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Abstract. Consider a non-connected algebraic group G̃ = G � Γ with semisimple identity
component G and a subgroup of its diagram automorphisms Γ. The identity component G acts
on a fixed exterior component Gτ , id �= τ ∈ Γ by conjugation. In this paper we will describe the
conjugacy classes and the invariant theory of this action. Let T be a τ -stable maximal torus of
G and its Weyl group W. Then the quotient space Gτ//G is isomorphic to (T/(1−τ )(T ))/Wτ .
Furthermore, exploiting the Jordan decomposition, the reduced fibres of this quotient map are
naturally associated bundles over semisimple G-orbits. Similar to Steinberg’s connected and
simply connected case [22] and under additional assumptions on the fundamental group of G,
a global section to this quotient map exists. The material presented here is a synopsis of the
Ph.D thesis of the author, cf. [15].

1. Introduction

We consider non-connected algebraic groups G̃, over an algebraically closed field k,
having semisimple identity componentG with Dynkin diagram Δ. The aim of this paper
is to provide an understanding of the invariant theory and the classes of the conjugacy
action of G on G̃.

The study of non-connected semisimple algebraic groups has, recently, attracted some
attention in the mathematics and physics literature. For example, Digne and Michel
[5] developed a Deligne–Lusztig theory for these groups. In particular, their conjugacy
classes play an important role in physics due to their connection to so called D-branes
in the Wess–Zumino–Witten model [1, 6, 16].

But, there are also some older results. Gantmakher [7], see also [8], introduced an
analogue of a maximal torus containing a given outer automorphism of a semisimple Lie
algebra over C; and Kostant [11] proved a generalisation of Weyl’s character formula
for non-connected compact Lie groups.

Recall that non-connected groups G̃ appear naturally as centralisers of semisimple
elements in non-simply connected, connected, semisimple algebraic groups. The non-
connected groups G̃ we are considering in this paper are semi-direct products:

G̃ = G� Γ,
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where Γ is a subgroup of the group of diagram automorphisms Aut Δ. Now, let us fix
a nontrivial element τ ∈ Γ. In this paper we investigate the invariant theory and orbit
structure of the conjugacy action of G on the exterior component Gτ of G̃:

G×Gτ → Gτ, (g, hτ) �→ g hτ g−1.

This conjugacy action is well understood in the connected case (i.e., τ = id) due to
the well-known results by Steinberg [22, 25]. Furthermore, in the non-connected case,
partial results in this direction have been obtained, before, by Spaltenstein [19] who dealt
with the An-case by direct computation. Following the ideas of Steinberg’s, [22, 25], we
will provide a more thorough conceptual approach here. However, his methods require
an adaptation to our more general situation. For example, we have to make use of an
analogue of a maximal torus, called the Cartan subgroup. E.g. if Γ′ < Γ is the subgroup
generated by τ and T τ0 , the identity component of the τ -fixed points on T , then the
group C := T τ0 ×Γ′ < G̃ will be a Cartan subgroup. One of its key properties is that it
has finite index in its normaliser NG̃(C). The finite group W̃ := NG(C)/T τ0 turns out
to be a semi-direct product H � Wτ of the fixed point Weyl group and a finite abelian
group H . We will also prove that the quotient T τ0 τ/H is isomorphic to the coinvariant
torus T/(1 − τ)(T ).

For our discussion we impose the following restrictions on the field k: First, k should
be algebraically closed. Its characteristic must not divide the order of τ and is required
to be unequal to 2.

The main result of this paper will be the following theorem:

Theorem 1.1. (i) The inclusion map i : T τ0 τ → Gτ induces an isomorphism ι̃ of the
quotient spaces by the commutative diagram

T τ0 τ
i ��

π1

��

Gτ

π2 .

��
T τ0 τ/W̃

ι̃ �� Gτ//G

(ii) For simply-connected G the quotient space is an affine space.

Let us add that for simply-connected G the quotient map can, similar to Steinberg’s
case in [22], be described in terms of characters of G̃.

Remark 1. In a recent paper, Joyner [10] proved the same result in characteristic 0 using
a similar line of reasoning. However, his proof contains a minor gap, since he incorrectly
identified T τ0 and the coinvariant torus and hence overlooked the appearance of the extra
part H of the outer Weyl group. As our proof shows, this can easily be repaired.

Furthermore, we prove in Section 4 the existence of a section to the quotient map in
this case.

Theorem 1.2. If G is simply-connected, the quotient map π : Gτ → Gτ//G admits a
section C whose image consists of a ‘twisted Coxeter cell’ Ucτ cτ ⊂ Gτ ,

C : T τ0 /W̃ → Gτ.
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Here cτ is a twisted Coxeter element introduced by Steinberg (see, e.g., [20, Section 7])
and Ucτ is a product of s = dimT τ0 unipotent one-parameter subgroups of the unipotent
radical U of B. Additional properties of C imply reducedness and normality of the
schematic fibres of π.

Steinberg’s description of conjugacy classes was used by Slodowy in [18] (following
Brieskorn [2]) to establish a connection between the theory of simple algebraic groups
and that of simple singularities. Such a link can can be established here as well. How-
ever, there are no really new results and methods, and so we shall not deal with this here.
See [15, Chapter 6] for details. Nonetheless, let us mention one aspect, a generalisation
of Grothendieck’s simultaneous resolution to our setting.

Theorem 1.3. Let char(k) > rkG + 1 or char(k) = 0 and let τ act without fixed
points on the fundamental group of G. Then there exists a simultaneous resolution of
singularities of the quotient map of π : Gτ → Gτ//G.

For the existence of the simultaneous resolution we need that char(k) does not divide
the fundamental group of the centraliser CG(tτ) for any tτ ∈ T τ0 τ . This is guaranteed
by the above restriction.

This paper is organised as follows. In Section 2 we compile basic properties of the
folding of root systems and discuss the lifting of exterior automorphisms to G.

The notion of a Cartan subgroup will be introduced in Section 3 and its basic prop-
erties will be discussed. Furthermore, we will prove Theorem 1.1.

Section 4 will deal with the existence of a cross section to the quotient map.
In Section 5 we state some further results in this setting.

