . . . of mu-
tually independent random vectors such that (Xn1, . . . , Xnd) has distribution
function Hn with margins Fn1, . . . , Fnd. Let (X1, . . . , Xd) be another random
vector with distribution function H and margins F1, . . . , Fd. The following
statements are equivalent:

(a) (Xn1, . . . , Xnd) � (X1, . . . , Xd) as n → ∞.
(b) Xnj � X j as n → ∞ for j ∈ {1, . . . , d}, and there exists C ∈ C (H) and a

sequence (Cn) such that Cn ∈ C (Hn), and Cn → C on Ran(F1) × · · · ×
Ran(Fd) as n → ∞.

(c) Xnj � X j as n → ∞ for j ∈ {1, . . . , d}, and for all choices of Cn ∈
C (Hn) and C ∈ C (H), Cn → C uniformly on Ran(F1) × · · · × Ran(Fd) as
n → ∞.

Now suppose that (X11, . . . , X1d), . . . , (Xn1, . . . , Xnd) are independent
copies of (X1, . . . , Xd). For fixed j ∈ {1, . . . , d}, let Mnj be the component-
wise maximum defined in Eq. 1, whose joint distribution is Hn(x1, . . . , xd) =
Hn(x1, . . . , xd) for all x1, . . . , xd ∈ R. Observe that if C ∈ C (H), then

Dn(u1, . . . , ud) = Cn
(

u1/n
1 , . . . , u1/n

d

)
(8)

is a copula in C (Hn). An application of Proposition 1 to a suitable affine
transform of the vector (Mn1, . . . , Mnd) then yields the following result. This
finding appears in essence in the work of Deheuvels (1978) and Galambos
(1987). It is shown in Appendix 2 as a special case of Proposition 3 below,
which pertains to triangular arrays.

Proposition 2 Consider a sequence (X11, . . . , X1d), (X21, . . . , X2d), . . . of mu-
tually independent random vectors having common distribution function H
with margins F1, . . . , Fd. Let H∗ be a multivariate extreme-value distribution
with margins F∗

1 , . . . , F∗
d and copula C∗. Then the following statements are

equivalent:

(a) H ∈ M (H∗).
(b) F j ∈ M (F∗

j ) for j ∈ {1, . . . , d}, and there exists C ∈ C (H) such that Eq. 5
holds for all (u1, . . . , ud) ∈ Ran(F∗

1 ) × · · · × Ran(F∗
d) = [0, 1]d.

(c) F j ∈ M (F∗
j ) for j ∈ {1, . . . , d}, and Eq. 5 holds uniformly on [0, 1]d for all

C ∈ C (H).

Remark 1 Propositions 1 and 2 can be contrasted with the results of Hsing
(1989), who does not work with copulas but rather with the unique mapping

BH(u1, . . . , ud) = P{F1(X1) � u1, . . . , Fd(Xd) � ud},
which he calls the “dependence function.” His Lemma 3.1 shows that
BHn � BH as n → ∞ when H has continuous margins. From his Lemma 2.2
and the proof of his Theorem 3.3, it can also be deduced that if H ∈ M (H∗),
BH satisfies Eq. 5.
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Note that unless Fn1, . . . , Fnd are continuous, BHn is not a copula. Accord-
ingly, Hsing’s results neither imply nor follow from Propositions 1 and 2,
although BHn coincides with every C ∈ C (Hn) on Ran(Fn1) × · · · × Ran(Fnd).

At first blush, the uniqueness of BH may seem like an advantage, but
it comes at the price of a dependence on the marginal distributions. As a
result, range compatibility constraints such as Hsing’s condition (3.1) must
be introduced and the concept becomes unsuitable for modeling purposes
in situations where the marginal distributions are unknown. These issues
can be avoided altogether by working with copulas. More importantly, the
equivalence between statements (b) and (c) in Propositions 1 and 2 shows that
the lack of identifiability of the copula is irrelevant.

Example 2 Let (X1, X2) be a random pair whose distribution is a bivariate
Pareto of the first kind as discussed in Kotz et al. (2000), viz.

H(x1, x2) = 1 −
( x1

θ1

)−α −
( x2

θ2

)−α +
( x1

θ1
+ x2

θ2
− 1

)−α = C{F1(x1), F2(x2)},
where α > 0 and x j � θ j > 0 for j = 1, 2. Here, F j = P(θ j, α), j = 1, 2,
while the survival copula C̄(u1, u2) = u1 + u2 − 1 + C(1 − u1, 1 − u2) is in the
Clayton family, i.e.,

C̄(u1, u2) =
(

u−1/α

1 + u−1/α

2 − 1
)−α

.

