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Abstract We obtain an exact finite-size expression for the probability that a percolation hull
will touch the boundary, on a strip of finite width. In terms of clusters, this corresponds to the
one-arm probability. Our calculation is based on the q-deformed Knizhnik–Zamolodchikov
approach, and the results are expressed in terms of symplectic characters. In the large size
limit, we recover the scaling behaviour predicted by Schramm’s left-passage formula. We
also derive a general relation between the left-passage probability in the Fortuin–Kasteleyn
cluster model and the magnetisation profile in the open XXZ chain with diagonal, complex
boundary terms.

Keywords Percolation · SLE · Exact correlation functions · Temperley–Lieb algebra ·
XXZ model

1 Introduction

Percolation models in two dimensions play an important role both in theoretical physics and
mathematics. On the physics side, it was one of the first models where the Coulomb gas
approach [9, 20] was used to predict the critical exponents [24], and where the concepts of
boundary conformal field theory (CFT) were put in practice [4]. Nowadays, it still attracts
the community’s attention, especially for its relation to logarithmic CFT. On the mathe-
matics side, many rigorous studies of percolation have been pursued [29], and it has been
proved [27] that site percolation on the triangular lattice has a conformally invariant scaling
limit, described by Schramm–Loewner evolution (SLE) with κ = 6. Also, in combinatorics,
the Razumov–Stroganov relation [3, 21, 22] identifies the components of the percolation
transfer matrix eigenvector with the enumeration of plane partitions and alternating sign
matrices.
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The main objects of study in percolation are the percolation clusters and the lattice curves
surrounding them, known as hulls. In the scaling limit, the correlation functions of these
hulls are conjectured [24] to be described by a Coulomb gas CFT [9, 20], and thus to sat-
isfy some partial differential equations (PDEs) given by the “null-vector equations”. Some
of these PDEs can be solved explicitly, e.g., the equation for the crossing probability (the
probability that a cluster connects two sides of a rectangle) [4]. A very fruitful approach to
relate CFT and SLE is to express the null-state equations of CFT as martingale conditions
for the SLE observables [1, 5].

The left-passage probability Pleft(z), i.e., the probability for an open, oriented hull to
pass to the left of a fixed point z of the system, is one of these observables that can be
easily obtained for percolation (and more generally, for the Potts and O(n) models) both
from the CFT and SLE viewpoints. In the SLE literature, this result is known as Schramm’s
formula [25]. In this paper, we address the determination of Pleft on the lattice, in the in-
finite strip geometry, using rigorous techniques based on the Yang–Baxter and quantum
Knizhnik–Zamolodchikov (qKZ) equations, as well as the Bethe ansatz for the related six-
vertex model.

The qKZ approach is particularly powerful for loop models with a trivial partition func-
tion Z = 1 [7, 12, 15, 16, 31]. In several cases, it allows the explicit determination of the
dominant transfer matrix eigenvector, and it turns out that the components of this vector are
integers enumerating plane partitions and alternating sign matrices. Also, the qKZ approach
was recently used by one of the present authors to calculate a finite-size correlation func-
tion in percolation, namely the “transverse current” across a strip [13]. A complementary
approach, with a larger scope, is to map a loop model onto an integrable spin chain [2], and
use the Bethe ansatz to obtain correlation functions in the form of determinants [18, 19].
This approach extends to the Fortuin–Kasteleyn (FK) cluster model with cluster weight Q,
and the percolation model is recovered for Q = 1.

The layout of this paper is as follows. In Sect. 2, we recall the exact equivalence [2]
between bond percolation on the square lattice and the Temperley–Lieb loop model with
weight n = 1, then briefly review its conjectured relation to SLE6, and finally state our
main results. In Sect. 3, we set up our notation for the transfer matrix and recall the basic
steps of the qKZ approach. In Sect. 4 we derive explicitly, for a finite strip of odd width L,
the probability Pleft(z) with z on the boundary of the strip. For a homogeneous system, we
obtain fractional numbers with a simple combinatorial interpretation. In the large-L limit, we
recover the power law predicted by CFT and SLE. In Sect. 5, we generalise to a generic point
z: it turns out that similar symmetry and recursion relations hold, but are very difficult to
solve in practice. However, we obtain two promising results in this case. First, we calculate
Pleft(z) numerically for homogeneous systems with up to L = 21 sites, and observe good
convergence to Schramm’s formula. Second, we prove that, in the FK model, Pleft(z) relates
very simply to the magnetisation profile in an open XXZ spin chain with diagonal, complex
boundary terms. We give our conclusions and discuss open problems in Sect. 6.

2 Percolation, Temperley–Lieb Loops and SLE

2.1 Percolation Hulls and Their Scaling Exponents

Consider a square lattice L, on which each edge can be occupied by a bond with probability
p, or empty with probability (1 − p). The connected components of the graph formed by
all the sites and the occupied edges are called percolation clusters. We now look at the
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Fig. 1 Left: the original lattice L where bond percolation is defined (black) and its medial lattice M (grey).
Right: an example cluster configuration (thick lines and dots) and the associated loop configuration (thin
lines). On the left (resp. right) boundary, all edges are empty (resp. occupied)

medial lattice M formed by the mid-edges of L, where a loop configuration is associated
to each cluster configuration [2] (see Fig. 1). These loops follow the external boundaries
and the internal cycles of the clusters, and are called the percolation hulls. The loop model
describing these hulls is called the Temperley–Lieb loop model after its underlying algebra
(see Sect. 3).

As usual, the scaling limit is defined by fixing a domain Ω of the plane, covering it
with a square lattice of spacing a, then letting a → 0. The scaling properties of percolation
hulls at the critical point pc = 1/2 can be determined by the Coulomb gas approach [20,
24], yielding the �-leg “watermelon” exponents X� = (�2 − 1)/12, the fractal dimension
df = 7/4, and the correlation-length exponent ν = 4/7.

2.2 Strip Geometry and the SLE Model

We suppose that the system is defined on an infinite strip of M, of width L, and we assume
that L is odd. Let us specify the boundary conditions (BCs) that shall be used throughout
the paper. On one boundary, we set all the edges of L to be occupied (wired BC), and on
the other boundary, all edges are empty (free BC). This simply means the hulls must reflect
on both boundaries. Since L is odd, there exists an infinite open hull propagating along the
strip, which we shall denote γ (see Fig. 2). This open hull is the left boundary of the cluster
attached to the right boundary of the strip.

In the scaling limit, the random curve γ is conjectured to be distributed as chordal
SLEκ=6. For the SLE model, Schramm [25] obtained the left-passage probability Pleft by
solving an ordinary differential equation of order two. If we normalise the width of the strip
to L × a = 1 and denote by x ∈ [0,1] the horizontal coordinate, Schramm’s formula reads

Theorem 2.1 (Schramm 2001, [25])

Pleft(x) = 1

2
− Γ (4/κ)√

πΓ ( 8−κ
2κ

)
cotan(πx) 2F1

(
1

2
; 4

κ
; 3

2
;−cotan2πx

)
, (2.1)

where 2F1 is the hypergeometric function.