2. Preliminaries

Here we assemble the basic concepts and notation used in this paper.
We will start with root systems and their foldings with respect to an outer automor-

phism. Let R be a reduced root system with Dynkin diagram Δ, W its Weyl group and
Π a set of simple roots. The real vector space generated by R will be denoted by V . It is
a well-known fact that the group of automorphisms Aut (R) of R is a semi-direct prod-
uct Aut (R) = Aut (Δ) � W . Here Aut (Δ) is the group of diagram automorphisms.
Recall that for irreducible R, the group Aut (Δ) is the symmetric group S3 in the D4

case, Z/2Z in the An, Dn, n ≥ 5 and E6 while it is trivial in all other cases.
For a fixed τ ∈ Aut (Δ) we denote by V τ the fixed point vector space. Define the

projection map p : V → V τ by v �→ p(v) := 1
ord τ

∑ord τ
i=0 τ i(v). It turns out that the set

τR1 := p(R) is again a root system called the folded root system. Its Weyl group is the
fixed point Weyl group Wτ := {w ∈ W , τw = wτ}. For irreducible R the folded root
systems are given by the following table:

R A2n−1 A2n Dn+1, τ
2 = 1 E6 D4, τ

3 = 1
τR1 Cn BCn Bn F4 G2

.

Now consider a semisimple algebraic group G over k of type R. Here, k is an alge-
braically closed field whose characteristic does not divide 2 or the order of the automor-
phism τ . Our next aim is to lift this automorphism to the group G itself. This will be
accomplished as follows.
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First, fix a Borel subgroup B < G and a maximal torus T,B. We write χ(T ) for
its character lattice. It is known that a lift of τ exists if and only if χ(T ) is τ -stable.
Observe that the τ action on χ(T ) fixes the action on T completely. Secondly, choose a
Chevalley basis for the Lie algebra LieG, whose elements we denote by hi ∈ LieT , i ∈
{1, . . . , rkG}, xα ∈ LieGα. Then, we define the additive root groupsXα : k → G,α ∈ R
via the exponential map Xα(c) := exp(cxα). Now τ lifts uniquely to G by imposing the
condition τ(Xα(c)) = Xτ(α)(c) for all simple roots α according to our choice of B and
T . But we can even describe the τ action on G in a more detailed manner. The proof
will be omitted because the result is rather standard in the theory of Chevalley groups,
outlined, e.g., in [23]. A detailed proof of the second part can also be found in [15].

Proposition 2.1. (i) The automorphism τ lifts to G if and only if the lattice χ(T ) is
τ-stable. (This is automatically true for simple G if G is not of type D2n.)

(ii) For a suitable parametrization of the root groups Xα, the lift of τ acts on G by
the following rule:

(a) τ(Xα(t)) = Xτ(α)(t) ∀ t ∈ k, α ∈ R if G is simple not of type A2n or if G is
semisimple and τ a permutation of isomorphic factors of G.

(b) τ(Xα(t)) = Xτ(α)((−1)htα+1t) ∀ t ∈ k, α ∈ R in case G is of type A2n.

By abuse of notation we will use the same symbol for the diagram automorphism
and its lift to G. From [4, Section 13.3] and [24, Theorem 8.2] we get a description of
the fixed point group Gτ and its identity component Gτ0 .

Proposition 2.2. (i) The group Gτ0 is semisimple and Gτ/Gτ0 is finite abelian. Addi-
tionally, for simply connected G the group Gτ is connected.

(ii) For G simple, the type of the group Gτ0 is given by the table:

Type G A2n−1 A2n Dn+1, τ
2 = 1 E6 D4, τ

3 = 1

Type Gτ0 Cn Bn Bn F4 G2

.

Now we can define the main object of our study, the non-connected group G̃. Let
G be semisimple and Γ ⊂ AutΔ a subgroup of diagram automorphisms lifting to G.
Then we set G̃ := G� Γ. In this paper we will study the conjugacy action of G on the
G-coset Gτ of G̃. Now, following the same line of reasoning as in [21, Chapter I, §5],
we can show that for simple G and x ∈ Gτ , the conjugation map G→ G.x is separable
if char(k) is either zero or very good and does not divide the order of τ . For details see
[15, Section 1.4].

For the description of the representation theory of G̃ we need another root system
R′ which is also embedded in V τ . It is constructed as follows. In all cases we set
R′ := {α′, α ∈ R}.

(i) For R irreducible not of type A2n we set α′ = α if α = τ(α) and α′ =
∑ord τ
i=1 τ i(α)

if α �= τ(α).
(ii) For R of type A2n we define: α′ = (α + τ(α)) if α �= τ(α) fulfilling α̌(τ(α)) = 0

and α′ = 2(α + τ(α)) if α �= τ(α) with α̌(τ(α)) �= 0. (Note that α = τ(α) implies the
existence of a root β with α = β + τ(β) in this case. Then set α′ = β′.)

(iii) Let R be reducible, the union of n copies of an irreducible root system R̃ and τ
a permutation of the irreducible parts. Denote by Γ the subgroup of Aut(R) generated
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by τ , and then define
α′ = 1

|Γα|
∑ord τ
i=1 τ i(α).

If R is irreducible, a simple calculation yields the table

R A2n−1 A2n Dn+1, τ
2 = 1 E6 D4, τ

3 = 1

R′ Bn Cn Cn F4 G2

.

Thus we see that R′ is the dual of the root system of Gτ0 in these cases. On the other
hand, if τ is a permutation of the irreducible parts of a reducible root system R, then R′

is clearly isomorphic to the folded root system τR1. The introduction of R′ is justified
by the following observation, which follows by an easy computation. Here we denote by
Λ(R) the weight lattice of R.

Lemma 2.3. (i) There is a Wτ -equivariant isomorphism between the fixed point weight
lattice Λ(R)τ of R with respect to τ and Λ(R′), the weight lattice of R′.

(ii) Furthermore, the above identification implies an inclusion of root lattices Z(R)τ ⊃
Z(R′).

3. Conjugacy classes and Invariant Theory

In this section we will describe the invariant theory of the adjoint G-action on an
exterior component Gτ of G̃. An investigation of the fibre structure of the corresponding
quotient map provides an understanding of the conjugacy classes.

First, we introduce the notion of a Cartan subgroup generalising the concept of a
maximal torus to non-connected linear algebraic groups G̃. This notion is borrowed
from the theory of compact groups and was introduced by Segal, cf. [3, Chapter IV.4].
Furthermore, we summarise its basic properties. More details can be found in [15,
Chapter 2]. For k = C and G adjoint, Gantmakher [7], see also [8] and [17, Sections 3.8–
3.10 of Chapter 3], already introduced the definition below and proved the propositions
up to Proposition 3.8. In the same setting Lemmas 3.7, 3.9 and partially 3.12 were
already proved in [17].

Definition 1. An algebraic subgroup C < G̃ is called a Cartan subgroup if the following
properties hold:

(i) C is diagonalisable,
(ii) C has finite index in NG̃(C), its normaliser in G̃,
(iii) the component group C/C0 of C is cyclic.

The finite group W(C) := NG(C)/C0 is called the outer Weyl group of (G̃, C) and is
denoted by W(C).