Now define the pair (	X1
, 	X2
) as in Example 1 and observe that for all
x1, x2 ∈ R,

	H
(x1, x2) = P(X1 � �x1�, X2 � �x2�)
= C{F1(�x1�), F2(�x2�)} = C{	F1
(x1), 	F2
(x2)}.

In other words, C ∈ C (	H
). As argued in Example 1, 	F1
 and 	F2
 are in the
domain of attraction of the Fréchet distribution Φα . It is also simple to see that
Eq. 6 holds with

C∗(u1, u2) = u1u2 exp{(| log u1|−1/α + | log u2|−1/α)−α},
i.e., the Galambos copula. Thus Proposition 2 implies 	H
 ∈ M (C∗(Φα, Φα)).

Example 3 Let (S1, S2) be a random pair from the Marshall–Olkin bivariate
exponential distribution with parameters λ0, λ1, λ2 > 0; see, e.g., Nelsen (2006,
Section 3.1.1). For a fixed c ∈ (0, 1), the survival function of the pair (X1, X2) =
(S1/c

1 , S1/c
2 ) is then

H̄(x1, x2) = exp{−λ1xc
1 − λ2xc

2 − λ0 max(xc
1, xc

2)}.
Hence F j = W (λ j + λ0, c) for j = 1, 2. Further, H̄(x1, x2) = C̄{F̄1(x1), F̄2(x2)},
where

C̄(u1, u2) = min
(

u1−α1
1 u2, u1u1−α2

2

)
(9)

is the Marshall–Olkin copula with α j = λ0/(λ j + λ0) for j = 1, 2.
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Now define (	X1
, 	X2
) as in Example 1. As argued there, 	F1
 and 	F2

are in the domain of attraction of the Gumbel distribution �. Proceeding as
in Example 2, one can establish that C ∈ C (	H
). One can also easily see that
Eq. 5 or Eq. 6 holds with C∗(u1, u2) = �(u1, u2) = u1u2. Thus Proposition 2
implies 	H
 ∈ M (�(�, �)).

4 Extremal behavior of triangular arrays

For each integer n � 1, let (X11:n, . . . , X1d:n), . . . , (Xn1:n, . . . , Xnd:n) be a ran-
dom sample from a distribution Hn with margins Fn1, . . . , Fnd. Let

Mnj = max(X1 j:n, . . . , Xnj:n)

be the componentwise maximum for each j ∈ {1, . . . , d}. The sequence (Hn)

is said to belong to the domain of attraction of a non-degenerate distribution
H∗, denoted (Hn) ∈ M (H∗), if for every j ∈ {1, . . . , d}, there exist constants
anj, bnj ∈ R with bnj > 0 such that for all continuity points (x1, . . . , xd) of H∗,

lim
n→∞ P

(
Mn1 − an1

bn1
� x1, . . . ,

Mnd − and

bnd
� xd

)
= H∗(x1, . . . , xd). (10)

It is not generally known whether the limit H∗ is an extreme-value distribution,
but it is clear from Eq. 10 that for each j ∈ {1, . . . , d}, (Mnj − anj)/bnj converges
in law to the margins F∗

j of H∗. This may be represented symbolically as
follows:

(Hn) ∈ M (H∗) ⇒ ∀ j∈{1,...,d} (Fnj) ∈ M (F∗
j ).

The result below, whose proof is given in Appendix 2, delineates the condi-
tions under which this implication can be reversed. It differs from Proposition 2
in that Eq. 5 is replaced by the weaker statement

lim
n→∞ Cn

n

(
u1/n

1 , . . . , u1/n
d

)
= C∗(u1, . . . , ud), n ∈ N (11)

valid for appropriate choices of (u1, . . . , ud) ∈ [0, 1]d.

Proposition 3 For each integer n � 1, let (X11:n, . . . , X1d:n), . . . , (Xn1:n, . . . ,
Xnd:n) be a random sample from distribution Hn with margins Fn1, . . . , Fnd. Let
H∗ be a distribution with margins F∗

1 , . . . , F∗
d. Then the following statements are

equivalent:

(a) (Hn) ∈ M (H∗).
(b) (Fnj) ∈ M (F∗

j ) for j ∈ {1, . . . , d}, and there exists a sequence (Cn) of
copulas such that Cn ∈ C (Hn) and Eq. 11 holds for all (u1, . . . , ud) ∈
Ran(F∗

1 ) × · · · × Ran(F∗
d).