This gives the probability of “touching” the boundary

Pleft(x) ∼
x→0

Γ (4/κ)

2
√

πΓ ( 8+κ
2κ

)
(πx)

8−κ
κ , (2.2)
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Fig. 2 (a) A configuration contributing to the boundary passage probability Pb on the selected section (dotted
line). (b) A configuration contributing to the boundary passage probability P̂b . In both cases, the dots indicate
for which edge the passage probability is defined

with κ = 6 for percolation. Because of the above relation between γ and the cluster attached
to the right boundary of the strip, the quantity (2.2) is exactly the one-arm probability in this
geometry: this is the probability that a cluster connects the right boundary to a neighbour-
hood of the left boundary, of radius x.

In the present work, we derive some exact results for Pleft(x) in the lattice model, i.e., we
look for analogs of (2.1) and (2.2) in finite size.

2.3 The Fortuin–Kasteleyn Cluster Model

Most of the above results can be generalised to 4 ≤ κ ≤ 8 by considering a modified clus-
ter model, called the Fortuin–Kasteleyn (FK) model, where each cluster gets a Boltzmann
weight Q (the critical regime is 0 ≤ Q ≤ 4), so that the Boltzmann weight of a cluster
configuration C is

W [C] = Q#clusters(C)v#occupied edges(C).

Loops are defined on the medial lattice similarly to percolation, and, using Euler’s polyhe-
dron formula for graphs, one finds that the above Boltzmann weight can be written as

W [C] ∝ √
Q

#closed loops(C)
(

v√
Q

)#occupied edges(C)

.

This defines the Temperley–Lieb loop model with weight n = √
Q (see Sect. 3.1). It is

conjectured (and proved for Q = 2) that the hulls of FK clusters are distributed in the scaling
limit as SLEκ with the relation

√
Q = −2 cos

4π

κ
, 4 ≤ κ ≤ 8.
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2.4 Statement of Results

– In the percolation model with n = −(q + q−1), using the qKZ approach, we obtain ex-
plicitly (see Sect. 4.4.1) the probability that the open path γ passes through a boundary
edge.1 There are two types of boundary edge, as the lattice rows come in pairs as can be
seen in Fig. 3 (this pairing is reflected in the transfer matrix, see Definition 3.3). For a
boundary edge in between two pairs of lattice rows, as depicted in Fig. 2a, the probability
is

Pb(z1, z2, . . . , zL) = χL−1(z
2
2, . . . , z

2
L)χL+1(z

2
1, z

2
1, z

2
2, . . . , z

2
L)

χL(z2
1, . . . , z

2
L)2

,

and for a boundary edge in the middle of a pair of lattice rows, as depicted in Fig. 2b, it is

P̂b(w; z1, z2, . . . , zL) = (q−1 − q)(w2 − w−2)∏L

i=1 k(1/w, zi)

× χL+1(w
2, z2

1, . . . , z
2
L)χL+1((q/w)2, z2

1, . . . , z
2
L)

χL(z2
1, . . . , z

2
L)2

.

In the above expressions, q has been set to e2iπ/3 (corresponding to n = Q = 1), the
zj ’s are the vertical spectral parameters, w is the horizontal spectral parameter, χL is the
symplectic character (see notations in Sect. 3), and we have defined

k(a, b) := (q/a)2 + (a/q)2 − b2 − b−2.

– For a homogeneous percolation system (see Sect. 4.4.2), this becomes

Pb = AV (L)AV (L + 2)

N8(L + 1)2
, and P̂b = 3

4L

A(L)2

N8(L + 1)2AV (L)2
,

where A(L), AV (L), and N8(L) are the number of L×L alternating sign matrices, L×L

vertically symmetric alternating sign matrices, and L × L × L cyclically symmetric self-
complementary plane partitions respectively. Moreover, for a large system size L, both
Pb and P̂b scale like L−1/3 (see Sect. 4.4.3), which is consistent with (2.2) when x = 1/L.

– In the critical Fortuin–Kasteleyn model with generic parameter Q ∈ [0,4], we define the
probability Xj that the path γ passes through the j th horizontal edge between two pairs
of lattice rows. Figure 2a shows that X1 = Pb . We also define the left-passage probability
Pleft for any vertex between the two pairs of rows, and one can write

Pleft(xj+1/2) − Pleft(xj−1/2) = (−1)j−1Xj, where xj := j/L.

We find the relation (see Sect. 5.3)

Xj = (−1)j−1 Re

( 〈Ψ0|σ z
j |Ψ0〉

〈Ψ0|Ψ0〉
)

,

1The term ‘boundary edge’ is used throughout this paper to mean the edge closest to the left boundary along
the given row.



Finite-Size Left-Passage Probability in Percolation 15

Fig. 3 The lattice with two
reflecting boundaries

where |Ψ0〉 is the groundstate eigenvector of the open XXZ Hamiltonian

HXXZ :=
L−1∑
j=1

[
σx

j σ x
j+1 + σ

y

j σ
y

j+1 + 1

2

(
q + q−1

)
σ z

j σ z
j+1

]

− 1

2

(
q − q−1

)(
σ z

1 − σ z
L

)
,

where q and Q are related by
√

Q = −(q + q−1).

3 The qKZ Approach

3.1 The Temperley–Lieb Loop Model

The Temperley–Lieb loop model with wired (or reflecting) boundaries [7, 8, 11, 16] is de-
fined on a square lattice, where each face is decorated with loops in one of the following
two ways:

or .

Every closed loop gets a weight

n = −(
q + q−1

)
.

We choose the boundary conditions for this model such that the lattice is infinite in height
and of finite width L, and that the left and right boundaries are reflecting, as in Fig. 3.

Drawing a horizontal line across the width of the lattice, we consider the connectivities
of the loops below the line while ignoring the paths the loops take, as well as any closed
loops. We refer to this pattern of connectivities as a link pattern, and we denote by LPL

the set of link patterns for a given system width L. As explained in Sect. 2.2, we are only
interested in odd system sizes L = 2m − 1, for which the link patterns are enumerated by
the mth Catalan number, (2m)!/(m!(m + 1)!). An example link pattern for L = 7 is

.
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We label the link patterns by |α〉, using the shorthand notation of “(· · · )” to indicate a pair
of sites connected by a loop, and “|” to indicate the single unpaired loop that always exists
in an odd-sized system. As an example, the above link pattern is indicated by |α〉 = |(())|()〉.

The link patterns for a fixed L form a representation of the Temperley–Lieb algebra,
generated by {ei,1 ≤ i ≤ L − 1}, with ei depicted as

.

The relations for the Temperley–Lieb algebra are

e2
i = nej ,

eiei±1ei = ei,

eiej = ej ei if |i − j | > 1.

