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Abstract This study models maximum temperatures in

Switzerland monitored in twelve locations using the gen-

eralised extreme value (GEV) distribution. The parameters

of the GEV distribution are determined within a Bayesian

framework. We find that the parameters of the underlying

distribution underwent a substantial change in the begin-

ning of the 1980s. This change is characterised by an

increase both in the level and the variability. We assess the

likelihood of the heat wave of the summer 2003 using the

fitted GEV distribution by accounting for the presence of a

structural break. The estimation results do suggest that the

heat wave of 2003 is not that statistically improbable if

an appropriate methodology is used for dealing with

nonstationarity.

Keywords Climate change � GEV � Bayesian modelling �
Great Alpine heat wave

1 Introduction

The heat wave of 2003 observed in continental Europe,

including Switzerland, has attracted much attention in the

literature on climate change as the unusually high tempera-

tures led to a number of undesirable consequences including

increased population mortality (World Health Organization

(WHO) 2003)—especially among the elderly—with esti-

mated 1,000 heat-related fatalities in Switzerland (Grize

et al. 2005), appearance and prolonged endurance of

droughts accompanied by a shortfall in crop, an increased

probability and severity of forest fires, change of vegetation

cycles, and strongly reduced discharge in many rivers (De

Bono et al. 2004; Fink et al. 2004; ProClim 2005). In

Switzerland, the heat wave of 2003 sped up the melting of

glaciers in the Alps and it resulted in avalanches and flash

floods.

Ongoing research is concerned with the mechanisms con-

tributing to the formation of extreme events like the heat wave

in 2003. Della-Marta et al. (2007a, b) provide an overview

about the recent literature and name relevant causes, including

the Atlantic Multidecadal Oscillation (AMO), the long-term

global mean temperature, deficiencies in Mediterranean

winter and spring precipitation and changes in land–atmo-

sphere interactions triggered by the greenhouse gas effect.

Schär and Fischer (2008) point out the coupling of heat waves

to the water cycle but also mention large uncertainties related

to regional changes. Garcı́a-Herreira et al. (2009) present a

review on the literature of the European heat wave 2003,

including a thorough discussion of causes and impacts and

mentioning the factors attributable to the occurence and per-

sistence of this event, namely blocking episodes, soil moisture

deficit, and sea surface temperature.

Several papers are dedicated to the probability of this

extraordinary hot summer both at the European level and
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more specifically for Switzerland, see Beniston (2004),

Schär et al. (2004), Trigo et al. (2005), Stott et al. (2004),

among others. A common conclusion of these articles is

that the heat wave of summer 2003 was a very unusual

event given the pattern of temperatures observed over

Europe in the past. In particular, Schär et al. (2004) con-

cluded that such record-breaking extreme temperatures

observed in Switzerland were very unlikely from a statis-

tical point of stationarity and a shift in the distribution

location alone is not sufficient for explaining the heat wave

of 2003.

In this paper, we model the annual maxima of monthly

mean temperatures in Switzerland with the main purpose

of assessing the likelihood of occurrence of the heat wave

of 2003. There is no unique definition of a heat wave but it

is generally understood as a prolonged period of unusually

high temperatures observed in a given region. Short-

termed definitions are useful when looking at increased

mortality by hot temperatures (Tamerius et al. 2007).

These definitions assume thresholds that have to be

exceeded on subsequent days (see Robinson 2001 for a

discussion, Khaliq et al. 2007 for an application for

Canada). Other effects like melting of glaciers require

more time to emerge and therefore provide another defi-

nition of a heat wave. Schär et al. (2004), Stott et al.

(2004), and Jaeger et al. (2008) analyse mean summer

temperatures, Beniston (2004) examines daily summer

maximum temperatures averaged over the summer

months, whereas Trigo et al. (2005) uses 15 day averages.

Since impacts of climate change are more visible by

observing longer time spans, we choose in line with these

publications an event of longer endurance.

We apply a Bayesian approach which is better suited for

predictive purposes than the classical methodology since

parameter uncertainty is directly incorporated into the

forecast process, see Coles (2001). Furthermore, investi-

gation of model parameter instability and assessment of its

severity is also straightforward within the Bayesian

framework. Building on the Bayesian analysis of Jaeger

et al. (2008), who assessed the feasibility of different trend

models under the assumption of a normally distributed

error term, we employ the generalised extreme value

(GEV) distribution as possibly more appropriate.

Our main finding is that a proper accounting for features

of the time series considerably increases the likelihood of

occurrence of the heat wave of 2003. On the basis of our

estimation results, we conclude that the heat wave of

summer 2003 does not appear to be such an improbable

event but it rather constitutes a future pattern of things to

come.

In Sect. 2 we describe the data set used in our exercise.

In Sect. 3 the methodology is presented. Section 4 contains

the estimation results. The last section concludes.

2 Data

We analyse the temperature measured by the Swiss Federal

Office of Meteorology and Climatology1 (Begert et al.