In general, the existence of Cartan subgroups is not at all clear. If the identity
component G is reductive, however, we have a positive answer.

Proposition 3.1. Let G̃ be as above with G reductive. Then every semisimple element
of G̃ is contained in a Cartan subgroup C.
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Proof. We prove the proposition only for semisimple G. The general case is only slightly
more difficult. It can be found in [15].

Let g ∈ G̃ be a semisimple element, CG(g)0 the identity component of its centraliser
in G and S < CG(g)0 a maximal torus thereof. Denote by H the algebraic subgroup of
G̃ generated by S and g. Then we easily see that H is diagonalisable. Since H0 has to
be a torus and since S < H0 < CG(g)0, we conclude that H0 = S. Now the finite group
H/S is cyclic. Indeed, a generating element is given by gS. Thus, we are left to show
that H has finite index in its normaliser in G̃.

Consider the inequality:

[NG̃(H) : H ] = [NG̃(H) : CG̃(H)][CG̃(H) : H ]
≤ [NG̃(H) : CG̃(H)][CG̃(H) : H0]. (1)

The first factor on the right-hand side is finite. Indeed, this is true for arbitrary diag-
onalisable subgroups of algebraic groups, see, e.g., [25, Corollary 2]. For proving the
finiteness of the second we proceed as follows. Combining the two inequalities

S < CG̃(H)0 < CG̃(g)0, (2)
S < CG̃(H)0 < CG̃(S)0 (3)

gives S < CG̃(H)0 < CCG̃(g)0(S)0. By [24, Theorem 7.5, Theorem 8.2, and Corollary
9.4], CG̃(g)0 is a reductive group and therefore S = CCG̃(g)0(S). Hence S = CG̃(H)0
and the proposition follows. �

By the proof of the above proposition we also get a formula for the construction
of a Cartan subgroup containing a given semisimple element g ∈ G̃. Take the group
generated by g and a maximal torus of its centraliser CG(g).

The following is a kind of converse to this statement:

Lemma 3.2. Let C be a Cartan subgroup of G̃ and g ∈ C an element, such that gC0

generates C/C0. Then C0 is a maximal torus in CG(g)0.

Proof. Observe that g and C0 generate C as an algebraic group. Assume that the
statement of the lemma is false. Then C0 is strictly contained in a certain maximal
torus of CG(g)0. It will centralise C. This is a contradiction to property (ii) in the
definition of Cartan subgroups. �
Proposition 3.3. Let C be a Cartan subgroup in G̃. Then C0 is a regular torus in G.

Proof. Since C0 is a torus in G we know that CG(C0) is a reductive group. Con-
sider the decomposition CG(C0) = ZĜ into its centre Z and its semisimple part Ĝ =
(CG(C0), CG(C0)) with finite intersection. Clearly C0 ⊂ Z. Our aim is to show that Ĝ is
trivial. Take a element g of C generating C/C0. Since conjugation with g fixes C0 point-
wise it also stabilises CG(C0) and therefore Ĝ. By Lemma 3.2, C0 is a maximal torus
of the reductive group CG(g)0. Hence we have C0 = CG(g)0 ∩ CG(C0) = CCG(g)(C0).
Therefore Ĝ has only finitely many fixed points under conjugation with g. Now ap-
plying [24, 10.12], we conclude that Ĝ is solvable. Being also semisimple it has to be
trivial. �
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For the sequel we restrict to the semidirect product case G̃ = G� Γ with G semisim-
ple and Γ a subgroup of diagram automorphisms of G. Additionally, fix an exterior
component Gτ for τ ∈ Γ.

Proposition 3.4. Let z ∈ Gτ be semisimple element and C a Cartan subgroup con-
taining z. Assume zC0 to be a generator of C/C0. Then every semisimple element
h ∈ Gτ is G-conjugate to an element of C0z.

Proof. By [24, Theorem 7.5], there exists a pair T < B consisting of a maximal torus T
and a Borel subgroup B of G, both z-stable. Furthermore, we can even assume (after
possibly conjugating with an element in G) that T = NG(C0). Then, we clearly have
C0 = T z0 , the identity component of the z-fixed points of T . Similarly, there is a pair
T ′ < B′ of a maximal torus and a Borel subgroup stabilised by h. After conjugating h
with an element in G we can assume that T = T ′ and B = B′. Then, hz−1 is clearly
an element in G stabilising T and B. This forces hz−1 ∈ T . Now the following lemma
implies the statement of the proposition. �

Lemma 3.5. Keeping the notation as above we have: Every element of Tz is T -con-
jugate to T z0 z. In particular, every element in Tz is semisimple.

Proof. Denote by cz : G̃→ G̃, cz(g) = z g z−1 the conjugacy action with z on G̃. Then
cz is a semisimple automorphism of G̃. We have to show that

∀ h ∈ T ∃ h′ ∈ T/T z0 : h′ h z h′−1 ∈ T z0 z. (4)

This is equivalent to the following equation

∀ h ∈ T/T z0 ∃ h′ ∈ T/T z0 : h′cz(h′
−1) = h−1, (5)

where cz operates on T/T z0 in the obvious manner.
By property (ii) in the definition of a Cartan subgroup, cz can have only finitely

many fixed points on T/T z0 . Applying [24, Theorem 10.1] implies the surjectivity of the
conjugation map T/T z0 → T/T z0 given by h′ �→ h′cz(h′

−1). �

The next proposition describes the number of G-conjugacy classes of Cartan sub-
groups.

Proposition 3.6. The map Π : {Cartan subgroups of G̃} → {cyclic subgroups of Γ}
given by Π(C) = C/(C ∩ G) induces a bijection on the G-conjugacy classes of the
former to the latter. In particular, we get C ∩G = C0.

Proof. The surjectivity is clear by the construction following Proposition 3.1. For the
injectivity, consider two Cartan subgroups C and C′ with Π(C) = Π(C′). Let z be
a generator of C/C0 and T the maximal torus CG(C0). Then we have C0 = T τ0 and
τ(G∩C) is a generator of Π(C). Let z′ ∈ C′∩Gτ be a generator of C′/C′

0. (This is always
possible since the preimage of a generator of a surjective homomorphism Z/lZ → Z/mZ

always contains a generator of Z/lZ.) By Proposition 3.4 every element z′ ∈ C′ ∩ Gτ
is G-conjugate to an element in T τ0 τ . Thus we assume z′ ∈ T z0 τ and observe that there
exists an exponent m such that zm ∈ C′

0 ∩ T . Now choose z′ such that z′m is regular
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in T , in addition. Then we get CG(z′)0 ⊂ CG(z′m)0 = T implying CG(z′)0 = T τ0 . Since
C′

0 is a maximal torus of CG(z′) we must have C′
0 = T z0 and hence C = C′.