(3.1)

Multiplication corresponds to concatenating the depictions of the generators, giving a weight
of n to every closed loop, and disregarding the paths the loops take. In this way, we obtain
relations between the link patterns such as e4|(())|()〉 = ||()()()〉 and e2|(())|()〉 = n|(())|()〉.

A state in VL = span(LPL) is written as

|φ〉 =
∑

α∈LPL

φα|α〉.

We look at all the possible configurations of two rows of the lattice, and consider how they
send a given link pattern to another. We can write this as a matrix t that acts on VL, and we
refer to this as the transfer matrix.

We take an arbitrary initial state |in〉 and act N times with the transfer matrix t . As
N → ∞, we get

lim
N→∞

tN |in〉 ∝ ΛN |Ψ 〉,
where Λ is the maximum eigenvalue of t and |Ψ 〉 is the corresponding eigenvector, also
known as the ground state. When n = 1 all the weights are probabilities and therefore Λ = 1.
The components of |Ψ 〉 can be thought of as the relative probabilities of the possible link
patterns. In a similar way we define 〈Ψ |, which is the groundstate of the transfer matrix
rotated by π , giving the relative probabilities of upward link patterns. The inner product
between upward and downward link patterns is simply

〈β|α〉 := n#closed loops, ∀α,β. (3.2)

Hence, the expectation value of some observable O reads

〈O〉 := 〈Ψ |O|Ψ 〉
〈Ψ |Ψ 〉 .

3.2 The R-matrix

The possible states of each lattice square are described by the R-matrix. The definitions and
properties here come from [7], with slightly different notation.
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Definition 3.1

R(w,z) = = [qz/w]
[qw/z] + [z/w]

[qw/z] ,

where

[x] := x − 1/x.

Lemma 3.1 This R-matrix satisfies the Yang–Baxter equation (YBE), depicted as

= , (3.3)

the unitarity relation

= , (3.4)

and the crossing relation

= . (3.5)

Definition 3.2 The corresponding operator, acting from VL to itself, is

Řj (w) := [q/w]
[qw] 1 − [w]

[qw]ej . (3.6)

3.3 The Transfer Matrix, Symmetries and Recursions

We now define the transfer matrix t , which describes all the possible configurations of two
lattice rows [7, 26]. Again all the relations given in this section come from [7].

Definition 3.3

t (w; z1, . . . , zL) = Trw
[
R(w,z1) . . .R(w, zL)R(zL,1/w) . . .R(z1,1/w)

]
,
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or pictorially,

t (w; z1, . . . , zL) = .

Lemma 3.2 Thanks to the YBE (3.3), the transfer matrix satisfies the interlacing relation

Ři(zi/zi+1)t (w; zi, zi+1) = t (w; zi+1, zi)Ři(zi/zi+1), (3.7)

pictorially,

= .

Considering the possible configurations of the two tiles at either position 1 or position L of
the transfer matrix also gives us

t (w; z1, z2 . . .) = t (w;1/z1, z2, . . .),

t (w; . . . , zL−1, zL) = t (w; . . . , zL−1,1/zL),
(3.8)

respectively.

Lemma 3.3 By acting the transfer matrix on a small link from site i to i + 1 (denoted by
ϕi ) and setting zi+1 = qzi we find the relation

tL(zi+1 = qzi) ◦ ϕi = ϕi ◦ tL−2(ẑi , ẑi+1), (3.9)

where ẑ means that z is missing from the list of arguments.

Proof Considering first the bottom row, we use the crossing relation (3.5) and then the
unitarity relation (3.4):

= = ,
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and see that the bottom row no longer depends on zi and zi+1. We repeat the procedure for
the top row:

= = ,

and the result follows. �

3.4 The Dominant Eigenvector

It is possible to show (see for example [7]) that two copies of the transfer matrix with differ-
ent values of the parameter w commute, and therefore that the groundstate eigenvector does
not depend on w. Explicitly, the eigenvalue equation is thus

t (w; z1, . . . , zL)
∣∣Ψ (z1, . . . , zL)

〉 = ∣∣Ψ (z1, . . . , zL)
〉
, (3.10)

with the ground state eigenvector given by

∣∣Ψ (z1, . . . , zL)
〉 = ∑

α∈LPL

ψα(z1, . . . , zL)|α〉.

From the expression for the R-matrix, the coefficients in the eigenvalue equation (3.10) are
all rational functions of the zj ’s, and hence one can normalise |Ψ (z1, . . . , zL)〉 so that all
the components ψα(z1, . . . , zL) are Laurent polynomials in the zj ’s. Moreover, one requires
that these components have no common factor.

With this normalisation, the interlacing relations (3.7) and (3.8) yield the q-deformed
Knizhnik–Zamolodchikov equation for the ground state eigenvector, expressed in the form

Ři(zi/zi+1)
∣∣Ψ (z1, . . . , zL)

〉 = πi

∣∣Ψ (z1, . . . , zL)
〉
,∣∣Ψ (z1, . . . , zL)

〉 = ∣∣Ψ (1/z1, . . . , zL)
〉
, (3.11)∣∣Ψ (z1, . . . , zL)

〉 = ∣∣Ψ (z1, . . . ,1/zL)
〉
,

where πif (zi, zi+1) = f (zi+1, zi).
Acting on |ΨL−2(ẑi , ẑi+1)〉 with both sides of (3.9), we get

tL(zi, zi+1 = qzi)ϕi

∣∣ΨL−2(ẑi , ẑi+1)
〉 = ϕi

∣∣ΨL−2(ẑi , ẑi+1)
〉
.

Since the ground state is unique, |ΨL(zi+1 = qzi)〉 and ϕi |ΨL−2(ẑi , ẑi+1)〉 are proportional,
and one can show that |Ψ 〉 satisfies the recursion relation

∣∣ΨL(zi+1 = qzi)
〉 = (−1)L

∏
j /∈{i,i+1}

k(zi, zj )ϕi

∣∣ΨL−2(ẑi , ẑi+1)
〉
, (3.12)

with

k(a, b) = [qb/a][q/ab].
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3.5 Solution for the Eigenvector

The qKZ equation (3.11) forces certain symmetry requirements on the components of |Ψ 〉,
which lead to the solution for the ground state. For instance,

ψ|(···()··· ) = (−1)
L
2 ( L

2 +1)
∏

1≤i<j≤ L+1
2

k(zj , zi)
∏

L+3
2 ≤i<j≤L

k(1/zi, zj ).

By considering a path representation of the link patterns, one can write the other components
in terms of factorised operators acting on this component. We will not give the explicit
solution here as it is not needed for our calculations. A full explanation of the procedure is
in Sect. 4.1 of [16].

3.6 The Normalisation Factor ZL

The normalisation of the eigenvector is defined as

ZL(z1, . . . , zL) :=
∑

α∈LPL

ψα(z1, . . . , zL).