2005). The mean monthly data are provided for the period

from 1864 until present (2007) (with exception of Chateau

d’Oex (since 1901) and Davos-Dorf (since 1876)) and are

collected at the following twelve locations in Switzerland

(Bern-Zollikofen, Geneve-Cointrin, Lugano, Segl-Maria,

Basel-Binningen, Chateau d’Oex, Chaumont, Davos-Dorf,

Engelberg, Saentis, Sion, and Zurich). The series are

homogenous until 2003 (inclusive) for the first four loca-

tions, while for the remaining locations inhomogeneities

have been provisionally corrected. Since 2004 several

stations have been reconstructed. Those time series might

contain minor inhomogeneities, where the reconstruction

site has not changed (Davos-Dorf, Engelberg, Lugano,

Saentis, Zurich) or was moved a bit (Sion). The tempera-

ture record is likely to be less homogeneous for the Bern

station due to the fact that this station has been rebuild at a

completely different place.2 Thus, the most reliable data is

provided by Geneve-Cointrin and Segl-Maria, where the

measurement location did not undergo major changes.

In our exercise, in contrast to Schär et al. (2004), where

the data from four different stations (Basel-Binningen,

Geneve-Cointrin, Bern-Zollikofen, and Zurich) were

amalgamated, we model each time series of temperature

observations individually. In doing so, we avoid a possible

aggregation bias. By using disaggregated data, we are also

able to draw a comparison between the parameter estimates

obtained for each station and, therefore, to establish a

degree of generalisation of our results depending on the

measurement location.

The descriptive statistics of the corresponding time

series are given in Table 1. First, observe that the time

series are quite heterogenous. Our sample includes Saentis,

where the average annual maximum temperature is around

5.6 degrees Celsius, on the one hand, and Lugano with

21.5, on the other hand. Second, the summer of 2003 was

indeed the hottest summer by the historical standard for all

locations where the measurement took place. So far, this

record was subsequently broken in 2006 for the three sta-

tions Bern-Zollikofen, Davos-Dorf, and Sion.

Since our analysis is based on the assumption of inde-

pendent observations, we check for the magnitude of

autocorrelation in our data. The first autocorrelation coef-

ficient, estimated using the whole sample available, is

1 http://www.meteoschweiz.admin.ch/web/en/climate/climate_today/

homogeneous_data.html.
2 The deviations are assessed as 0.2–0.3�C for provisionally

inhomogenisation, reconstruction at the same place or nearby (Sion)

and as -0.5� for the reconstruction in Bern, as reported by personal

communication with MeteoSwiss.
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displayed in Table 1. It takes values in the range between

0.103 and 0.305, indicating presence of low to mild

positive temporal dependence in our data. However,

according to Perron (1989) the detected mild positive

dependence may well be spuriously induced by the pres-

ence of an unmodelled structural break in the time series in

question. Therefore, after conducting the initial analysis

using the whole sample period, we investigate the struc-

tural stability of the fitted model by splitting the sample

into two parts. We also calculate the first order autocor-

relation for each of these subsamples. We find that

the evidence of temporal dependence is substantially

weakened when one allows for a structural break in the

temperature time record.

3 Methodology

In this section we motivate our choice of the GEV distri-

bution for modelling annual maximum temperatures in

Switzerland and explain how its parameters can be esti-

mated using the Bayesian approach. Second, we introduce a

changepoint model that allows the model parameters to

differ across the sub-samples and explain how its parame-

ters, including an additional breakpoint timing parameter,

can be easily estimated. Third, we discuss how the statis-

tical inference on the parameters of the fitted models can be

performed using the information contained in the parameter

posterior distributions. We also discuss how the likelihood

of future extreme events can be addressed in the Bayesian

framework. In particular, we are interested in comparing the

probability of observing the extreme temperature event in

summer 2003 as predicted by the model with constant

parameters with that predicted by the changepoint model.

Fourth, we discuss how standard tools of goodness-of-fit

evaluation can be adapted to our modelling approach.

Essentially, we have chosen to model the maximum

temperatures in Switzerland using the GEV distribution

due to two main reasons.3 First, as argued in Leadbetter

et al. (1983), the distribution of the maximum of identi-

cally distributed random variables is asymptotically

approximated by the GEV distribution. Second and more

relevant, the GEV distribution is very flexible in the sense

that it incorporates a wide range of tail behaviours. The

latter feature allows us to trace the changes in the tail

behaviour of the fitted GEV distribution across the differ-

ent sub-samples as implied by our changepoint model.