The second part of the theorem follows from the first. Indeed, let C be any Cartan
subgroup having τ ∈ Γ as a generator of Π(C). Then C has to be conjugate to C′ =
T τ0 × 〈τ〉. But we have C ∩G = T τ0 . �
Lemma 3.7. Take a component C∗ of Cartan subgroup C being a generator of C/C0.
Then any two elements in C∗ are conjugate under G iff they are under NG(C).

Proof. Take two elements x, y = gxg−1 ∈ C∗ which are conjugate under g ∈ G. Then
we have x ∈ C ∩ g−1Cg. The group C is clearly abelian. By Lemma 3.2 the two tori
C0 and g−1C0g are maximal tori of CG(x)0. Thus there is an element h ∈ CG(x)0 with
hg−1C0gh

−1 = C0. Since xC0 respectively xhg−1C0gh
−1 generates the component

group of C/C0 respectively hg−1Cgh−1/hg−1C0gh
−1, we get gh−1 ∈ NG(C). �

An important prerequisite for the understanding of the invariant theory is the fol-
lowing density result:

Proposition 3.8. Let τ ∈ Γ and G̃ be as above. Then the set of semisimple elements
in Gτ denoted by (Gτ)s.s. is a dense subset of Gτ .

Proof. Let C be a Cartan subgroup of G̃, such that τC0 is a generator of C/C0. Because
of Proposition 3.4 it suffices to show that

⋃
g∈G gC0τg

−1 = (Gτ)s.s. contains an open
subset of Gτ . This will be shown by investigating the conjugation map Φ:

Φ : G/C0 × C0 → Gτ, (gC0, h) �→ g hτ g−1. (6)
Note that the dimensions of the image and preimage spaces coincide. Since Φ is a
morphism of algebraic varieties, its image im Φ contains an open subset of its closure
im Φ. We shall prove the statement of the proposition using the dimension formula
for morphisms. Thus, we have to find a point in im Φ whose preimage contains an
irreducible component of dimension zero. For every tτ ∈ C0τ there is an isomorphism
Φ−1(tτ) ∼= {g ∈ G/C0 | g−1tτ g ∈ C0τ}. Now, choose tτ ∈ C such that (tτ)ordτ =
tordτ ∈ C0 is a regular element in the maximal T := CG(C0) of G. Then we clearly
have {g ∈ G/C0 | g−1tτ g ∈ C0τ} ⊂ {g ∈ G/C0 | g−1tordτ g ∈ Tτ}. Using the fact that
any two elements in a maximal torus are conjugate in G exactly when they are under
W , this larger set is given by {g ∈ G/C0 | g−1tordτ g ∈ T } = NG(T )CG(tordτ )/C0. By
the regularity assumption the equality CG(tordτ )0 = T holds. Hence, any connected
component of NG(T )CG(tordτ )/C0 is isomorphic to T/C0 as a variety. Thus, the union
of all irreducible components of {g ∈ G/C0 | g−1tτ g ∈ C0τ} contained in T/C0 is given
by the fixed point set (T/C0)tτ which is finite. �

For the remainder of this section, let C be a Cartan subgroup having C0τ as a
generator of its group of components C/C0. Then for an appropriate maximal torus T
of G, the identity component C0 equals T τ0 , the identity component of the τ -fixed points
of T . Denote by W̃ the corresponding outer Weyl group W(C). Its structure turns out
to be important for our discussion.

Lemma 3.9. The forgetful map ϕ : nT τ0 �→ nT for an element n ∈ NG(C), gives rise
to a split exact sequence

1 −→ (T/T τ0 )τ −→ W̃ ϕ−→ Wτ −→ 1. (7)
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Proof. Note that we have (T/T τ0 )τ ⊂ W̃ .
First, we show imϕ = Wτ . Choose nT τ0 ∈ W̃ . Then we have τnτ−1 ∈ nT τ0 ⊂ nT ,

yielding imϕ ⊂ Wτ .
For the other inclusion, take w = nT ∈ Wτ . We have to find an element t ∈ T such

that nt ∈ NG(C). By assumption on n there is a certain t′ ∈ T such that τ−1nτ = nt′.
We can even assume t′ ∈ T τ0 . Indeed, by Lemma 3.5 there is an element t̂ ∈ T , such
that t̂τ(t̂−1)t′ ∈ T τ0 . Then we write n for nt̂. Now a simple calculation shows that n
stabilises C0 as well as C0τ and thus C.

Second, exactness of the above sequence is proved: For nT τ0 ∈ kerϕ we get n ∈ T .
Additionally n fulfils nτn−1 ∈ τT τ0 implying nT τ0 = τnT τ0 τ

−1.
Third, we show, that the sequence is split. Since Wτ is the Weyl-group of the

fixed point group Gτ0 , and since T τ0 is a maximal torus thereof we get an embedding
ι : Wτ ↪→ W̃ . �
Let χ(T ) be the character lattice of the maximal torus T of G. Since the fixed point set
χ(T )τ is again a lattice, it has to be a character lattice of a torus T ′, i.e., χ(T ′) = χ(T )τ .
Then the inclusion χ(T )τ ⊂ χ(T ) corresponds to a projection p : T → T ′. We get the
interpretation of T ′ as the coinvariants of T with respect to τ .

Lemma 3.10. Let φ : T → T be the group homomorphism t �→ φ(t) = t τ t−1τ−1; then
T ′ ∼= T/imφ. The map φ is Wτ -equivariant.

Proof. Denote by π the projection map T → T/imφ. For every character μ on the torus
T/imφ, the element π∗(μ) is a character on T being obviously τ -invariant.

On the other hand take μ ∈ χ(T )τ . We define a character μ̂ on T/imφ by μ̂(t imφ) :=
μ(t). Then μ̂ is well defined due to the τ -invariance of μ. Therefore, the character lattices
of T/imφ and T ′ coincide (as sublattices of χ(T )). The Wτ -equivariance is trivial. �

Now let us identify T τ0 and T τ0 τ by right multiplication with τ . This allows us
to transport the W̃-action from T τ0 τ to T τ0 . This (twisted) action will be denoted
by ∗. For nw ∈ NG(C), a representative of w ∈ W̃ , and t ∈ T τ0 we set w ∗ t :=
nwtτn

−1
w τ−1. By construction, the restriction of the ∗-action to Wτ is its usual action

on T τ0 . Furthermore, consider the homomorphism (T/T τ0 )τ → T τ0 defined by tT τ0 �→
tτt−1τ−1 = tT τ0 ∗ e. Its image is a finite group denoted by H .