The results in this section again come from [7]. To express ZL, we first define the completely
symmetric polynomial character of the symplectic group.

Definition 3.4 The symplectic character χλ associated to a partition λ = (λ1, . . . , λL) is
given by

χ
(L)
λ (u1, . . . , uL) = det [uμj

i − u
−μj

i ]
det [uδj

i − u
−δj
i ]

,

where δj = L − j + 1 and μj = λj + δj .

Throughout this paper, we shall restrict to the partition λj = L−j

2 �, for which χ has the
special recursion

χ
(L)
λ

(
u2

1, . . . , u
2
L

)|ui=quj
= (−1)L

∏
��=i,j

k(uj , u�)χ
(L−2)
λ

(
. . . , û2

i , . . . , û
2
j , . . .

)
. (3.13)

We will use the shorthand notation χL(. . .) := χ
(L)
λ (. . .), with the particular choice of λ given

above.

Proposition 3.4 The normalisation ZL is given by

ZL = χL

(
z2

1, . . . , z
2
L

)
.

Proof The recursive property (3.12) of the ground state eigenvector is easily extended to its
components, and thus to the normalisation,

ZL(zi+1 = qzi) = (−1)L
∏

��=i,i+1

k(zi, z�)ZL−2(ẑi , ẑi+1). (3.14)
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As ZL is a symmetric function (easily proven using (3.4) and the qKZ equation), this can
be generalised to

ZL(zj = qzi) = (−1)L
∏
��=i,j

k(zi, z�)ZL−2(ẑi , ẑj ).

The symplectic character χL(z2
1, . . . , z

2
L) also satisfies these recursions, and it is straightfor-

ward to show that these recursions are enough to satisfy the degree of ZL, which is set by
solving the qKZ equation. It remains to show that the statement is true for L = 1 to initialise
the recursion, which is done by observing that in this case both the left and the right hand
side must be 1.2 �

4 Boundary Passage Probabilities

When L is odd, all link patterns have an unpaired odd site. In the lattice this site belongs to an
open path extending from −∞ to ∞. In this section we will calculate two probabilities: Pb ,
the probability that this infinite path passes through the first site at a given vertical position
(Fig. 2a); and P̂b , the probability that this loop passes through the left boundary at a given
vertical position (Fig. 2b).

4.1 Definitions

We first define 〈Ψ | to be the ground state eigenvector of the transfer matrix rotated by π ,
given by

〈Ψ | =
∑

α∈LPL

ψ̄ᾱ〈ᾱ|,

and related to |Ψ 〉 by

ψ̄ᾱ(z1, . . . , zL) = ψα(zL, . . . , z1),

where ᾱ is an upward link pattern, related to α by a rotation of π .

Definition 4.1 The first site passage probability is given by

P
(L)
b = 〈Ψ |ρ|Ψ 〉

〈Ψ |Ψ 〉 , (4.1)

where ρ acts between a link pattern and a rotated link pattern,

〈β|ρ|α〉 ∈ {0,1},
giving 1 if the open path formed by these two link patterns goes through the first site, and
0 if it does not. For example, the following configuration has 〈β|ρ|α〉 = 1 (ρ is depicted as
two dots marking the first site):

2Note that this proof is only valid for odd L; for even L the statement must also be proved for L = 2. We
omit this part of the proof as we are only interested in odd system sizes.
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Definition 4.2 The boundary passage probability P̂ (L) is given by

P̂
(L)
b = 〈Ψ |ρ̂|Ψ 〉

〈Ψ |Ψ 〉 , (4.2)

where ρ̂ marks out the left boundary loop in the transfer matrix. It is depicted as

,

and like ρ, acts between an upward and a downward link pattern, multiplying each term in
the transfer matrix by 1 if the infinite loop passes through the left boundary loop, and 0 if it
does not. For example, the following configuration is multiplied by 1:

From (3.2) we have 〈β|α〉 = 1, ∀α,β , so the denominators of P
(L)
b and P̂

(L)
b become

〈Ψ |Ψ 〉 =
∑
α,β

ψ̄β̄ψα〈β|α〉 = ZL(zL, . . . , z1)ZL(z1, . . . , zL) = [
ZL(z1, . . . , zL)

]2
.

Example (L = 3) For L = 3 there are two link patterns, |() and ()|. Solving the qKZ equa-
tion for the components of the eigenvector gives

ψ|()(z1, z2, z3) = k(z2, z1),

ψ()|(z1, z2, z3) = [qz2/z3]
[z2/z3] (1 − π2)ψ|()(z1, z2, z3)

= k(1/z2, z3),

and Z3 = ψ|() + ψ()| is simply χ3(z
2
1, z

2
2, z

2
3).

The only combination of upward and downward link patterns that does not contribute to
P

(3)
b is α = β̄ = ()|. We thus find the first site passage probability by brute force as

P
(3)
b = 1

Z2
3

(ψ|()ψ̄|() + ψ()|ψ̄|() + ψ|()ψ̄()|)

= 1

Z2
3

(
ψ|()(z1, z2, z3)ψ()|(z3, z2, z1) + ψ()|(z1, z2, z3)ψ()|(z3, z2, z1)
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+ ψ|()(z1, z2, z3)ψ|()(z3, z2, z1)
)

= 1

Z2
3

(
5 + z4

1 + z−4
1 + 2

(
z2

1z
2
2 + z2

1z
−2
2 + z−2

1 z2
2 + z−2

1 z−2
2 + z2

1z
2
3

+ z2
1z

−2
3 + z−2

1 z2
3 + z−2

1 z−2
3

) + z2
2z

2
3 + z2

2z
−2
3 + z−2

2 z2
3 + z−2

2 z−2
3

)
.

4.2 Symmetries

Proposition 4.1 P
(L)
b is symmetric in z2, . . . , zL and invariant under zi → 1/zi for i ≥ 2.

Proof This proof is similar to the proof that ZL is symmetric, and uses the qKZ equation.
Remembering that an Ř-matrix acting between sites i �= 1 and i + 1 commutes with ρ, we
insert the identity Ři(zi+1/zi)Ři(zi/zi+1) into the definition for P

(L)
b :

P
(L)
b (. . . zi , zi+1 . . . ) = 〈ΨL(zi, zi+1)|Ři(zi+1/zi)ρŘi(zi/zi+1)|ΨL(zi, zi+1)〉

ZL(zi, zi+1)2

= 〈ΨL(zi+1, zi)|ρ|ΨL(zi+1, zi)〉
ZL(zi+1, zi)2

= P
(L)

1 (. . . zi+1, zi . . . ).

The invariance of P
(L)
b under zi → 1/zi simply follows from the invariance of |ΨL〉 and 〈ΨL|

under zL → 1/zL, as well as the above symmetry. �

Proposition 4.2 P̂
(L)
b is symmetric in all the zi ’s and invariant under zi → 1/zi , ∀i ∈

{1, . . . ,L}.