(c) (Fnj) ∈ M (F∗
j ) for j ∈ {1, . . . , d}, and Eq. 11 holds uniformly for all

(u1, . . . , ud) ∈ Ran(F∗
1 ) × · · · × Ran(F∗

d) for all sequences (Cn) of copulas
such that Cn ∈ C (Hn).
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Remark 2 It can be shown readily that Eq. 11 is equivalent to the statement
that for all x1, . . . , xd � 0 such that e−x j ∈ Ran(F∗

j ) for every j ∈ {1, . . . , d}, one
has

lim
n→∞

1 − Cn(1 − x1/n, . . . , 1 − xd/n)

1/n
= − log{C∗(e−x1 , . . . , e−xd)}. (12)

Example 4 For integers i, k, �, n ∈ N with 1 � i � n, a random pair
(Xi1:n, Xi2:n) is said to follow the geometric distribution of Marshall and
Olkin (1985) if

P(Xi1:n � k, Xi2:n � �) = H̄n(k, �) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pk
00n p�−k

+0n if k < �,

pk
00n if k = �,

p�
00n pk−�

0+n if � < k,

in terms of strictly positive parameters p00n, p01n, p10n and p11n adding up to 1.
Here and in what follows, pr+n = pr0n + pr1n and p+sn = p0sn + p1sn, r, s ∈
{0, 1}.

Mitov and Nadarajah (2005) show that if prsn varies with n at an appropriate
rate, suitably standardized componentwise maxima Mn1 and Mn2 from mutu-
ally independent random pairs (X11:n, X12:n), . . ., (Xn1:n, Xn2:n) converge jointly
to a non-degenerate limit law. In particular, they consider Cases I–IV listed in
Table 1, where max(p1+n, p+1n) → 0 as n → ∞. From Nadarajah and Mitov
(2002, Corollary 1), Mn1 and Mn2 then belong to the domain of attraction of
the Gumbel distribution, viz.

lim
n→∞ P

(
Mn1 − an1

bn1
� t

)
= lim

n→∞ P
(

Mn2 − an2

bn2
� t

)
= exp(−e−t), t ∈ R

where

an1 = log n
p1+n

, bn1 = 1

p1+n
, an2 = log n

p+1n
, bn2 = 1

p+1n
.

Table 1 Four sets of conditions on the parameters of the Marshall–Olkin geometric law

Case p11n p10n p01n

I o
(

1

log n

)
p11n

(
γ + o

(
1

log n

))
, γ � 0 p11n

(
δ + o

(
1

log n

))
, δ � 0

II o
(

p01n

log n

)
o

(
1

log n

)
∼ p10n

III o
(

p10n

log n

)
o

(
1

log n

)
o

(
p10n

log n

)

IV o
(

p01n

log n

)
o

(
p01n

log n

)
o

(
1

log n

)
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Assume that p00n � p+0n p0+n for every integer n � 1 and set

αn1 = 1 − log(p00n/p+0n)

log p0+n
, αn2 = 1 − log(p00n/p0+n)

log p+0n
.

Then αnj ∈ [0, 1] for j = 1, 2 and it is easily checked that for all k, � ∈ N,

H̄n(k, �) = C̄n{F̄n1(k), F̄n2(�)},
where Fnj with j = 1, 2 are the margins of Hn while C̄n is the Marshall–Olkin
copula with parameters αnj for j = 1, 2, as defined in Eq. 9. Thus Cαn1,αn2 ∈
C (Hn) and the result of Mitov and Nadarajah (2005) follows from Propo-
sition 3, provided that Eq. 12 holds for some copula C∗. Given that for all
x1, x2 � 0,

1 − Cn (1 − x1/n, 1 − x2/n)

1/n
= x1/n + x2/n − C̄n (x1/n, x2/n)

1/n

= x1 + x2 − min{x2 (x1/n)1−αn1, x1 (x2/n)1−αn2},
it suffices to consider the behavior of (x1/n)1−αn1 and (x2/n)1−αn2 as n → ∞.

For each of the cases in Table 1, these sequences have to be handled
separately, but by symmetry one can restrict to (x1/n)1−αn1 and to Cases I–III.
Further simplification occurs upon noting that

1 − αn1 =
log

(
1−p11n−p10n−p01n

1−p11n−p01n

)
log(1 − p11n − p10n)

=
log

(
1 − p10n

1−p11n−p01n

)
log(1 − p11n − p10n)

= An × Bn,

where

An =
log

(
1 − p10n

1−p11n−p01n

)
p10n/(1 − p11n − p01n)

× p11n + p10n

log(1 − p11n − p10n)
× 1

1 − p11n − p01n

and Bn = p10n/(p11n + p10n). Considering that log x ∼ x − 1 as x → 1 and that

lim
n→∞ p11n = lim

n→∞ p10n = lim
n→∞ p01n = 0

holds in all cases, one finds that An → 1 as n → ∞. It is also easy to see that

lim
n→∞ Bn =

{
γ /(1 + γ ) in Case I,
1 in Cases II and III.