Lemma 3.11. Consider the commutative diagram with ψ := p ◦ i,

T
p �� T ′

T τ0

i

��

ψ .

����������

Then ψ : T τ0 → T ′ is the quotient map of T τ0 by the above defined ∗-action of (T/T τ0 )τ .
It is Wτ -equivariant.

Proof. By the previous lemma, T ′ can be identified with the coinvariant torus of T . Now
the surjectivity of ψ is a direct consequence of Lemma 3.5. Furthermore, we clearly get
H ⊂ kerψ. Now, let φ be the map defined in the previous lemma. Take an element
t ∈ kerψ = T τ0 ∩ imφ. Then we can find an element s ∈ T with t = s τ s−1τ−1. We
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conclude s ∈ (T/T τ0 )τ . The Wτ -equivariance of ψ follows from the Wτ -equivariance
of φ. �

For simple and simply-connected G the structure of (T/T τ0 )τ can easily be described.

Lemma 3.12. Let G be simply connected or adjoint and let τ be a diagram automor-
phism of G. Then the finite abelian group (T/T τ0 )τ looks as follows: Let n1, . . . , ns be
the orbit lengths of the Γ = 〈τ〉-action on the set of simple roots. Then (T/T τ0 )τ =
Z/n1Z × . . .× Z/nsZ. Furthermore, T τ0 = T τ and H ∼= (T/T τ0 )τ .

Proof. Since G is either adjoint or simply connected its maximal tours is a direct product
of the images of the fundamental co-weights, respectively the simple co-roots.

First, let us prove the connectedness statement and the first part of the lemma.
Note that τ acts on the set of fundamental co-weights and the set of simple co-roots by
permutation. Therefore we can assume that τ acts as a cyclic permutation on T = (k∗)r,

τ(c1, . . . , cr) = (cr, c1, . . . , cr−1). (8)

Then we immediately get T τ0 = T τ = k∗(1, . . . , 1) and (T/T τ0 )τ is generated by the
element (1, ξ, . . . , ξr−1)T τ0 where ξ is a primitive r-th root of unity.

Now using φ as defined in Lemma 3.10 we see that H = ((T/T τ0 )τ )/(T τ/T τ0 ), whence
the lemma. �
Remark 2. (i) From the proof above we directly see that we always obtain (T/T τ )τ =
(Z/2Z)dimT−dimT τ

0 for τ of order 2.
(ii) In the remaining simple cases, G being Spin8(k) or PSO8(k) and τ of order 3, we

obtain (T/T τ)τ ∼= Z/3Z.
(iii) On the other hand, if G is no longer simply connected, the lemma does not hold

any longer, e.g., in the SO2n-case the group (T/T τ0 )τ is isomorphic to Z/2Z while H
is trivial. But it is still true that the cardinality of H is a multiple of the order of τ ,
cf. [15, Corollary 2.4].

Another key tool for the proof of the main result is to achieve an understanding of the
representation theory of G̃. In particular, the characters of the τ -stable Weyl modules1

of G turn out to provide a basis of the invariant ring k[Gτ ]G.
Now the following lemma on invariant functions holds. The proof is rather straight-

forward and will therefore be omitted. It can be found in [15].

Lemma 3.13. Let f ∈ k[Gτ ]G be an invariant function, g ∈ Gτ and gs the semisimple
part of g. Then f(g) = f(gs).

From now on we restrict to the case of cyclic Γ generated by τ . Following the methods
of Mackey [14], the representation theory of G̃ reduces to that ofG by a simple induction
procedure. In the following V (λ) denotes any finite-dimensional indecomposable G-
module with highest weight λ and highest weight vector vλ.

Proposition 3.14. Let G be simple, λ ∈ χ(T ) a dominant character and Γλ its sta-
biliser in Γ. Set b := |Γλ|. Furthermore choose a primitive b-th root of unity ξ.

1We thank the referee for pointing out the use of Weyl modules instead of the irreducible
ones in case of positive characteristic.
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(i) The G-module
⊕ord τ/b

i=1 V (τ i(λ)) affords b inequivalent indecomposable G̃-repre-
sentations. They will be denoted by ρ̃λ1 , . . . , ρ̃

λ
ξb−1 . Here the index ξj is the factor

by which τord τ/b acts on the highest weight vector vλ ∈ V (λ).
(ii) If char(k) = 0, every irreducible representation of G̃ is equivalent to one of them.

From now on the V (λ) denotes the Weyl-module of G with highest weight λ. If
char(k) = 0 the Weyl modules are exactly the irreducible ones. Our next aim is to
determine the corresponding characters. To do so we need some further notation. Let
R′ be the root system introduced in Section 2. Since we know that Z(R′) ⊂ χ(T )τ =
χ(T ′) ⊂ Λ(R′) there is a uniquely determined group G′ of type R′ having fundamental
group Λ(R′)/χ(T )τ . We can thus identify T ′ with a maximal torus of G′. We will
write V ′(λ) for its Weyl module of highest weight λ. Now denote by Xλ the character
of the Weyl module of the G-module with highest weight λ and by X ′λ that of G′.
Furthermore, we write X̃λ

c for the character of the G̃-representation ρ̃λc .

Proposition 3.15. The characters X̃λ
c have the following shape.

(i) If τ(λ) = λ, we have

X̃λ
c |G = Xλ, (9)

X̃λ
c |Gτ ≡ cX ′λ. (10)

Here the denoted equivalence ≡ is defined by considering the characters as elements in
the group rings Z[χ(T )τ ] = Z[χ(T ′)].

(ii) If τ(λ) �= λ, we get with b as in Proposition 3.14:

X̃λ
c |G =

∑ord τ/b
i=1 Xτ i(λ), (11)

X̃λ
c |Gτ = 0. (12)

Proof. Recall that the representations ρ̃λc are defined on the direct sum
⊕ord τ/b

i=1 V (τ i(λ))
by induction. Then X̃λ

c |G clearly has the indicated shape in both cases. For b < ord τ ,
a representation matrix of gτ ∈ Gτ has block diagonal shape with only zeros on the
diagonal with respect to the above direct sum decomposition, proving the second part
of (ii).