Proof The proof is similar to the previous proof, however it uses the fact that the interlacing
condition (3.7) for the transfer matrix is also satisfied by ρ̂. �

4.3 Recursions

Proposition 4.3 P
(L)
b satisfies the following recursions:

P
(L)
b |z2

L
=(qzk)±2 = P

(L−2)
b (ẑk, ẑL),

P
(L)
b |z2

L
=(q/zk)±2 = P

(L−2)
b (ẑk, ẑL),

⎫⎬
⎭ 1 < k < L. (4.3)

Proof The denominator of P
(L)
b has the recursion (3.14)

ZL

(
z2
L = q2z2

L−1

)2 =
L−2∏
i=1

k(zL−1, zi)
2 ZL−2(z1, . . . , zL−2)

2,

and we will show that the numerator has the same recursion factor.
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From the recursion of the right eigenvector we have

〈ΨL|ρ|ΨL〉|z2
L
=(qzL−1)2

=
L−2∏
i=1

k(zL−1, zi)
〈
ΨL

(
z2
L = q2z2

L−1

)∣∣ρϕL−1

∣∣ΨL−2(z1, . . . , zL−2)
〉
,

and since ρ commutes with ϕL−1, we can consider 〈ΨL|ϕL−1, which is the π rotation of
the vector ϕ

†
1 |ΨL(zL, . . . , z1)〉. Here, ϕ

†
1 is the bottom half of the TL operator e1, sending

a link pattern of size L to one of size L − 2. We can thus obtain our desired result by
calculating e1|ΨL(zL, . . . , z1)〉 and removing the resulting link from site 1 to site 2. Here the
qKZ equation (3.11) comes in useful, as

ϕ1ϕ
†
1

∣∣ΨL(zL, . . . , z1)
〉∣∣

z2
L
=(qzL−1)2

= e1

∣∣ΨL(zL, . . . , z1)
〉∣∣

z2
L
=(qzL−1)2

= −
( [zL−1/qzL]

[zL−1/zL] πL−1 + [zL/qzL−1]
[zL/zL−1]

)∣∣ΨL(zL, . . . , z1)
〉∣∣∣∣

z2
L
=(qzL−1)2

= − [q]
[1/q]

∣∣ΨL(zL−1, qzL−1, . . . , z1)
〉

= ϕ1

∣∣ΨL−2(zL−2, . . . , z1)
〉L−2∏

i=1

k(zL−1, zi).

Therefore, we have

ϕ
†
1

∣∣ΨL(zL, . . . , z1)
〉∣∣

z2
L
=(qzL−1)2 =

L−2∏
i=1

k(zL−1, zi)
∣∣ΨL−2(zL−2, . . . , z1)

〉
,

which is the π rotation of 〈ΨL−2|∏L−2
i=1 k(zL−1, zi), and thus,

〈ΨL|ρ|ΨL〉|z2
L
=(qzL−1)2 =

L−2∏
i=1

k(zL−1, zi)
2〈ΨL−2|ρ1|ΨL−2〉.

It follows that P
(L)
b |z2

L
=(qzL−1)2 = P

(L−2)
b .

The other relations in (4.3) follow from the invariance of Pb under zi ↔ zj and under
zi → 1/zi , for i, j �= 1. �

Proposition 4.4 P̂
(L)
b satisfies the following recursions:

P̂
(L)
b |z2

L
=(qzk)±2 = P̂

(L−2)
b (ẑk, ẑL),

P̂
(L)
b |z2

L
=(q/zk)±2 = P̂

(L−2)
b (ẑk, ẑL),

⎫⎬
⎭ 1 ≤ k < L. (4.4)

Proof This proof is similar to the previous one, but it also relies on the fact that ρ̂ satisfies
the same recursion as the transfer matrix (3.9),

ρ̂(L)(zi+1 = qzi) ◦ ϕi = ϕi ◦ ρ̂(L−2)(ẑi , ẑi+1). �
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4.4 Exact Solution

4.4.1 Inhomogeneous System

Proposition 4.5 The explicit formula for the first site passage probability is

P
(L)
b = χL−1(z

2
2, . . . , z

2
L)χL+1(z

2
1, z

2
1, z

2
2, . . . , z

2
L)

χL(z2
1, . . . , z

2
L)2

. (4.5)

Proof There are three steps to this proof. First, the degree of the proposed expression is
shown to agree with the definition. Second, enough recursions (or values of the polynomial
at specified points) are found to satisfy the degree. Third, the proposed expression is shown
to be true for a small size example (L = 3), to initialise the recursion.

The denominator of (4.1) can be easily shown to be Z2
L, which has a degree of L − 1

in each variable z2
i , because L is always odd. The action of ρ can not raise the polynomial

degree, so the numerator of P
(L)
b must have, at most, the same degree as the denominator.

The degree of the numerator of (4.5) is (L − 3)/2 + (L − 1)/2 = L − 2 in each z2
i , so this

requirement is satisfied.3

We view P
(L)
b as a polynomial in z2

L with coefficients in the other zi ’s, and to satisfy the
degree we must establish the value of the polynomial for at least 2L − 1 values of z2

L (re-
membering that it is a Laurent polynomial). The following recursions (from Proposition 4.3)
will give the value of P

(L)
B at 4(L − 2) values of z2

L, which is enough if L ≥ 5:

P
(L)
b |z2

L
=(qzk)±2 = P

(L−2)
b (ẑk, ẑL),

P
(L)
b |z2

L
=(q/zk)±2 = P

(L−2)
b (ẑk, ẑL),

⎫⎬
⎭ 1 < k < L.

The proof that these recursions are satisfied by the proposed expression for P
(L)
b is straight-

forward, based on the known recursions for χ (3.13).
It thus remains to show that the expression is true for L = 3,

P
(3)
b = χ4(z

2
1, z

2
1, z

2
2, z

2
3)

χ3(z
2
1, z

2
2, z

2
3)

2
,

which is done by brute force, as in Sect. 4.3. �

Proposition 4.6 The explicit formula for the boundary passage probability is

P̂
(L)
b = −[q][w2]∏L

i=1 k(1/w, zi)

χL+1(w
2, z2

1, . . . , z
2
L)χL+1((q/w)2, z2

1, . . . , z
2
L)

χL(z2
1, . . . , z

2
L)2

. (4.6)

Proof This is a similar proof to the previous one, with the same three steps.
The denominator of (4.2) is Z2

L multiplied by the denominator of ρ̂, which is the same
as the denominator of the transfer matrix; that is,

∏L

i=1 k(1/w, zi). Thus the degree of the

3The definition of the transfer matrix implies that the components of the eigenvector, and thus the passage

probabilities, are only functions of z2
i

and do not depend on any odd powers of zi . This fact is crucial to these
proofs.
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denominator is L in each z2
i . Again because of the definition of ρ̂ the numerator of P̂

(L)
b will

be at most the same as the denominator. The degree of the numerator of (4.6) is 2(L−1)/2 =
L − 1 in each z2

i .
We view P̂

(L)
b as a polynomial in z2

L with coefficients in the other zi ’s and w, and to satisfy
the degree we need to know the value of the polynomial for at least 2L + 1 values of z2

L.
As in the previous proof, we list here recursions that will give the value of P̂

(L)
b at 4(L − 1)

values of z2
L, which is enough if L ≥ 3. These recursions come from Proposition 4.4.