Consequently, (x1/n)1−αn1 → 0 as n → ∞ in Cases II–III, as well as in Case
I when γ > 0. When γ = 0 in Case I, however, Bn log n → 0 as n → ∞, and
hence

lim
n→∞(x1/n)1−αn1 = lim

n→∞ exp{(1 − αn1) log x1 − (1 − αn1) log n} = 1.

Similarly, one can see that

lim
n→∞(x2/n)1−αn2 =

⎧⎪⎨
⎪⎩

1 in Case I if δ = 0,

0 in Case I if δ > 0,

0 in Cases II and IV.
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The behavior of (x1/n)1−αn1 and (x2/n)1−αn2 in Cases IV and III respectively is
somewhat more nebulous but of little concern. In Case III, for instance, one
has

0 � min{x2(x1/n)1−αn1 , x1(x2/n)1−αn2} � x2(x1/n)1−αn1,

where the right-hand term vanishes as n → ∞. In conclusion, Hn ∈ M (H∗)
where

H∗(x1, x2) =

⎧⎪⎨
⎪⎩

min{exp(−e−x1), exp(−e−x2)} in Case I if γ = δ = 0,

exp{−(e−x1 + e−x2)} in Case I if γ > 0 or δ > 0,

exp{−(e−x1 + e−x2)} in Cases II–IV,

for all x1, x2 ∈ R, as stated by Mitov and Nadarajah (2005).

Example 5 Let Z1, Z2, Z3 be mutually independent Poisson random variables
and let λi = E(Zi) for i = 1, 2, 3. Set X j = Z j + Z3 for j = 1, 2. The pair
(X1, X2) then has Poisson margins with E(X j) = λ j + λ3 for j = 1, 2, and
cov(X1, X2) = λ3. Coles and Pauli (2001) consider the extreme-value behav-
ior of a triangular array (X11:n, X12:n), . . . , (Xn1:n, Xn2:n) from this bivariate
Poisson distribution with common mean μn and covariance λn such that as
n → ∞,

log n = o{μ(r+1)/(r+3)
n },

(
1 − λn

μn

)
log n → λ2

for some r ∈ N and λ � 0. They show that (Hn) ∈ M (C∗
λ(�, �)), where C∗

0 is
the independence copula and for λ > 0, C∗

λ is the Hüsler–Reiss copula, viz.

C∗
λ(u1, u2) = exp

[
−ũ1Φ

{
λ + 1

2λ
log(ũ1/ũ2)

}
− ũ2Φ

{
λ + 1

2λ
log(ũ2/ũ1)

}]
,

with ũ j = − log u j, j = 1, 2, and Φ is the distribution function of the standard
normal. Although elements of the class C (Hn) cannot be written in closed
form, Proposition 3 implies that they all satisfy Eq. 11.

5 Bivariate upper tail dependence

The bivariate upper tail coefficient of Joe (1993) is a common measure of
extremal dependence in a random pair (X1, X2) with continuous margins F1,
F2. It is defined either as

λ(X1|X2) = lim
q→1

P{X1 > F−1
1 (q)|X2 > F−1

2 (q)}
or

λ(X2|X1) = lim
q→1

P{X2 > F−1
2 (q)|X1 > F−1

1 (q)},
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and these definitions are equivalent if the limits exist. In the latter case, one
can see that if C is the unique copula associated with (X1, X2), the coefficients
coincide with

λ(C) = lim
q→1

C̄(1 − q, 1 − q)

1 − q
.

Moreover, if Eq. 5 holds, it is well known that λ(C) = λ(C∗); see, e.g., McNeil
et al. (2005, Proposition 7.51).

The following proposition extends this result to cases where F1 and F2 are
discontinuous but meet Eq. 7. The proof is given in Appendix 3.

Proposition 4 Let (X1, X2) be a random pair having joint distribution H with
margins F1, F2. Assume that F1 and F2 satisfy Eq. 7 and that λ(C0) exists for
some C0 ∈ C (H). Then the following statements hold:

(a) λ(X1|X2) and λ(X2|X1) exist.
(b) λ(X1|X2) = λ(X2|X1) = λ(C0).
(c) For all C ∈ C (H), λ(C) exists and equals λ(C0).

Now suppose that condition Eq. 7 fails as was the case, e.g., for the triangular
arrays in Examples 4 and 5. As illustrated below, it may then happen that
neither λ(X1|X2) nor λ(X2|X1) exists.

Example 6 Let X1, X2 be integer-valued random variables with joint distribu-
tion H and margins

F1(n) = 1 − 1

2n
, F2(n) =

(
1 − 1

2n

)2

, n ∈ N.