The GEV distribution is characterized by the following

distribution function

Fðz; l; r; nÞ ¼ exp � 1þ n
ðz� lÞ

r

� ��1
n

þ

( )
; ð1Þ

where y? = max(y,0) and l is a location parameter, r is a

scale parameter, and n is a shape parameter. The shape

parameter n determines the tail behaviour which can be

sub-divided into three classes: the limit n?0 corresponds

Table 1 Descriptive statistics for the whole sample

Station Sample Obs. Mean Std. dev. Min Max 1st ACa 2003

Basel-Binningen 1864–2007 144 18.801 1.4495 16.0 23.8 0.128 23.8

Bern-Zollikofen 1864–2007 144 17.917 1.3919 15.2 22.1 0.156 21.9

Geneve-Cointrin 1864–2007 144 19.586 1.4516 16.8 24.1 0.230 24.1

Zurich 1864–2007 144 18.109 1.3983 15.4 22.7 0.136 22.7

Chateau d’Oex 1901–2007 107 15.327 1.3988 12.8 19.5 0.291 19.5

Chaumont 1864–2007 144 14.597 1.5495 11.1 19.5 0.103 19.5

Davos-Dorf 1876–2007 132 11.694 1.3039 8.8 16.1 0.280 15.7

Engelberg 1864–2007 144 14.586 1.2476 12.1 18.7 0.183 18.7

Lugano 1864–2007 144 21.476 1.1682 18.8 25.1 0.305 25.1

Saentis 1864–2007 144 5.647 1.4258 2.9 10.1 0.247 10.1

Segl-Maria 1864–2007 144 11.015 1.0726 8.6 14.7 0.220 14.7

Sion 1864–2007 144 19.131 1.3549 16.4 23.3 0.271 23.1

Temperature in �C
a The first autocorrelation coefficient

3 This approach is rather standard in extreme value statistics. More

than one observation during a period can be considered by using

r-largest-techniques (Coles 2001). Changepoint problems using the

Poisson process in a Bayesian framework date back to Raftery and

Akman (1986). Renard et al. (2006) quote Peak-over-Threshold-

methods as a second standard approach alternative to the analysis of

block maxima, either with a Poisson process or the Generalized

Pareto-distribution. These also allow using more data information

than just one extreme during one period. Other information could be

considered by kriging (spatial information) or a variety of multivar-

iate methods. Seneviratne et al. (2006) used Canonical Correlation

Analysis (CCA), based on daily maximum temperature to investigate

the occurrence of heat waves.
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to the Gumbel distribution, n[ 0 and n\ 0 to the Fréchet

and Weibull distributions, respectively. The Fréchet dis-

tribution is a ‘‘long-tailed’’ distribution, the Gumbel dis-

tribution is a ‘‘medium-tailed’’ distribution, whereas the

Weibull distribution is a ‘‘short-tailed’’ distribution which

has a finite endpoint.

Collect the three parameters of interest into the fol-

lowing parameter vector h = (l,r,n)0. Then under the

assumption of independent and identically distributed

realizations of a GEV(h) random variable x ¼ ðx1; . . .; xnÞ;
the associated log-likelihood function is

ln LðhjxÞ ¼ �n ln r� 1þ 1

n

� �Xn

i¼1

ln 1þ nðxi � lÞ
r

� �

�
Xn

i¼1

ln 1þ nðxi � lÞ
r

� ��1
n

: ð2Þ

In Bayesian statistics all relevant information on the

unknown parameters h given the observed data x is

contained in the posterior distribution p(h|x), which is

derived from the parameter prior distribution p(h) and from

the likelihood function L(h|x) according to the Bayes

theorem

pðhjxÞ ¼ pðhÞLðhjxÞR
H pðhÞLðhjxÞdh

/ pðhÞLðhjxÞ: ð3Þ

The prior distribution p(h) assumed for the parameters of

the model allows to incorporate exogenous information

(e.g., experts’ opinion) into the analysis. Formula (3)

converts the initial beliefs about the values of the unknown

parameters, expressed by p(h), into a posterior distribution

p(h|x), that includes the additional information contained in

the data. Hence if one uses vague prior distributions,

reflecting the fact that no prior strong beliefs about the

parameter values are introduced, then the posterior distri-

butions of the parameters are primarily determined by the

data at hand. The term in the denominator $H p(h)L(h|x)dh
is the normalizing constant such that the posterior distri-

bution of the model parameters is proportional to the

product of the prior distribution and of the likelihood

function.

Since evaluation of the normalizing constant in (3) is not

always analytically tractable, the posterior density is usu-

ally obtained by means of computation-intensive tech-

niques collectively known as Markov Chain Monte Carlo

(MCMC) simulation. In our paper we also follow this

approach. More specifically, we employ a simulation

technique known as the Metropolis-Hastings (MH) algo-

rithm in order to obtain the posterior distribution of the

parameters of interest. According to the MH algorithm we

generate a sequence of parameter vectors h1,h2,... accord-

ing to some probability rule q(hk?1|hk), called a proposal

generating density. One popular choice of a proposal

generating density states that the proposed parameter

vector h* for hk?1 is generated from a standard normal

distribution with mean equal to the previous vector hk, e.g.,

(h*|hk)* N(hk,1). Then, at each step in the sequence, we

accept the proposal value h* for hk?1 with a probability ak

using the following rule

ak ¼ min 1;
pðh�jxÞ
pðhkjxÞ

� �
: ð4Þ

Otherwise, we leave hk unchanged. As a result, the next

value in the sequence is determined as follows

hkþ1 ¼
h� with probability ak;
hk with probability 1� ak:

�
ð5Þ

The simulated sequence is approximately stationary, and its

marginal distribution corresponds to the posterior distri-

bution given by (3) (Gamerman 1997).

So far, we have discussed the estimation of the model

parameters h of the GEV distribution assuming that they

are constant. In order to investigate the possibility of the

presence of a structural break and its severity, we extend

our model by allowing for a breakpoint that endogenously

splits the whole sample into two sub-samples I0 = [1, j-1]

and I1 = [j, n].4 We allow the parameters of the fitted GEV

distribution to differ across the two sub-samples,5 i.e.,

h0 = (l0,r0,n0)0 and h1 = (l1,r1,n1)0, and the timing of the

breakpoint j appears as a new parameter in the model.