P̂
(L)
b |z2

L
=(qzk)±2 = P̂

(L−2)
b (ẑk, ẑL),

P̂
(L)
b |z2

L
=(q/zk)±2 = P̂

(L−2)
b (ẑk, ẑL),

⎫⎬
⎭ 1 ≤ k < L.

The proof that these recursions are satisfied by the proposed expression for P̂
(L)
b is again

based on the known recursions for χ (3.13), but also relies on properties of k(a, b) that
imply

k(zk,w)k(zk, q/w)

k(1/w, zk)k(1/w,qzk)
= k(zk/q,w)k(zk/q,w/q)

k(1/w, zk)k(1/w, zk, q)
= 1.

It thus remains to show that the expression is true for L = 1,

P̂
(1)
b

?= −[q][w2]
k(1/w, z1)

χ2(w
2, z2

1)χ2((q/w)2, z2
1)

χ1(z
2
1)

2
= −[q][w2]

k(1/w, z1)
.

There are four configurations of ρ̂, three of which contribute to P̂
(1)
b . The one that does not

has a weight ([qz1/w][q/z1w])([qw/z1][qz1w])−1, so

P̂
(1)
b = 1 − [qz1/w][q/z1w]

[qw/z1][qz1w] = [qw/z1][qz1w] − [qz1/w][q/z1w]
k(1/w, z1)

= −[q][w2]
k(1/w, z1)

. �

4.4.2 Homogeneous Limit

In this section we use the homogeneous limit z1 = · · · = zL = 1, w2 = −q , which implies
that the two orientations of the lattice faces each have a probability of 1/2.

Proposition 4.7 The expression for P
(L)
b in the homogeneous limit is

P
(L)
b = AV (L)AV (L + 2)

N8(L + 1)2
, (4.7)

where AV (L) is the number of L × L vertically symmetric alternating sign matrices and
N8(L) is the number of cyclically symmetric self-complementary plane partitions of size
L × L × L, and these have the explicit expressions

AV (2m + 1) =
m−1∏
i=0

(3i + 2)(6i + 3)!(2i + 1)!
(4i + 2)!(4i + 3)! ,

N8(2m) =
m−1∏
i=0

(3i + 1)(6i)!(2i)!
(4i)!(4i + 1)! .
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Proof The result (4.7) is simply obtained from (4.5) and the homogeneous limit of the sym-
plectic characters [8],

χ2m(1, . . . ,1) = 3m(m−1)AV (2m + 1),

χ2m−1(1, . . . ,1) = 3(m−1)2
N8(2m). �

Proposition 4.8 The expression for P̂
(L)
b in the homogeneous limit is

P̂
(L)
b = 3

4L

A(L)2

N8(L + 1)2AV (L)2
, (4.8)

where A(L) is the number of L × L alternating sign matrices,

A(L) =
L−1∏
i=0

(3i + 1)!
(L + i)! .

Proof For P̂
(L)
b in (4.6), taking the homogeneous limit gives us

P̂
(L)
b = (−3)

(−4)L

χL+1(−q,1, . . . ,1)2

32(m−1)2
N8(L + 1)2

,

where we have set L = 2m − 1. To simplify the numerator, we use the relation [30]

s
(4m−2)
λ

(
u1, u

−1
1 , . . . , u2m−1, u

−1
2m−1

)
= χ2m(q,u1, . . . , u2m−1)χ2m(−q,u1, . . . , u2m−1),

where sλ is the Schur function for the partition λ. The homogeneous expression for sλ is
[10]

s
(2L)
λ (1, . . . ,1) = 3L(L−1)/2A(L),

and thus χL+1(−q,1, . . . ,1) becomes

χL+1(−q,1, . . . ,1) = 3(2m−1)(m−1)A(L)

χL+1(q,1, . . . ,1)
.

We then use the recursion for χL+1(q,1, . . . ,1) to get

χL+1(−q,1, . . . ,1) = 3(2m−1)(m−1)A(L)

k(1,1)2m−2χ2m−2(1, . . . ,1)
= 3(m−1)2

A(L)

AV (L)
,

from which the result (4.8) follows immediately. �

4.4.3 Large-L Limit

Proposition 4.9 In the limit L → ∞, P
(L)
b and P̂

(L)
b as given in (4.7) and (4.8) have the

asymptotic behaviour

P
(L)
b ∼ CL−1/3, P̂

(L)
b ∼ ĈL−1/3, (4.9)
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where

C = 92−5/3Γ (1/3)Γ (5/6)

Γ (1/6)Γ (2/3)
, Ĉ = 214/9π1/3G(1/3)4G(5/6)4

G(1/2)4G(2/3)2
.

Hence, with the relationship x = 1/L, the lattice probabilities Pb and P̂b follow the lim-
iting behaviour predicted by Schramm’s formula (2.2) at κ = 6 with the correct exponent,
but with different multiplicative constants. This is because Pb and P̂b correspond to fixing a
position j and letting L tend to infinity, whereas the scaling limit would require a fixed ratio
x = πj/L.

5 Left-Passage Probabilities

In the previous sections we calculated an exact expression for the passage probability
through an edge on or next to the boundary of the lattice. In this section, we address the
determination of Pleft for a general position j . While we are not able to obtain an analytic
expression for general L, we calculate numerics for systems up to L = 21 and analyse the
convergence to Schramm’s formula. In the latter part of the section we consider a mapping
to an open XXZ spin chain.

5.1 Definitions and Properties

Definition 5.1 For j ∈ {1, . . . ,L}, we denote by Xj(z1, . . . , zL) the probability that the path
γ passes through the j -th horizontal edge in a horizontal section of the type shown in Fig. 2a.

Definition 5.2 For j ∈ {0, . . . ,L + 1}, we denote by X̂j (w; z1, . . . , zL) the probability that
the path γ passes through the j -th horizontal edge in a horizontal section of the type shown
in Fig. 2b.

Definition 5.3 For j ∈ {1, . . . ,L + 1}, we denote by Yj (w; z1, . . . , zL) the probability that
the path γ passes through the j -th vertical edge above a horizontal section of the type shown
in Fig. 2a.4

Lemma 5.1 Using the convention that the vertices on a horizontal section like in Fig. 2a
are numbered {1/2, . . . ,L + 1/2}, the probability that γ passes to the left of (j + 1/2) is

Pj+1/2 =
j∑

�=1

(−1)�−1X�.