In other words, X1 is a geometric random variable and X2 is from the Lehmann
alternative F2

1 . Consider the Gumbel extreme-value copula

Cθ (u1, u2) = exp{−(| log u1|θ + | log u2|θ )1/θ }
with parameter θ � 1. Assume Cθ ∈ C (H) for some θ > 1. As is well known,
λ(Cθ ) = 2 − 21/θ ; see, e.g., McNeil et al. (2005, Example 5.31). Nevertheless,
neither λ(X1|X2) nor λ(X2|X1) exists. The non-existence of λ(X2|X1) results
from the fact that if θ > 1,

C̄θ {1 − F1 ◦ F−1
1 (qn), 1 − F2 ◦ F−1

2 (qn)}
1 − F1 ◦ F−1

1 (qn)

− C̄θ {1 − F1 ◦ F−1
1 (rn), 1 − F2 ◦ F−1

2 (rn)}
1 − F1 ◦ F−1

1 (rn)
(13)

does not converge to zero as n → ∞ for certain choices of sequences (qn) and
(rn). To be specific, take qn = F1(n) and rn = F2(n) for every n ∈ N. Observe
that F1(n − 1) < F2(n) < F1(n) < F2(n + 1) and hence for every n ∈ N,

F−1
1 (qn) = F−1

1 (rn) = F−1
2 (rn) = n and F−1

2 (qn) = n + 1.
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In particular, therefore, the expression in Eq. 13 reduces to

C̄θ {1 − F1(n), 1 − F2(n + 1)}
1 − F1(n)

− C̄θ {1 − F1(n), 1 − F2(n)}
1 − F1(n)

.

Letting un1 = F1(n + 1) and un2 = F1(n), one must then consider the limit

lim
n→∞

C̄θ {2(1 − un1), 1 − u2
n1}

2(1 − un1)
− C̄θ (1 − un2, 1 − u2

n2)

1 − un2
.

That this limit is non-zero stems from the fact that

lim
q→1

C̄θ {2(1 − q), 1 − q2}
2(1 − q)

− lim
q→1

C̄θ (1 − q, 1 − q2)

1 − q
= 2 − 21/θ − 3 + (1 + 2θ )1/θ ,

as can be checked using l’Hospital’s rule. The non-existence of λ(X1|X2) is
shown by analyzing the appropriate limit along the same two sequences.

So long as one of λ(X1|X2) or λ(X2|X1) exists, however, the upper tail de-
pendence index continues to make sense even when Eq. 7 is not fulfilled. This
is the subject of the paper’s final proposition, whose proof is in Appendix 4.

Proposition 5 Let (X1, X2) be a random pair having joint distribution H with
margins F1, F2 such that F j→(x j) → 1 as x j → xF j for j = 1, 2. Assume that
λ(C0) exists for some C0 ∈ C (H). Then the following statements hold:

(a) If λ(X1|X2) exists, then λ(X1|X2) = λ(C) for all C ∈ C (H) such that λ(C)

exists.
(b) If λ(X2|X1) exists, then λ(X2|X1) = λ(C) for all C ∈ C (H) such that λ(C)

exists.
(c) Both λ(X1|X2) and λ(X2|X1) exist whenever

lim
q→1

1 − F1 ◦ F−1
1 (q)

1 − F2 ◦ F−1
2 (q)

= 1. (14)

(d) If λ(X1|X2) and λ(X2|X1) exist and are non-zero, then Eq. 14 holds.

It is reassuring, therefore, that even in the absence of Eq. 7, one always has
λ(X1|X2) = λ(X2|X1) = λ(C) whenever the terms exist.

6 Conclusion

Extreme-value theory for vectors of discontinuous random variables is still in
its infancy. This paper approaches the problem from a copula perspective.
In the continuous case, the joint behavior of maxima is known to depend
on asymptotic properties of the unique copula associated with the sampling
distribution. Proposition 2 extends this result to cases where the underlying
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copula is not necessarily uniquely determined on its entire domain, due to the
arbitrary nature of the margins.

As highlighted by Anderson et al. (1997), the extreme-value behavior of
discontinuous distributions is often degenerate unless their parameters vary at
an appropriate rate as a function of the sample size. For this reason, the limiting
behavior of triangular arrays is of practical interest. Proposition 3 shows how it
can be characterized in terms of the margins and any compatible copula. This
approach can be handy, as in Example 4, which casts new light on the work
of Mitov and Nadarajah (2005). It does not work as well when the copula is
untractable, however, as illustrated in Example 5.