Such a modification of the model is easily implemented in

the Bayesian framework as opposed to the maximum

likelihood approach which becomes rather cumbersome

when dealing with variable changepoints. We impose an

uniform prior on our breakpoint timing parameter and

allow for a minimum length of the sub-sample equal to six

observations. The breakpoint timing parameter is easily

included into our MH algorithm. Following Coles and

Pericchi (2003) we utilise a simple discrete random walk

chain as the proposal generating density for the breakpoint

parameter. The (log-)likelihood function needs also to be

correspondingly modified for a given value of the break-

point timing parameter j as follows

4 An interesting extension of our work could be pursued along the

lines of Perreault et al. (2000) suggesting a multivariate change-point

analysis in order to establish a joint changepoint for the measurement

series.
5 The modeling of a structural change using a step-function in the

temporal evolution of parameters is of course not mandatory. Smooth

functions could be used instead as long as they can be implemented

into the likelihood function, as well as plenty approaches for

modeling one or several breakpoints exist (Carlin et al. 1992;

Stephens 1994; Mohammad-Djafari and Feron 2006; Moreno et al.

2005, among others).
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ln Lðh0; h1; jjxÞ

¼ �ðj� 1Þ ln r0 � 1þ 1

n0

� �Xj�1

i¼1

ln 1þ n0ðxi � l0Þ
r0

� �

�
Xj�1

i¼1

ln 1þ n0ðxi � l0Þ
r0

� �� 1
n0

�ðn� jþ 1Þ ln r1

� 1þ 1

n1

� �Xn

i¼j

ln 1þ n1ðxi � l1Þ
r1

� �

�
Xn

i¼j

ln 1þ n1ðxi � l1Þ
r1

� �� 1
n1

: ð6Þ

The posterior distribution of eh ¼ ðh00; h01; jÞ0 can be

easily obtained by means of an appropriately modified MH

algorithm outlined above.

Since the posterior distribution p(h|x) contains all

relevant information on the unknown parameters h given

the observed data x, we can use it in order to deduce

point estimates of the unknown parameters of interest,

for example. These are given by the respective means of

the posterior distribution. Likewise, assessment of the

probability of future events reaching a certain extreme

level could also be straightforwardly investigated. For

our purpose, this is a particularly appealing property

since we intend to show that observing the record-

breaking temperature in summer 2003, denoted as z2003,

does not appear that excessively improbable once the

features of the underlying time series are taken into

account. To this end, we intend to compare the predic-

tive posterior probability for z2003 implied by a model

with constant parameters with that implied by our

changepoint model.

Denote p(z2003|h) as the density function of z2003 under

conditional independence assumption for xi given a

GEV(h) distribution with h = (l,r,n) [ H. Then we can

compute the posterior predictive density of z2003, given

annual maxima x observed in the past

pðz2003jxÞ ¼
Z
H

pðz2003jhÞpðhjxÞdh: ð7Þ

Next, define the predictive distribution of a future annual

maximum as follows

PrfZ � z2003jxg ¼
Z
H

PrfZ� z2003jhgpðhjxÞdh; ð8Þ

where Z is a GEV(h) distributed random variable and Pr{Z

B z2003|h} is the distribution function derived from (1)

evaluated at z2003. Then the probability of observing a more

extreme observation than z2003, given the past data,—the so

called exceedance probability—is given by the converse

probability of (8). A similar analysis can be performed

using the changepoint model with the parameter vector eh:
Very low exceedance probabilities would either indicate

that the heat wave of summer 2003 was indeed an unusual

and largely unanticipated event, or a model which delivers

such low probability is misspecified, and therefore it needs

to be appropriately modified.

Information contained in the posterior distribution can

also be used in order to estimate the distributions of

quantiles or, equivalently, return levels. Define the return

level zp as the (1-p)th-quantile of the GEV distribution

shown in (1) with the associated return period 1/p, such that

zpðhÞ ¼ l� r
n ½1� ð� lnð1� pÞÞ�n�; for n 6¼ 0;

l� r lnð� lnð1� pÞÞ; for n ¼ 0:

�
ð9Þ

We can use the simulated sequence of the parameters h
(or, ehÞ; obtained by means of the MH algorithm, in order to

get a posterior distribution of a chosen return level zp.

Denote the mean of the resulting posterior distribution of zp

as zp: Then the plot of zp against a logarithmic scale for

-ln(1-p)&1/p for a range of small values p is called a

return level plot. The property of the return plot is that it is

linear for the Gumbel distribution, i.e., for n = 0, and

concave and, respectively, convex for the Fréchet (n[ 0)

and Weibull (n\ 0) distributions.

We can also use other summary statistics, such as 0.025

and 0.975 quantiles of the posterior return level distribu-

tion. Plotting them on the same graph against the return

period for a range of small values p yields a 95% credibility

interval for each return level zp. Knowing this credibility

interval allows us using the return level plots as a good-

ness-of-fit test by comparing empirical return levels

deduced from the data with those implied by the values of

the estimated parameters of the model. The model pro-

duces a good fit of the data if the empirical return levels do

not fall outside of the computed 95% credibility interval.