On a horizontal section like in Fig. 2b, the probability that γ passes to the left of (j + 1/2)

is

P̂j+1/2 =
j∑

�=0

(−1)�X̂�.

In particular, we have X1 = P3/2 = Pb and X̂0 = P̂1/2 = Y1 = P̂b .

4We could also define Ŷj in a similar fashion, but this is simply related to Yj by the transformation zk →
1/zk , ∀k.
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The power of (−1) in the above sums can be explained in the following way. The infinite
loop, oriented as in Fig. 2, can only pass in one direction through any given edge: For Xj ,
it passes upwards if j is odd and downwards if j is even; for X̂j the opposite is true. When
calculating the left-passage probabilities all configurations with the path passing downwards
through the edge must be counted with a negative sign.

Lemma 5.2 The probabilities X, X̂ and Y are related by the conservation property

∀j ∈ {1, . . . ,L}, Xj + X̂j = Yj + Yj+1,

and the identities for special values of w

Yj |w=zj
= X̂j |w=zj

, Yj+1|w=zj
= Xj,

Yj |w=qzj
= Xj, Yj+1|w=qzj

= X̂j |w=qzj
.

Proof The conservation property comes from considering the possible configurations on a
face. Each X and Y has two terms corresponding to the two possible configurations, and
for each X one of these terms matches one of those for one of the Y s. At the special values
w = zj and w = qzj , the face at position j is specialised to one of the configurations, and
the identities follow immediately. �

Similarly to Pb and P̂b , the probabilities X, X̂ and Y satisfy some symmetry and recur-
sion relations.

Proposition 5.3 The probabilities Xj(z1, . . . , zL) and X̂j (w; z1, . . . , zL) are symmetric
functions of {z1, . . . , zj−1} and {zj+1, . . . , zL} separately.

Xj(z1, . . . , zL) is invariant under z� → 1/z� for all �, and X̂j (w; z1, . . . , zL) is invariant
under z� → 1/z� for � �= j .

The probability Yj (w; z1, . . . , zL) is a symmetric function of {z1, . . . , zj−1} and
{zj , . . . , zL} separately, and invariant under z� → 1/z� for all �.

Proof The proof is similar to those of Proposition 4.1 and Proposition 4.2. �

Proposition 5.4 The probabilities Xj(z1, . . . , zL) and X̂j (w; z1, . . . , zL) satisfy the recur-
sion relations

X
(L)
j |z2

1=(qz�)
±2 = X

(L−2)

j−2 (ẑ1, ẑ�),

X̂
(L)
j |z2

1=(qz�)
±2 = X̂

(L−2)

j−2 (ẑ1, ẑ�),

⎫⎬
⎭ 1 < � < j,

X
(L)
j |z2

L
=(qz�)

±2 = X
(L−2)
j (ẑ�, ẑL),

X̂
(L)
j |z2

L
=(qz�)

±2 = X̂
(L−2)
j (ẑ�, ẑL),

⎫⎬
⎭ j < � < L,

whereas Yj (w; z1, . . . , zL) satisfies

Y
(L)
j |z2

1=(qz�)
±2 = Y

(L−2)

j−2 (ẑ1, ẑ�), for 1 < � < j,

Y
(L)
j |z2

L
=(qz�)

±2 = Y
(L−2)
j (ẑ�, ẑL), for j ≤ � < L.
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Table 1 Left-passage probabilities P
(L)
j

for strips of width L ≤ 11. Data obtained by numerical diagonali-
sation of the transfer matrix

L ZL P
(L)
j

× Z2
L

3 2 0, 3, 1, 4

5 11 0, 78, 22, 99, 43, 121

7 170 0, 16796, 4484, 21093, 7807, 24416, 12104, 28900

9 7429 0, 29641710, 7721790, 37074705, 12859293 . . .

11 920460 0, 426943865250, 109785565350, 532943651700, 178807268772, 605036201854 . . .

Fig. 4 The left-passage
probability Pj+1/2 and its

smooth part P j for L = 21,
compared to Schramm’s
formula (2.1)

Proof The proof is similar to those of Proposition 4.3 and Proposition 4.4. �

The above relations satisfied by Xj , X̂j and Yj are, in principle, sufficient to determine
completely these quantities. However, they turn out to be particularly difficult to solve in
practice, and we resort to different tools to describe them.

5.2 Numerical Study

For a given choice of the zj ’s, one can numerically find the components ψα by the power
method, and use these to evaluate Xj , X̂j and Yj directly. The left-passage probabilities are
then obtained from Lemma 5.1. For small enough system sizes, we find the left-passage
probabilities Pj+1/2 as fractions of integers (see Table 1).

We now turn to the convergence of Pj+1/2 to Schramm’s formula (2.1). From Lemma 5.1,
we see that Pj+1/2 is the sum of an alternating sequence, and has oscillations of wavelength
δj = 1. This phenomenon appears clearly in Fig. 4. For this reason, we define the smooth
and oscillatory parts as

P j := 1

2
(Pj−1/2 + Pj+1/2), P̃j := 1

2
(Pj−1/2 − Pj+1/2) = 1

2
(−1)j−1Xj .

In Fig. 4 we see that P j is very close to Schramm’s formula for L = 21. In Fig. 5, we
compare the data for P j at various system sizes, and observe very good convergence to
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Fig. 5 Smooth part of the
left-passage probability,
compared to Schramm’s
formula (2.1)

Fig. 6 Oscillatory part of the
left-passage probability

Schramm’s formula. Finite-size effects are more important near the boundaries, but as we
already noted in Sect. 4, the scaling of P1/2 with L is as predicted by Schramm’s formula.

Finally, in Fig. 6, we plot the oscillatory part P̃j . This quantity is a lattice effect, and is
not predicted directly by Schramm’s formula.

5.3 Left-Passage Probability in the FK Model

5.3.1 Mapping to the Six-Vertex Model

Throughout this section, we remove the restriction on q , and we use the algebraic Bethe
ansatz notation

q = eη, zj = e−vj , w = e−u.

Moreover, we introduce for convenience η′ := η + iπ , so that the loop weight reads

n = −(
q + q−1

) = −2 coshη = 2 coshη′.

Following [2], we distribute the loop weight locally by orienting the loops: to each
π/2 left (resp. right) turn of a loop, we associate a phase factor eη′/4 (resp. e−η′/4) in the
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Fig. 7 The configurations of the six-vertex model and the associated Boltzmann weights

Boltzmann weights. Ignoring the loop connectivities results in a six-vertex (6V) model (see
Fig. 7). Using the Boltzmann weights defined by the R-matrix in Definition 3.1 (with z = 1
w.l.o.g. for the moment), the 6V weights can be rescaled to

ω1 = ω2 = sinh(η + u),

ω3 = ω4 = sinhu,

ω5 = e+η′/2+u sinhη,

ω6 = e−η′/2−u sinhη.