In recent years, the upper tail dependence coefficient of Joe (1993) has
become a widely recognized measure of extremal dependence in bivariate
continuous distributions. As shown here, this concept does not generalize
readily to the case of arbitrary margins. Unless the marginal distributions
meet the condition of Leadbetter et al. (1983), the existence of λ(X1|X2)

and λ(X2|X1) is not guaranteed, even when the variables are connected by
a copula C that has a well defined upper tail coefficient. A happy consequence
of Proposition 5, however, is that either coefficient coincides with λ(C) as soon
as it exists.
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la nature et les technologies, the Institut de finance mathématique de Montréal, and the Swiss
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Appendix 1: Proof of Proposition 1

It suffices to show that (c) ⇒ (b) ⇒ (a) ⇒ (c). The first implication is trivial.
To prove (b) ⇒ (a), use the triangle inequality to write

|Hn(x1, . . . , xd) − H(x1, . . . , xd)|
� |Cn{Fn1(x1), . . . , Fnd(xd)} − Cn{F1(x1), . . . , Fd(xd)}|

+ |Cn{F1(x1), . . . , Fd(xd)} − C{F1(x1), . . . , Fd(xd)}|
and observe that by hypothesis, the second summand on the right vanishes as
n → ∞. Further note that the first summand is also negligible asymptotically
provided that H is continuous at (x1, . . . , xd). For, the Lipschitz property of
copulas implies that

|Cn{Fn1(x1), . . . , Fnd(xd)} − Cn{F1(x1), . . . , F(xd)}| �
d∑

j=1

|Fnj(x j) − F j(x j)|

(15)

and the right-hand side can be made arbitrarily small given that F j is continu-
ous at x j for all j ∈ {1, . . . , d}.
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Finally, to see that (a) ⇒ (c), first note that the weak convergence of the
vector (Xn1, . . . , Xnd) also applies to the margins by the Continuous Mapping
Theorem. Fix C ∈ C (H) and an arbitrary sequence (Cn) with Cn ∈ C (Hn).
Let A be the set of vectors (u1, . . . , ud) ∈ [0, 1]d such that u j = F j(x j) for
all j ∈ {1, . . . , d} at some continuity point (x1, . . . , xd) of H. For arbitrary
(u1, . . . , ud) ∈ A, one has

|Cn(u1, . . . , ud) − C(u1, . . . , ud)|
� |Cn{F1(x1), . . . , Fd(xd)} − Cn{Fn1(x1), . . . , Fnd(xd)}|

+ |Cn{Fn1(x1), . . . , Fnd(xd)} − C{F1(x1), . . . , Fd(xd)}|.
Now as n → ∞, the first summand on the right is negligible by the inequality
in Eq. 15 while the second summand is |Hn(x1, . . . , xd) − H(x1, . . . , xd)| and
tends to zero by hypothesis. Consequently, Cn → C on A, which is dense in
Ran(F1) × · · · × Ran(Fd). As the sequence (Cn) is equicontinuous because of
the Lipschitz property of copulas, the convergence immediately extends to the
latter set, and uniform convergence follows from the Arzelà–Ascoli Theorem.

Appendix 2: Proofs of Propositions 2–3

Both proofs rely on the fact that if C is a copula, then so is the
mapping Dn defined by Eq. 8. This comes from the fact that if
(U11, . . . , U1d), . . . , (Un1, . . . , Und) is a random sample from C, the joint
distribution of the componentwise maxima Mnj = max(U1 j, . . . , Unj) for j ∈
{1, . . . , d} can be expressed in the form

P(Mn1 � u1, . . . , Mnd � ud) = Cn(u1, . . . , ud) = Dn(un
1, . . . , un

d),

where un
j = P(Mnj � u j) for j ∈ {1, . . . , d}.

As Proposition 2 derives from Proposition 3, the latter is established first.
It is sufficient to show that (c) ⇒ (b) ⇒ (a) ⇒ (c), and the first implication
is trivial. Given constants anj, bnj ∈ R with bnj > 0, introduce the distribution
function

H̃n(x1, . . . , xd) = Hn
n(an1 + bn1x1, . . . , and + bndxd),

with marginals F̃n1, . . . , F̃nd. Note that if Cn ∈ C (Hn), then for all x1, . . . ,

xd ∈ R,

P(Mn1 � an1 + bn1x1, . . . , Mnd � and + bndxd)

= H̃n(x1, . . . , xd) = Cn
n{F̃1/n

n1 (x1), . . . , F̃1/n
nd (xd)}

= Dn{F̃n1(x1), . . . , F̃nd(xd)}.
Thus Cn ∈ C (Hn) ⇒ Dn ∈ C (H̃n).

To prove (b) ⇒ (a), suppose that for each j ∈ {1, . . . , d}, anj and bnj > 0 are
constants for which F̃nj � F∗

j as n → ∞. Further assume that (Cn) is a se-
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quence for which Eq. 11 holds for all (u1, . . . , ud) ∈ Ran(F∗
1 ) × · · · × Ran(F∗

d).
Then Dn → C∗ on the same domain, and hence by Proposition 1, H̃n � H∗ as
n → ∞.