This also would indicate that the chosen distribution—in

our case, a GEV distribution—is able to generate data

similar to those observed.

Last but not least, we used probability and quantile plots

for diagnostic model checking. Given the order statistics of a

sample of annual maxima z(1) B z(2) B ��� B z(n), the empir-

ical distribution function evaluated at z(i) reads as follows

eFðzðiÞÞ ¼ i

nþ 1
: ð10Þ

The corresponding model-based distribution function is

given by

bFðzðiÞÞ ¼ exp � 1þ n̂
ðzðiÞ � blÞ

br
� ��1

n̂

þ

( )
; ð11Þ

where ðbl; br; bnÞ denote the point estimates of the parame-

ters of interest, e.g., deduced from the respective posterior
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distributions. Then a probability plot consists of the pointseFðzðiÞÞ plotted against bFðzðiÞÞ: Similarly, plotting bF�1

ði=ðnþ 1ÞÞ against z(i) for i = 1,...,n produces a quantile

plot. In case of a good fit, the empirical and model-based

quantities should not deviate far from each other, i.e., they

should lie close to the 45-degree line on each plot, of

course, accounting for data randomness and for parameter

estimation uncertainty.

4 Results

4.1 A constant parameter model

First, we report the results of fitting the GEV distribution to

the data available before 2003, assuming constant param-

eter values for the underlying GEV distribution. As dis-

cussed in Sect. 3, the posterior distributions of the model

parameters were obtained using a MH random walk algo-

rithm (Gamerman 1997) because an exact analytical solu-

tion is unavailable. We employed proper but diffuse priors

that are also independent: the prior distribution is N(0,

10,000) for the location parameter l and the logarithmic

transformation of the scale parameter r, and N(0,100) for

the shape parameter n. We generated Markov chains of

100,000 observations with an initial burn-in period equal to

20,000 observations. Furthermore, in order to reduce

autocorrelation in the generated Markov chains we have

applied thinning by storing every 100th generated value.

The convergence of the Markov chains was assessed using

the convergence criterion suggested in Geweke (1992).

Table 2 presents estimation results derived from the

posterior distribution based on all observations before

2003. It is worth noting that for all stations the shape

parameter n of the fitted GEV distribution is very likely to

be negative. This suggests that the tail behaviour implied

by the estimated model with constant parameters is very

likely to correspond to the Weibull distribution, i.e., n\ 0.

As discussed in Sect. 3 above, we can assess how likely

the hot summer of 2003 was, given historical data. We

calculate the predictive probability of exceeding the tem-

perature observed in 2003, see Table 2. The associated

predictive probabilities are very low suggesting that the

heatwave of 2003 was indeed a rather unusual event. Thus,

at this point, our conclusions conform with those of Schär

et al. (2004). The next column of Table 2 contains the

corresponding predictive return periods. Such periods

indicate that one should expect to observe such extreme

temperature values on average once within a corresponding

period (Coles 2001). For all measurement stations, the

return periods by far exceed our sample period of

144 years (except for Chateau d’Oex), for which temper-

ature recordings were made.

4.2 A changepoint model

A casual examination of the time series reveals that, in the

last 25 years of our sample, the average annual maximum

is much higher than observed for the period up to the early

1980s. Table 3 presents the descriptive statistics for two

subsamples: before 1982 and afterwards. The characteris-

tics of these two sub-samples are quite different. We

Table 2 GEV parameter estimates (posterior mean and standard deviation) and predictions on exceeding the temperature of 2003, sample

1864–2002

l̂ Std. dev. r̂ Std. dev. n̂ Std. dev. 2003 (�C) Predictive

probabilityc
Predictive return

period

Basel-Binningen 18.175 0.118 1.256 0.085 -0.156 0.060 23.8 0.0013 774.51

Bern-Zollikofen 17.333 0.123 1.269 0.087 -0.191 0.059 21.9 0.0033 299.62

Geneve-Cointrin 18.980 0.124 1.323 0.090 -0.200 0.063 24.1 0.0018 558.53

Zurich 17.503 0.115 1.232 0.083 -0.158 0.056 22.7 0.0017 572.27

Chateau d’Oexa 14.676 0.132 1.212 0.099 -0.119 0.071 19.5 0.0058 172.50

Chaumont 13.956 0.135 1.445 0.095 -0.216 0.052 19.5 0.0011 919.12

Davos-Dorfb 11.131 0.113 1.160 0.084 -0.172 0.061 15.7 0.0025 406.45

Engelberg 14.042 0.098 1.098 0.070 -0.144 0.050 18.7 0.0021 471.44

Lugano 20.958 0.103 1.053 0.070 -0.161 0.051 25.1 0.0028 359.94

Saentis 5.029 0.118 1.271 0.086 -0.156 0.054 10.1 0.0028 356.30

Segl-Maria 10.569 0.093 0.999 0.068 -0.214 0.056 14.7 0.0008 1,310.46

Sion 18.588 0.120 1.282 0.086 -0.254 0.055 23.1 0.0011 912.24

a The available sample starts in 1901
b The available sample starts in 1876
c The exceedance probability of the 2003 recording
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observe an increase in both the average values as well as in

the extremes (minimum and maximum values) in the sec-

ond sub-period compared to the first one. We also find that

in the second sub-period the standard deviation is larger for

all but three locations. This suggests that the whole dis-

tribution underwent a structural change such that extremely

hot temperatures became more likely than they used to be.