(5.1)

Moreover, on the boundary, the loops undergo a half-turn, and hence the boundary weights
must be

α± = e−η′/2, β± = e+η′/2. (5.2)

Hence the 6V model resulting from this mapping is described by the matrices

R(u) =

⎛
⎜⎜⎜⎝

sinh(η + u) 0 0 0

0 sinhu e− η′
2 −u sinhη 0

0 e
η′
2 +u sinhη sinhu 0

0 0 0 sinh(η + u)

⎞
⎟⎟⎟⎠ ,

K± =
(

e− η′
2 0

0 e
η′
2

)
,

and the corresponding transfer matrix is denoted by t6V. These matrices are related to the
standard 6V ones by the “gauge transformation”

Rab(u − v) = e−( u
2 + η′

4 )σ z
a − v

2 σz
b Rab(u − v)e( u

2 + η′
4 )σ z

a + v
2 σz

b

= e− u
2 σz

a −( v
2 − η′

4 )σ z
b Rab(u − v)e

u
2 σz

a +( v
2 − η′

4 )σ z
b ,

K± = e±(u/2+η′/4)σ z

K±(u)e±(u/2+η′/4)σ z

,

(5.3)
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where a and b denote the two vector spaces acted on by R, K+(u) = 2eξ+K(u + η, ξ+),
K−(u) = 2eξ−K(u, ξ−), and

R(u) =

⎛
⎜⎜⎝

sinh(η + u) 0 0 0
0 sinhu sinhη 0
0 sinhη sinhu 0
0 0 0 sinh(η + u)

⎞
⎟⎟⎠ ,

K(u, ξ) =
(

sinh(ξ + u) 0
0 sinh(ξ − u)

)
,

with the values of the boundary parameters: ξ± = ∓∞. It is customary to shift the spectral
parameters to define the monodromy matrices [26]:

u := λ − η/2, vj := ξj − η/2,

and we thus write:

T (λ) := R0L(λ − ξL) . . .R01(λ − ξ1),

T̂ (λ) := R10(λ + ξ1 − η) . . .RL0(λ + ξL − η),

t6V(λ) := Tr0

[
K+(λ)T (λ)K−(λ)T̂ (λ)

]
.

(5.4)

One can easily show that the transfer matrices before and after the gauge change (5.3) are
simply related by a similarity transformation

t6V = G−1t6VG, where G :=
L∏

j=1

evj σ z
j
/2

. (5.5)

If we specialise to a homogeneous system where all the ξj ’s are set to η/2, the highly
anisotropic limit λ → η/2 yields the open XXZ Hamiltonian

HXXZ := ∂ log t6V(λ)

∂λ

∣∣∣∣
λ=η/2

=
L−1∑
j=1

[
σx

j σ x
j+1 + σ

y

j σ
y

j+1 + coshησ z
j σ z

j+1

] − sinhη
(
σ z

1 − σ z
L

)
. (5.6)

Note that in the critical regime (η ∈ iR), the boundary terms are imaginary. In the remainder
of this section, we shall restrict ourselves to the homogeneous system described by HXXZ,
but our results can be readily generalised to an arbitrary choice of the ξj ’s.

5.3.2 The Left-Passage Probability as an XXZ Correlation Function

Proposition 5.5 In the critical regime η ∈ iR, the following identity holds:

Pj+1/2 =
j∑

�=1

Re

( 〈Ψ0|σ z
� |Ψ0〉

〈Ψ0|Ψ0〉
)

, (5.7)

where 〈Ψ0| and |Ψ0〉 are the left and right eigenvectors of HXXZ (5.6) associated to the
lowest energy.
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Fig. 8 From left to right: loop configurations belonging to the subsets Aj , A′
j

, and A′′
j

, for j = 2 and L = 5

Proof We have used the mapping of TL loop configurations to 6V arrow configurations
described above, through the orientation of loops. Consider the intermediate model, i.e.,
the oriented TL (OTL) loops. In this model, a configuration C on the whole lattice has a
Boltzmann weight (at the isotropic point λ = −iπ/2)

W [C] = (−q)#anti-clockwise loops(C) × (−1/q)#clockwise loops(C),

and the partition function is equal to that of the original TL model

ZOTL =
∑

oriented config. C

W [C] =
∑

unoriented config. C

(−q − q−1
)#loops(C) = ZTL.

We now consider a horizontal section of the strip, of the type shown in Fig. 2a. For a given
oriented loop configuration C, we denote by σ z

j (C) ∈ {1,−1} the orientation of the arrow
across the j -th horizontal edge. There are three possibilities for the loop passing through
this edge (see Fig. 8):

– The loop is the open path γ . Then σ z
j (C) = (−1)j−1.

– The loop encloses the marked point on the left of j . Then σ z
j (C) = +1 iff the loop is

oriented anti-clockwise.
– The loop encloses the marked point on the right of j . Then σ z

j (C) = +1 iff the loop is
oriented clockwise.

We denote by Aj , A′
j , A′′

j the corresponding subsets of oriented loop configurations. The
expectation value of σ z

j in the OTL model then reads

〈
σ z

j

〉
OTL

= 1

Z

[
(−1)j−1

∑
C∈Aj

+ tanhη

( ∑
C∈A′

j

−
∑

C∈A′′
j

)]
W [C]

= (−1)j−1Xj + tanhη
(
P
[
C ∈ A′

j

] − P
[
C ∈ A′′

j

])
. (5.8)

Finally, from the mapping between the TL loop model and the 6V model described above,
we have

〈Ψ0|σ z
j |Ψ0〉

〈Ψ0|Ψ0〉 = 〈
σ z

j

〉
OTL

. �
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6 Discussion

In the percolation model, we have obtained an exact expression for the boundary passage
probabilities Pb and P̂b , which are lattice analogs of a boundary observable in SLE6. In
the FK cluster model with generic Q, we have related the left-passage probability to the
magnetisation in a solvable open XXZ spin chain.

Our results have many possible developments. First, within the qKZ approach, we hope
to exploit the symmetry and recursion relations for the probabilities Xj , X̂j and Yj to find
their explicit expressions. This certainly involves a deeper understanding of the properties of
symplectic characters and Schur functions [14]. Second, with the algebraic Bethe ansatz [18,
19], it seems possible to calculate the magnetisation 〈σ z

j 〉 in the open XXZ chain in a closed
form, at least for j close enough to one of the boundaries. The advantage of this method is
that it is valid for any value of the deformation parameter q , and, in cases where a closed
form cannot be achieved, it still produces determinant forms that can be evaluated numer-
ically for very large system sizes (L ∼ 1000 sites). Finally, we note that the probabilities
Xj , X̂j and Yj are very similar to the discretely holomorphic parafermions found for the TL
loop model [17, 23], which are the starting point in the proof of conformal invariance for
the Ising model [6, 28]. Thus the study of these objects on a general domain Ω may allow
progress in extending this proof to the FK model with generic Q.
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