Finally, to see that (a) ⇒ (c), suppose that (Hn) ∈ M (H∗), i.e., H̃n � H∗
as n → ∞. It is then immediate that F̃nj � F∗

j for all j ∈ {1, . . . , d}. Now if

(En) is an arbitrary sequence of copulas such that En ∈ C (H̃n) and if C∗ is
an arbitrary element of C (H∗), then by Proposition 1, En → C∗ uniformly on
Ran(F∗

1 ) × · · · × Ran(F∗
d). In particular, if C ∈ C (Hn) and Dn is defined by

Eq. 8, one concludes that Dn → C∗ uniformly on the same domain, as claimed.
Proposition 2 follows readily from Proposition 3 upon setting Hn = H for

all n � 1. In that special case, Eq. 11 reduces to

lim
n→∞ Cn

(
u1/n

1 , . . . , u1/n
d

)
= C∗(u1, . . . , ud), n ∈ N.

The latter is equivalent to Eq. 5 in view of the fact that for all t > 0,

C�t�+1
(

u1/�t�
1 , . . . , u1/�t�

d

)
� Ct

(
u1/t

1 , . . . , u1/t
d

)

� C�t�
(

u1/(�t�+1)

1 , . . . , u1/(�t�+1)

d

)
.

Appendix 3: Proof of Proposition 4

First note that for j = 1, 2 and all q ∈ (0, 1), one has

1 − F j ◦ F−1
j (q) � 1 − q � 1 − F j→ ◦ F−1

j (q). (16)

Thus

lim
q→1

1 − F j ◦ F−1
j (q)

1 − F j→ ◦ F−1
j (q)

� lim
q→1

1 − F j ◦ F−1
j (q)

1 − q
� 1,

so that because F j satisfies Eq. 7 by hypothesis,

lim
q→1

1 − F j ◦ F−1
j (q)

1 − q
= 1 (17)

for j = 1, 2. Consequently, Eq. 14 holds. Proposition 5 then implies that
λ(X1|X2) and λ(X2|X1) both exist, and that λ(X1|X2) = λ(X2|X1) = λ(C) for
every C ∈ C (H) for which the latter index exists. This shows parts (a) and (b)
of Proposition 4.



50 A. Feidt et al.

To prove part (c), pick an arbitrary C ∈ C (H). It then follows from the
inequalities in Eq. 16 that

C̄{1 − F1 ◦ F−1
1 (q), 1 − F2 ◦ F−1

2 (q)}
1 − q

� C̄(1 − q, 1 − q)

1 − q

� C̄{1 − F1→ ◦ F−1
1 (q), 1 − F2→ ◦ F−1

2 (q)}
1 − q

.

Observe that

lim
q→1

C̄{1 − F1 ◦ F−1
1 (q), 1 − F2 ◦ F−1

2 (q)}
1 − q

= lim
q→1

C̄{1 − F1 ◦ F−1
1 (q), 1 − F2 ◦ F−1

2 (q)}
1 − F1 ◦ F−1

1 (q)
× 1 − F1 ◦ F−1

1 (q)

1 − q
= λ(C0)

by parts (a) and (b), as well as the fact that Eq. 7 holds for F1. Now define

κ(q) = C̄{1 − F1→ ◦ F−1
1 (q), 1 − F2→ ◦ F−1

2 (q)}
1 − q

− C̄{1 − F1 ◦ F−1
1 (q), 1 − F2 ◦ F−1

2 (q)}
1 − q

and invoke the Lipschitz property of copulas to deduce that

|κ(q)| � |F1 ◦ F−1
1 (q) − F1→ ◦ F−1

1 (q)|
1 − F1 ◦ F−1

1 (q)
× 1 − F1 ◦ F−1

1 (q)

1 − q

+|F2 ◦ F−1
2 (q) − F2→ ◦ F−1

2 (q)|
1 − F2 ◦ F−1

2 (q)
× 1 − F2 ◦ F−1

2 (q)

1 − q
.

In view of Eqs. 7 and 17, κ(q) → 0 as q → 1. Thus, λ(C) exists and equals
λ(C0).