This also implies that the much discussed heat wave in

2003 may not have been a separate, undesirable incident,

but rather the consequence of an increase in the level of

temperatures as well as in their variability that happened in

the early 1980s.

Given our earlier results indicating at most mild positive

temporal dependence in the underlying time series, we also

investigate how accounting for a structural break influences

our conclusions drawn for the whole sample period. The

estimated first autocorrelation coefficient for two subsam-

ples is presented in Table 3. As expected, splitting the

sample into two parts resulted in much lower values of the

first autocorrelation coefficient reported for the first sub-

sample. It takes values in the range between -0.008 and

0.179. At the same time, it is interesting to observe that the

magnitude of the first order autocorrelation observed in the

second subsample largely remained in the similar range

reported for the whole sample but with the opposite sign

taking values in the interval between -0.293 and 0.070. At

the same time they appear to be somewhat larger than those

observed for the first subsample. We attribute this differ-

ence to the fact that the estimate of autocorrelation for the

second subsample is based on a rather small number of

observations (27 years). This naturally increases the vari-

ability of the autocorrelation estimator and therefore makes

it less reliable in comparison to that based on the much

larger first subsample.

In order to investigate the possibility of the presence and

severity of a structural break, we extend our model by

allowing for a breakpoint that endogenously splits the

whole sample into two sub-samples. As discussed in

Sect. 3, we allow the parameters of the fitted GEV distri-

bution to differ across two sub-samples and the timing of

the breakpoint appears as a new parameter in the model.

Table 4 presents the parameter estimates resulting from

the inclusion of the break point into our model. The pos-

terior expected value of the location parameters and the

observed temperature values appear in Fig. 1. There is

substantial evidence in favour of the two regimes such that

in the second part of our sample the average annual max-

imum temperature is 1 to 1.6 degrees higher—depending

on the station—than it used to be in the first part of our

sample.

The posterior distributions of the parameters in each

regime are displayed in Fig. 2. Observe that the posterior

distributions of the second sub-sample are more disperse

than those of the first sub-sample due to the four times

smaller sample size of the later sub-sample. Furthermore,

Fig. 2 highlights the differences between the two different

regimes. The posterior distributions of the location

parameters l0 and l1 do not overlap at all, suggesting that

the difference is statistically significant. At the same time,

the posterior distributions of the scale parameters largely

do overlap, suggesting that this parameter did not undergo

much of a change. We however restrain from imposing the

same value of the scale parameter in both regimes, fol-

lowing the advice of Coles and Pericchi (2003) who argue

that when dealing with extreme events the parameter

uncertainty always has to be accounted for.

An interesting contrast we find in our changepoint model

is provided by the substantially different distributions of the

Table 3 Descriptive statistics for two subsamples

Subsample Mean Std. dev. Min Max 1st ACa Subsample Mean Std. dev. Min Max 1st AC

Basel-Binningen 1864–1981 18.503 1.247 16.0 21.3 -0.008 1982–2007 20.154 1.532 18.2 23.8 -0.278

Bern-Zollikofen 1864–1981 17.676 1.276 15.2 20.6 0.101 1982–2007 19.012 1.370 17 22.1 -0.293

Geneve-Cointrin 1864–1981 19.298 1.318 16.8 22.6 0.133 1982–2007 20.892 1.305 18.8 24.1 -0.276

Zurich 1864–1981 17.870 1.245 15.4 20.6 0.078 1982–2007 19.192 1.539 17.2 22.7 -0.210

Chateau d’Oex 1901–1981 14.898 1.149 12.8 17.4 0.096 1982–2007 16.665 1.254 14.9 19.5 -0.261

Chaumont 1864–1981 14.347 1.442 11.1 17.9 0.041 1982–2007 15.731 1.513 13.9 19.5 -0.271

Davos-Dorf 1876–1981 11.359 1.067 8.8 13.8 0.105 1982–2007 13.058 1.295 11.1 16.1 -0.211

Engelberg 1864–1981 14.336 1.072 12.1 16.9 0.085 1982–2007 15.723 1.353 13.7 18.7 -0.229

Lugano 1864–1981 21.243 1.072 18.8 25 0.179 1982–2007 22.531 0.993 20.9 25.1 0.070

Saentis 1864–1981 5.335 1.204 2.9 8.7 0.143 1982–2007 7.062 1.497 4.8 10.1 -0.249

Segl-Maria 1864–1981 10.811 0.952 8.6 12.8 0.138 1982–2007 11.938 1.104 10.1 14.7 -0.146

Sion 1864–1981 18.836 1.211 16.4 21.8 0.126 1982–2007 20.469 1.150 18.9 23.3 -0.160