Thus, we are left with proving the second statement of case (i): Clearly, we can
assume c = 1. Using the fact that X̃λ

c |Gτ is an invariant function, Lemma 3.13 and
Proposition 3.14 it is completely determined by its values on T τ0 τ . Now consider the
weight space-decomposition V (λ) =

⊕
μ∈χ(T ) V (λ)μ. Every element tτ ∈ T τ0 τ clearly

interchanges the weight spaces V (λ)μ and V (λ)τ(μ). Therefore, only the weight space
V (λ)μ with invariant weight μ = τ(μ) contributes to the trace,

X̃λ(tτ) = tr ρ̃λ1 (tτ) =
∑

μ∈χ(T )τ μ(t) tr ρ̃λ1 (τ)|V (λ)μ
. (13)

The traces tr ρ̃λ1 (τ)|V (λ)μ
have already been calculated by Jantzen in [9, Chapter 9,

Theorem 9]:
tr ρ̃λ1 (τ)|V (λ)μ

= dimV ′(λ)μ. (14)

Since λ, μ ∈ χ(T )τ = χ(T ′) the expression on the right-hand side makes sense. Therefore
we get

X̃λ
1 |T τ

0 τ
=

∑
μ∈χ(T )τ (dimV ′(λ)μ)μ = X ′λ|T ′ . � (15)
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With all these tools we are able to prove the main result.

Theorem 3.16. (i) The inclusion map i : T τ0 τ → Gτ gives rise to a commutative
diagram

(T/(1 − τ)(T ))/Wτ ∼=

T τ0 τ
i ��

π1

��

Gτ

π2

��
T τ0 τ/W̃

ι̃ �� Gτ//G

and an isomorphism ι̃.
(ii) Furthermore, Gτ//G ∼= Gτ//G̃.

Proof. (i) We have to show that the restriction map i∗ : k[Gτ ] → k[T τ0 τ ] induces
an isomorphism on the invariant subrings k[Gτ ]G → k[T τ0 τ ]

W̃ . Clearly, the inclusion
i∗(k[Gτ ]G) ⊂ k[T τ0 τ ]W̃ holds. The injectivity of i∗ is an immediate consequence of
Propositions 3.4 and 3.8.

The following claim implies that i∗ is surjective.
Claim. The set i∗({X̃λ

1 |Gτ | λ ∈ χ(T )τ dominant}) forms a basis of the invariant ring
k[T τ0 τ ]

W̃ .

Proof of Claim. Using the W̃-equivariant identification of T τ0 and T τ0 τ as described in
the paragraph preceding Lemma 3.11 and by Lemma 3.11 itself we have a sequence of
rings

k[Gτ ]G ↪→ k[T τ0 τ ]
W̃ ∼−→ k[T τ0 τ/(T/T

τ
0 )τ ]W

τ ∼= k[T ′]W
τ

. (16)

Write β for the composition of the two maps in this equation. Now Proposition 3.15
implies β(X̃λ

1 |Gτ ) = X ′λ|T ′ for every character X̃λ
1 of G̃ with invariant highest weight

λ = τ(λ). Thus, we get

β({X̃λ
1 |Gτ | λ ∈ χ(T )τ dominant}) = {X ′λ

1 |T ′ | λ ∈ χ(T ′) dominant}. (17)

The set on the right-hand side forms a basis of k[T ′]W
τ

, cf. [22, Lemma 6.3], respectively
[25, Section 3.4, Theorem 2]. �

(ii) Since the set of characters {X̃λ
1 |Gτ | λ ∈ χ(T )τ dominant} generates the invariant

ring k[Gτ ]G, this part follows immediately. �
Remark 3. In characteristic 0 we can give the following much shorter proof of the Theo-
rem.2 Using Proposition 3.8 and Lemma 3.7 the inclusion i induces a bijective morphism
ι̃ of the two quotient spaces which are clearly normal varieties. Using a result due to
Richardson, see, e.g., [12, Section II.3.4., Lemma], ι̃ has to be an isomorphism. However,
we believe that our proof provides us with some additional information: The quotient
map can be described by characters and the quotient space is an affine space (under
certain restrictions on the fundamental group of G).

As a consequence of the proof of the theorem above and [25, Section 3.4, Theorem 2],
the quotient space is an affine space in the following cases.

2The author would like to thank E. B. Vinberg for pointing out this proof.
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Corollary 3.17. If the group G′ is simply connected, i.e., χ(T )τ = Λ(R′), the quotient

space will be an affine space: Gτ//G ∼= A
rkG′

. Furthermore, the X̃
λ′

j

1 |Gτ , j ∈ {1, . . . , s}
freely generate k[Gτ ]G as a k algebra.

In particular, this happens in the following situations:

(a) If G is of type A2n, E6 or D4 with τ of order three.
(b) If G is simply connected of type A2n−1 or Dn with τ of order two.

Remark 4. Using the fact that the quotient is an affine space for simply connected G
allows us to determine explicitly the quotient spaces for arbitrary G. One must simply
calculate the action on the quotient space of the kernel of the covering map Ĝ → G.
Here Ĝ is the universal cover of G. Since we will not outline this here we refer to [15].

Making direct use of the Jordan decomposition we can, as in [18, Theorem 3.10],
easily determine the fibre structure of the quotient map π : Gτ → T τ0 τ/W̃ . We will skip
the proof. It can be found in [15, Theorem 3.1]. For every element tτ ∈ T τ0 τ denote by
CG(tτ) its centraliser in G and by V (tτ) the unipotent variety of CG(tτ).

Proposition 3.18. Let tτ be an element in T τ0 τ . Then the following statements hold:

(i) CG(tτ) is a reductive group.
(ii) The reduced fibre π−1(π(tτ))red over π(tτ) in T τ0 /W̃ is G-isomorphic to the

associated fibre bundle G×CG(tτ) V (tτ).

Particularly, each fibre consists of only finitely many orbits and contains exactly one
regular and on semisimple orbit. Indeed, this follows directly from Lusztig’s result on
the finiteness of the number of unipotent orbits [13]. The semisimple orbit is the unique
closed orbit in each fibre.

Let us conclude this section by giving a description of regular semisimple elements.
Our discussion is based on [15, Section 3.2] and the explicit form of the action of Γ
on the root groups in Proposition 2.1. For simplicity let us assume that r does not
contain a component of A2n. An element tτ ∈ T τ0 τ is clearly regular semisimple iff
CG(tτ)0 = T τ0 . To achieve this, tτ has to avoid kernels of certain “roots”. Take an
arbitrary root α ∈ R and denote its Γ-orbit by α = α1, . . . , αl. Now, it is easy to see
that tτ has a nontrivial fixed point on the product Xα1(k) . . . Xαl

(k) of the images of
the root groups, iff α(t)l = 1. In this case we even get a one-parameter family of fixed
points. Using the definition of the root system R′ and how it is contained in Z(τR1) as
well as Z(R), we get the following statement:

Corollary 3.19. (i) An element tτ ∈T τ0 τ is regular if and only if α′(t) �=1 for all α′∈R′.
(ii) Similarly, an element tτ ∈ Tτ is regular if and only if α′(t) �= 1 for all α′ ∈ R′.