Appendix 4: Proof of Proposition 5

The proof relies on the fact that

rI = lim inf
q→1

1 − F1 ◦ F−1
1 (q)

1 − F2 ◦ F−1
2 (q)

� 1 � lim sup
q→1

1 − F1 ◦ F−1
1 (q)

1 − F2 ◦ F−1
2 (q)

= rS. (18)

To show the first inequality, call on the relations in Eq. 16 to write

rI � lim inf
q→1

1 − q

1 − F2 ◦ F−1
2 (q)

,
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and observe that the right-hand term is at most 1. To see this, use the fact
that F2→(x2) → 1 as x2 → xF2 to construct a sequence (tn) such that F2(tn) =
qn → 1 as n → ∞. For such a sequence, (1 − qn)/{1 − F2 ◦ F−1

2 (qn)} = 1 for all
n ∈ N, and hence rI � 1. The inequality rS � 1 can be shown analogously.

Statements (a) and (b) are identical, except for a change of indices. To
establish the former, first write

λ(X1|X2) = lim
q→1

C̄0{1 − F1 ◦ F−1
1 (q), 1 − F2 ◦ F−1

2 (q)}
1 − F2 ◦ F−1

2 (q)

= lim
q→1

C̄0[R(q){1 − F2 ◦ F−1
2 (q)}, 1 − F2 ◦ F−1

2 (q)]
1 − F2 ◦ F−1

2 (q)
,

where R(q) = {1 − F1 ◦ F−1
1 (q)}/{1 − F2 ◦ F−1

2 (q)}. Next, let R be the set of
reals r for which R(qn) → r for some sequence (qn) in (0, 1) such that qn → 1
as n → ∞. Then for all r ∈ R,

λ(X1|X2) = lim
n→∞

C̄0[r{1 − F2 ◦ F−1
2 (qn)}, 1 − F2 ◦ F−1

2 (qn)]
1 − F2 ◦ F−1

2 (qn)
. (19)

To show this, introduce

δ(n) = C̄0[r{1 − F2 ◦ F−1
2 (qn)}, 1 − F2 ◦ F−1

2 (qn)]
1 − F2 ◦ F−1

2 (qn)

− C̄0[R(qn){1 − F2 ◦ F−1
2 (qn)}, 1 − F2 ◦ F−1

2 (qn)]
1 − F2 ◦ F−1

2 (qn)

and observe that |δ(n)| � |R(qn) − r| → 0 as n → ∞ by the Lipschitz property
of copulas. Thus if 1 ∈ R, λ(X1|X2) = λ(C0). Otherwise the inequalities in
Eq. 18 are strict. In that case, pick a sequence (qn) in (0, 1) such that qn → 1
and R(qn) → rI as n → ∞. Then by Eq. 19 and the monotonicity of C̄0,
one has

λ(X1|X2) = lim
n→∞

C̄0[rI{1 − F2 ◦ F−1
2 (qn)}, 1 − F2 ◦ F−1

2 (qn)]
1 − F2 ◦ F−1

2 (qn)

� lim
n→∞

C̄0{1 − F2 ◦ F−1
2 (qn), 1 − F2 ◦ F−1

2 (qn)}
1 − F2 ◦ F−1

2 (qn)
= λ(C0).

Similarly, one can show that λ(X1|X2) � λ(C0) by considering the limit along
a sequence (qn) such that R(qn) → rS as n → ∞. Thus, λ(X1|X2) = λ(C0) as
claimed.

To prove (c), take C0 ∈ C (H) such that λ(C0) exists and introduce

γ (q) = C̄0{1 − F1 ◦ F−1
1 (q), 1 − F2 ◦ F−1

2 (q)}
1 − F2 ◦ F−1

2 (q)

− C̄0{1 − F2 ◦ F−1
2 (q), 1 − F2 ◦ F−1

2 (q)}
1 − F2 ◦ F−1

2 (q)
. (20)
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Note that from the Lipschitz property of copulas,

|γ (q)| � |F1 ◦ F−1
1 (q) − F2 ◦ F−1

2 (q)|
1 − F2 ◦ F−1

2 (q)
→ 0

as q → 1 whenever Eq. 14 holds. Taking limits on both sides of Eq. 20, one sees
from its definition that λ(X1|X2) exists and equals λ(C0). Similarly, λ(X2|X1)

is well defined and coincides with λ(C0).
Finally, to get (d), suppose that λ(X1|X2) and λ(X2|X1) exist and are non-

zero. Then

λ(X1|X2) = lim
q→1

P{X1 > F−1
1 (q), X2 > F−1

2 (q)}
1 − F2 ◦ F−1

2 (q)

= lim
q→1

P{X1 > F−1
1 (q), X2 > F−1

2 (q)}
1 − F1 ◦ F−1

1 (q)
× 1 − F1 ◦ F−1

1 (q)

1 − F2 ◦ F−1
2 (q)

= λ(X2|X1) × lim
q→1

1 − F1 ◦ F−1
1 (q)

1 − F2 ◦ F−1
2 (q)

,

which shows that the limit in Eq. 14 exists. However, by Eq. 18, the latter
equals 1.
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