Temperature in �C
a The first autocorrelation coefficient
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shape parameter. For the first sub-sample, the value of the

shape parameter n0 is almost certainly negative. This

implies that the tail behaviour of the GEV distribution fitted

to the first sample is well approximated by a Weibull dis-

tribution, which conforms with the estimation results

reported in Table 2 for the constant parameter model. On

contrary, the posterior expectations of the shape parameter

n1 for the second sub-sample in all measurement locations

but one exceeds zero and in three locations lies even above

0.2. This suggests that it is very likely that the tail behaviour

in the second sub-sample has drastically changed and now it

is rather consistent with the Fréchet distribution. However,

a word of caution must be uttered as the dispersion in the

posterior distribution of n1 is up to three times as large as

that of the shape parameter n0, measured by the standard

deviation, see Table 4. In addition, the probability mass on

negative values of n1 is still considerable, so the Weibull

distribution still may deserve some attention. Further

information on the difference in tail characteristics for both

sub-samples can be found in Fig. 3, where the probability

density function of the fitted GEV distribution for each of

the two sub-samples are shown. As seen, in the second

period the right-hand tail (see the lower panel for the cor-

responding measurement station) decays at much smaller

rate than that plotted for the first subsample (depicted at the

upper panel). We also observe the shift of the whole prob-

ability density function towards more extreme observations,

which is consistent with Fig. 1.

Figure 4 displays the return level plots associated with

every regime. Not only the whole return level curve has

shifted upwards, but also the uncertainty has substantially

increased for large temperatures. The return levels derived

from the quantiles of the observations are in line with the

credibility intervals as shown in Fig. 4, supporting the

choice of the GEV distribution. Additional plot diagnostics

via probability and quantile plots back up this view.6

However, observe that the return level plot for the second

sub-sample is based on less than thirty observations and

therefore the parameters of the GEV distribution have been

estimated with a rather large degree of uncertainty which is

translated also into the return level plot.

Last but not least, Fig. 5 contains the posterior distri-

bution of the breakpoint timing denoted as the first year of

the second sub-sample. The corresponding median along

with the 10th and 90th percentiles are reported in Table 4.

It is either 1981 (three times), 1982 (eight times), or 1983

(once). This similarity is a remarkable finding for the dif-

ferent and quite heterogeneous measurement locations.

This observation is further strengthened by the fact that the

corresponding posterior distribution is very tight. This
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Fig. 1 Observed annual maximum of monthly mean temperature (solid line) and the estimated location parameter of the fitted GEV distribution

(dashed line); the y-axis shows the temperature in �C
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Fig. 2 Posterior distributions of the parameters of the GEV distribution fitted for the first (shaded) and the second (transparent) subsamples: l0

and l1—upper panel, r0 and r1—middle panel, n0 and n1—lower panel
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Fig. 3 Fitted GEV probability density function: the corresponding

parameter estimates are given in Table 4: the first subsample (upper
panel), the second subsample (lower panel). The temperature

recording of summer 2003 is marked as the rug on the top of each

panel. The x-axis shows the annual maximum of monthly mean

temperature in �C
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Fig. 4 Return level plot with the corresponding 95% credibility
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subperiods: filled and empty circles correspond to the empirical

estimates for the first and the second subperiods, respectively; the
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y-axis shows the temperature in �C
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Fig. 5 Posterior distribution of the breakpoint timing parameter
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finding, in our opinion, strongly favours our hypothesis that

the distribution of maximum temperatures in Switzerland

underwent a significant structural change towards more

extreme values in the beginning of the 1980s.

In the analysis above we used a longer-term definition of

heat waves. In order to check the robustness of our results

to alternative shorter-term definitions of heat waves we

used daily temperature records provided by the European

Climate Assessment (ECA) (Klein Tank et al. 2002). For

five selected measurement locations (Basel-Binningen,

Geneve-Cointrin, Lugano, Saentis, Zurich), we compared

the time series of the annual maximum of daily tempera-

ture, of the annual maximum temperature exceeded on

three subsequent days, and of the number of days

exceeding a high threshold defined by a percentile (99.5%).

Our analysis revealed that for such short-term definitions of

heat waves, the time series exhibit a differing behaviour for

varying measurement locations. Both increases and

decreases over time as well as no obvious trends can be

observed among the five measurement sites. The main

findings of this paper may therefore not be valid for short-

term definitions of heat waves. This point, however, will

need further analysis. Della-Marta et al. (2007a, b), for

example, suggest a warm-bias in instrumental recordings in

the late 19th and early 20th century that might be respon-

sible for patterns discovered in the analysis based on short-

term definitions of heat waves. Correcting for this bias may

result in clearer findings. After having corrected for the

warm-bias in daily maximum temperatures statistics,

Della-Marta et al. (2007a, b) analyse hot day and heat

wave indices based on daily recordings. They find that the

length of western European summer heat waves has

effectively doubled and the frequency of hot days tripled

over the period from 1880 to 2005.

4.3 Model comparison and prediction of the heat event

2003

In a thought experiment we want to check whether

already in 2002 there was enough information available

for inferring a much higher probability for events like the

2003 heatwave. For this purpose, we first replicate our

analysis relying only on observations before 2003 and

calculate the predictive probabilities for the extreme val-

ues exceeding the 2003 numbers under assumption of a

structural break. In Table 5 we compare the predictive

probability and predictive return period with the ones

inferred without assuming a structural break. The intro-

duction of the break point leads to a remarkable increase

in the probability for extreme temperatures and the

respective decrease of the return period as compared to a

stationary climate regime. The two decades of the new

regime had been long enough to produce sufficient

information for detecting this probability shift in the order

of a magnitude already before the 2003 heatwave actually

happened.