4. The Steinberg cross section

Under certain restriction on the fundamental group of G we are able to construct,
similarly as in [22], a section C to the quotient map π : Gτ → T τ0 τ/W̃ having some
additional nice properties.

Let us restrict to those semisimple groups G with χ(T )τ = Λ(R)τ . Then we know
from Theorem 3.16 that our quotient is an affine space.
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For the construction of this section, start by choosing one representative αi for each
τ -orbit on the set of simple roots Π. After relabelling we can assume that the simple
roots chosen in this manner are α1, . . . , αs. (Recall that s = dimGτ//G.) Then the
weights λ′1, . . . , λ

′
s form a set of generators of the weight lattice Λ(R)τ = Λ(R′). Let

Xαi , i ∈ {1, . . . , s} denote the corresponding root groups of G and let nαi ∈ NG(T ) be
a representative of the corresponding simple reflection sαi . Now we define

C : A
s → Gτ, (c1, . . . , cs) �→

∏s
i=1Xαi(ci)nαiτ. (18)

Note that C(0, . . . , 0) = nα1 . . . nαsτ is a representative in NG̃(T ) of a twisted Coxeter
element, examined in [20, Section 7]. It has similar properties as the Coxeter element,
e.g., it is unique up to conjugation in the Weyl group and has no eigenvector of eigenvalue
one on the vector space generated by the root system.

This map C has the properties of a section to the quotient map:

Theorem 4.1. The map C is a section to the quotient map of the exterior component
Gτ . More precisely, the following properties hold:

(i) imC is closed in Gτ .
(ii) π|imC : imC → Gτ//G is an isomorphism.
(iii) imC meets each fibre exactly in its unique regular orbit.

Proof. (i) Let {β1, . . . , βs} denote the set of positive roots made negative by the inverse
of our twisted Coxeter element τ−1sαs . . . sα1 . Then we obtain

imC = (
∏s
i=1 imXβi) nα1 . . . nαsτ. (19)

Hence imC is a closed subset of Gτ .
(ii) For the proof of this part of the theorem we have to evaluate the quotient map

on imC. By Corollary 3.17, the quotient map π has the form

π(gτ) = (X̃λ′
1

1 (gτ), . . . , X̃λ′
s

1 (gτ)), ∀ g ∈ G. (20)

Now denote by V (λ′i) the irreducible G-module with highest weight λ′i, the weight space
of weight μ by V (λ′i)μ, its canonical inclusion V (λ′i)μ ↪→ V (λ′i) by ιμ and the canonical
projection V (λ′i) � V (λ′i)μ by πμ. With this notation we clearly have

X̃
λ′

i
1 (gτ) =

∑
μ∈χ(T ) trV (λ′

i)μ
(πμ ρ̃

λ′
i

1 (gτ) ιμ). (21)

The following well-known lemma describes the action of τ , the Weyl group and the root
groups on the weight spaces.

Lemma 4.2. Let G be a reductive group, V a finite-dimensional G-module and Vλ a
weight space. Then we have for every v ∈ Vλ:

(i) Xα(c).v =
∑∞
i=0 c

i vi, where vi ∈ Vλ+i α is independent of c and v0 = v.

Furthermore, the following holds:

(ii) nα.v ∈ Vsα(λ) = Vλ−α̌(λ)α.
(iii) τ.v ∈ Vτ(λ).

By the next result we only have to consider weights which are invariant under τ .
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Lemma 4.3. For gτ ∈ imC we have

trV (λ′
i)μ

(πμ ρ̃
λ′

i
1 (gτ) ιμ) = 0, (22)

if τ(μ) �= μ. Thus our characters take the following values:

X̃
λ′

i
1 (gτ) =

∑
μ∈Λ(R′) trV (λ′

i)μ
(πμ ρ̃

λ′
i

1 (gτ) ιμ). (23)

Proof. By Lemma 4.2 we have to show that τ(μ) �= μ implies μ /∈ τ(μ) + Z(α1, . . . , αs).
Assuming the contrary we find pj ∈ Z, j ∈ {1, . . . , s} fulfilling the equation

0 �= μ− τ(μ) =
∑s

j=1 pj αj . (24)

We always have the equality ∑ord τ
i=1 τ i(μ− τ(μ)) = 0. (25)

Combining the last two equations we get

0 =
∑

α∈Π p
′
α α. (26)

Here the p′α are equal to the pi up to a positive constant depending on α. Hence
p′α = pi = 0, which is absurd. �

Now a straightforward calculation yields the following equality for μ ∈ Λ(R):

trV (λ′
i)μ

(
πμ

(∏s
i=1Xαi(ci)nαi

)
τ ιμ

)
= trV (λ′

i)μ

(∏s
i=1(πμXαi(ci)nαi ιμ)πμ τ ιμ

)
. (27)

Combining this equation with Lemma 4.2 we clearly get for μ =
∑s
j=1mj λj and certain

aμ ∈ k,

trV (λ′
i)μ

(πμ C(c1, . . . , cs) ιμ) =
{
aμc

m1
1 . . . cms

s , if μ is dominant,
0, otherwise. (28)

Let us continue by introducing an order relation
.≥ on the set of fundamental dominant

weights of Λ(R′) according to the following rule:

λ′i
.
> λ′j if there exists a dominant weight λ′ ∈ Λ(R′), such that λ′ ≺ λ′i

(in Λ(R′)!), i.e., λ′i−λ′ is a sum of positive roots and there exist mk ≥ 0
with mj > 0 fulfilling

λ′ =
∑s

k=1mk λ
′
k. (29)

Furthermore, λ′i
.≥ λ′j, if either λ′i

.
> λ′j or λ′i = λ′j .

With these preparations we can evaluate the characters on the image of the section
C, i.e., we obtain Equation 30, where aλ′

i
∈ k and where Pi is a polynomial in those cj

with λ′j
.≤ λ′i and λ′j �= λ′i.

X̃
λ′

i
1 (C(c1, . . . , cs)) = aλ′

i
ci + Pi(c1, . . . , cs). (30)
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Now the claim follows if we could show that aλ′
i
�= 0: By the reasoning above the only

contribution to the coefficient aλ′
i

of ci comes from the action of C(c1, . . . , cs) on the
weight space corresponding to the highest weight. Let v ∈ V (λ′i) be a highest weight
vector. By definition we have τ.v = v. Furthermore, one easily calculates for j �= i:

Xαj (cj)nαj .v = v. (31)

Clearly, we are left to investigate Xαi(ci)nαi .v. Consider the subgroup

Gαi := 〈imXαi , imX−αi〉

of G. It is easily seen that it is isomorphic to SL2(k) acting on V (λ′i)λ′
i
⊕V (λ′i)λ′

i−αi
in its

natural representation. Using this identification we have v =
[
1
0
]

andXαi(ci) =
[
1 ci
0 1

]
.

By multiplying nαi with an element in T we can assume nαi =
[

0 1−1 0
]
.

(iii) This part is an easy consequence of Theorem 4.4. �
Theorem 4.4. Let gτ be in Gτ . Then the following three properties are equivalent:

(i) gτ is regular.
(ii) The derivative (dπ)gτ of π in gτ is surjective.
(iii) gτ is G-conjugate to an element of im C.

Proof. (iii) ⇒ (ii): Follows immediately from Theorem 4.1(ii).
(ii) ⇒ (i): This part will be proved by showing that the differentials (dX̃λ′

i
1 |Gτ )gτ ,

i ∈ {1, . . . , s} are linearly dependent at irregular gτ . The proof proceeds in several steps
along similar lines as in [22].

1. Observe that the set of semisimple irregular elements in Gτ is dense in the
set of irregular elements. This is proved along the lines of reasoning in [22, Sec-
tion 5]; for details see [15, Theorem 4.1]. Since the set {gτ ∈ Gτ | (dX̃λ′

i
1 |Gτ )gτ , i ∈

{1, . . . , s} are linearly dependent} is a closed subset we may thus assume gτ to be irreg-
ular and semisimple. After conjugating we can even choose gτ = tτ ∈ Tτ for a given
τ -stable maximal torus T .

2. Now let us fix a Borel subgroup B ⊃ T . Denote its unipotent radical by U and
the unipotent radical of the opposite Borel by U−. Furthermore, let t be the tangent
space Ttτ (Tτ) ⊂ Ttτ (Gτ). We claim:

For every F ∈ k[Gτ ]G the following statement holds:

(dF )tτ = 0 ⇐⇒ (dF |Tτ )tτ = (dF )tτ |t = 0. (32)

Proof of claim. Consider the open ‘Bruhat cell’ U− T U τ ⊂ Gτ and let Ψ be the
well-known isomorphism

Ψ : A
|R| × (k∗)r → U− T U τ,

((uα)α∈R+ , (vα)α∈R+ , t1, . . . , tr) �→ ∏
α≺0Xα(u−α)

∏r
i=1 νi(ti)τ

∏
α�0Xα(vα).

Here the Xα, α ∈ R, are the root groups and the νi, i ∈ {1, . . . , r} are one-parameter
multiplicative groups spanning T . Accordingly, every tangent vector Y ∈ Ttτ (Gτ)
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decomposes uniquely into a sum Y = Y1 + Y2 with Y1 ∈ TtτU
−tUτ and Y2 ∈ TtτTτ .

Now t′ ∈ T τ0 acts on U− T U τ by conjugation:

t′.((uα)α∈R+ , (vα)α∈R+ , t1, . . . , tr)

= ((α(t′)−1 uα)α∈R+ , (α(t′) vα)α∈R+ , t1, . . . , tr). (33)

The invariant function F can uniquely be written as a sum F = F1 + F2, where
Ψ∗(F1) is a polynomial only in the powers of the t±1

i , while at least one factor in the
uα or the vα appears in each monomial of Ψ∗(F2). Since F and F1 are obviously T τ0 -
invariant, F2 has to be so as well. Recall that T τ0 is a regular torus, cf. Proposition 3.3.
Therefore, every monomial of Ψ∗(F2) must contain at least two factors from the set
{uα, vα}. This implies (dF2)tτ (Y ) = 0. Now the claim follows:

dFtτ (Y ) = (dF1)tτ (Y ) = (dF1)tτ (Y2) = dFtτ (Y2). (34)

3. Consider the quotient map p : Tτ → Tτ//T = T ′ from Section 3. Recall that
T ′ is a maximal torus of a semisimple algebraic group G′ with root system R′. By the
description of irregular elements in Tτ , cf. Corollary 3.19, we see that tτ is regular in
Tτ if and only if p(tτ) is regular in T ′.

4. For every T -invariant function F on Tτ we denote by F̂ its corresponding function
on the quotient space T ′. By Lemma 3.10 the differential (dp)tτ is always surjective.
Thus

(dF )tτ = 0 ⇐⇒ (dF̂ )p(tτ) = 0. (35)

5. By [25, Section 3.8, Lemma p. 125] we know that (dX ′λ′
i |T ′)t′ , i ∈ {1, . . . , s} are

linearly dependent for t′ ∈ T ′ for irregular t′.

(i) ⇒ (iii): Let gτ ∈ Gτ be regular. Take hτ ∈ imC ∩ π−1(π(gτ)). Since we already
know that hτ is regular the statement follows from Proposition 3.18. �

Using a standard reasoning in algebraic geometry, as outlined in [25, Section 3.8,
Theorem 7], we derive the following corollary. For a detailed proof see [15, Proposi-
tion 5.2].

Corollary 4.5. The quotient map π : Gτ → Gτ//G is flat and its schematic fibres are
reduced and normal.

5. Complements

Let us mention here some further results. First, we describe Grothendieck’s simulta-
neous resolution.

Consider the associated bundleG×BBτ . The class of (g, b) inG×BBτ will be denoted
by g ∗ bτ . Now define the conjugacy map Φ : G ×B Bτ → Gτ by g ∗ bτ �→ gbτg−1.
Furthermore, denote by Θ the quotient map G×B Bτ �→ Bτ//B ∼= Tτ//T =: T ′ and by
Ψ the quotient of T ′ by Wτ .
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Theorem 5.1. Assume that τ acts without fixed points on the fundamental group of G.
Furthermore, let char(k) > rkG + 1 or char(k) = 0. Then the following diagram gives
a simultaneous resolution of π : Gτ → Gτ//G:

G×B Bτ Φ ��

Θ

��

Gτ

π .

��
T ′ Ψ �� T ′/Wτ

(36)

Here simultaneous resolution means that Ψ is finite and surjective, Θ is smooth, Φ
is proper and Φ restricted to the fibres of Θ provides a resolution of singularities of the
fibres of π. Additionally the above diagram shall be commutative.

In Section 3 we proved that every semisimple element in Gτ is G-conjugate to an
element in T τ0 τ . Therefore, a natural question to ask is whether every element of Gτ
is G-conjugate to an element in the shifted connected fixed point set Gτ0τ . As we have
shown in [15, Appendix], this does not hold for simple G (as soon as τ is a non-trivial
outer automorphism of G). This is due to the fact that the semisimple part of the
centraliser in Gτ0 of a given element tτ ∈ T τ0 τ may be strictly smaller than that in G.
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