We further analyse how recent temperature records have

altered the assessment of future extremes. We redo our

analysis now based on all observations up to 2007, still

under assumption of a structural break. These observations

lead to a further increase in exceedance probability,

roughly speaking doubling them (see Table 5).

Table 5 Predictive probability and predictive return period for exceeding the temperature of 2003

Constant parameter model Changepoint model

1864–2002a 1864–2002 1864–2007

Predictive

probability

Predictive return

period (years)

Predictive

probability

Predictive return

period (years)

Predictive

probability

Predictive return

period (years)

Basel-Binningen 0.0013 774.51 0.0354 27.72 0.0605 16.02

Bern-Zollikofen 0.0033 299.62 0.0346 28.41 0.0612 15.83

Geneve-Cointrin 0.0018 558.53 0.0171 58.15 0.0448 21.84

Zurich 0.0017 572.27 0.0413 23.72 0.0660 14.64

Chateau d’Oex 0.0058 172.50 0.0342 28.72 0.0561 17.33

Chaumont 0.0011 919.12 0.0276 35.76 0.0553 17.57

Davos-Dorf 0.0025 406.45 0.0333 29.49 0.0661 14.63

Engelberg 0.0021 471.44 0.0325 30.31 0.0557 17.45

Lugano 0.0028 359.94 0.0224 44.15 0.0413 23.69

Saentis 0.0028 356.30 0.0360 27.27 0.0605 16.03

Segl-Maria 0.0008 1,310.46 0.0232 42.52 0.0360 27.29

Sion 0.0011 912.24 0.0274 36.00 0.0599 16.19

a For Chateau d’Oex and Davos-Dorf the available sample starts in 1901 and 1876, respectively.
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5 Conclusions

In this paper, we model the annual maxima of monthly

mean temperatures in Switzerland measured in twelve

locations over the period that in most cases cover 1864 till

2007. We apply the GEV distribution whose parameters are

assessed using Bayesian methods.

Our main findings are the following: First, a mechanic

application of fitting a GEV distribution on data prior to

2002 suggests that the heat wave 2003 was a very unusual

phenomenon. Second, a more careful examination of the

time series reveals that the pattern of occurrence of an

enduring heat wave may have drastically changed already

in the beginning of the 1980s. In order to investigate this

formally we have introduced a breakpoint parameter in our

model which endogenously splits the sample into two sub-

samples. We find very clear statistical evidence in favour

of a structural break, convincingly supported by the fact

that the posterior distribution of the breakpoint timing is

very tight and centered at 1982 plus/minus 1 year at every

measurement location.

Third, we show that after accounting for a shift in the

parameters of the fitted GEV distribution, the event

observed in 2003 appears not that improbable after all.

More generally, the huge discrepancy in implications of

parameter estimates of different subperiods is well illus-

trated with return level plots which suggest that for a given

return period the likelihood of observing extreme events

has increased substantially, or, equally, a certain threshold

is expected to be surpassed within much shorter time

periods.

Fourth, the implications of our research is that the first

heat wave—now largely omitted from public discussion—

occurred in 1983 which by historical standards was a year

characterised by unusually high temperatures such that a

new record has been established in all measurement sta-

tions but one. The conclusion of our analysis of extreme

temperatures in Switzerland is that a careful examination of

developments in the past combined with an appropriate

statistical framework may have provided signals that could

have mitigated some consequences of the heat wave

observed in 2003. Moreover, such a procedure can serve as

a useful tool for assessing the likelihood of more extreme

things to come.
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Fink AH, Brücher T, Krüger A, Leckebusch GC, Pinto JG, Ulbrich U

(2004) The 2003 European summer heatwaves and drought:

synoptic diagnosis and impacts. Weather 59:209–216

Gamerman D (1997) Markov Chain Monte Carlo: stochastic simu-

lation for Bayesian inference. Chapman & Hall, London

Garcı́a-Herreira R, Dı́az J, Trigo R, Luterbacher J, Fischer E (2009) A

review of the European summer heat wave of 2003. Crit Rev

Environ Sci Technol (in press)

Geweke J (1992) Evaluating the accuracy of sampling-based

approaches to the calculation of posterior moments. In: Bernardo

JM, Berger JO, Dawid AP, Smith AFM (eds) Bayesian statistics.

Oxford University Press, Oxford, pp 169–193

Grize L, Huss A, Thommen O, Schindler C, Braun-FahrlSnder C

(2005) Heat wave 2003 and mortality in Switzerland. Swiss Med

Wkly 135:200–205

Jaeger CC, Krause J, Haas A, Klein R, Hasselmann K (2008) A

method for computing the fraction of attributable risk related to

climate damages. Risk Anal 28(4):815–823

Khaliq MN, Ouarda TBMJ, St-Hilaire A, Gachon P (2007) Bayesian

change-point analysis of heat spell occurrences in Montreal,

Canada. Int J Climatol 27(6):805–818

Klein Tank A, Wijngaard JB, Können GP, Böhm R, Demarée G,
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