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Abstract. Spreading processes on networks are often analyzed to understand how the outcome of the
process (e.g. the number of affected nodes) depends on structural properties of the underlying network.
Most available results are ensemble averages over certain interesting graph classes such as random graphs or
graphs with a particular degree distributions. In this paper, we focus instead on determining the expected
spreading size and the probability of large spreadings for a single (but arbitrary) given network and study
the computational complexity of these problems using reductions from well-known network reliability
problems. We show that computing both quantities exactly is intractable, but that the expected spreading
size can be efficiently approximated with Monte Carlo sampling. When nodes are weighted to reflect their
importance, the problem becomes as hard as the s-t reliability problem, which is not known to yield
an efficient randomized approximation scheme up to now. Finally, we give a formal complexity-theoretic
argument why there is most likely no randomized constant-factor approximation for the probability of
large spreadings, even for the unweighted case. A hybrid Monte Carlo sampling algorithm is proposed that
resorts to specialized s-t reliability algorithms for accurately estimating the infection probability of those
nodes that are rarely affected by the spreading process.

PACS. 02.70.Tt Justifications or modifications of Monte Carlo methods – 64.60.aq Networks – 89.70.Eg
Computational complexity – 89.75.-k Complex systems

1 Introduction

Abstract spreading processes, or reaction-diffusion pro-
cesses, have become increasingly popular tools to study
transmission and propagation of information (viruses, gos-
sip, money, etc.) through populations of interacting enti-
ties (agents) [1]. Depending on the time scale, the propa-
gation of information can be seen as a cascade of adverse
effects or failures, such as financial defaults in credit net-
works, and the probability of a cascade affecting a large
part of the population can therefore be seen as an indi-
cator of the risk represented by the network’s interaction
structure [2].

In particular for the study of disease spreading, vari-
ous models were introduced to describe the dynamics of
the spreading process at different abstraction levels. Typ-
ically, the individual entities are in a certain state that
can change over time, e.g., by interaction with other indi-
viduals. The main interest is then to predict, via compu-
tational or analytical methods, the dynamics or outcome
of the spreading process, e.g., the number of affected indi-
viduals, and how the dynamics depends on the parameters

a e-mail: laumanns@ifor.math.ethz.ch

of the process. An important class of spreading models is
based on differential equations, which can be handled effi-
ciently and often yield analytical results for various quan-
tities like the expected spreading size or the critical trans-
missibility at which a large part of the population gets
affected [3]. The drawback is that homogeneity and per-
fect mixing within compartments is assumed.

As an obvious extension, a contact network can be
introduced between the individuals. Such models are also
called agent-based models and allow to reflect various mix-
ing properties of the population as well as different infec-
tion rates between each pair of individuals. As pointed
out already by Grassberger [4], SIR-type disease spread-
ing models can be formulated as bond percolation prob-
lems, which allows to eliminate the time dependency of
the spreading process. The spreading process can then be
described as follows. Let G = (V, E) be a directed network
where for every arc e = (v, w) ∈ E a spreading probability
p(e) is given corresponding to the probability that the dis-
ease will spread from node v to node w if v is infected. Let
S ⊆ V a set of initially infected nodes. A possible outcome
of this spreading process can be simulated by flipping a
biased coin for every arc (v, w) ∈ E to determine whether
it is an active arc meaning that the disease will spread
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from node v to node w if v gets infected. Let E′ be the
set of active arcs. A particular node v ∈ V gets infected
if there is a path in (V, E′) from at least one node of S
to v. We assume w.l.o.g. that the set of initially infected
nodes S contains exactly one node s. The more general
case with |S| > 1 can easily be reduced to this case by
introducing a new node s which is infected and transmits
the disease with probability one to all nodes of S. We call
the triple (V, E, p) a reliability network and the quadruple
(V, E, p, s) a spreading network. For a spreading network
G = (V, E, p, s) we denote by IG the random element con-
taining all the nodes reached by the disease (IG is thus a
random subset of V ).

This model can easily be extended to undirected or
mixed networks, where an active undirected edge simply
transmits the disease in both directions. Ball [5] showed
that replacing every undirected edge by two oppositely di-
rected edges with the same spreading probability as the
original undirected edge does not change the model, i.e.,
if G is the original spreading network and G′ the one ob-
tained by replacing the directed edges as described above
then we have that IG and IG′ have the same distribution.
The case of an undirected underlying network is therefore
a special case of the directed version. As a natural exten-
sion, we can associate with every node v ∈ V an integer
weight w(v) ∈ {0, 1, 2, . . .} representing the impact of the
spreading when reaching node v and denote the weight of
any subset of nodes V ′ ⊆ V by w(V ′) =

∑
v∈V ′ w(v).

Computing the probability that a specific node, all
nodes, or, more generally, some given set of nodes K ⊆ V
will be covered by the spreading process are well stud-
ied problems known as the two-terminal, all-terminal and
K-terminal reliability problems. All of them are known
to be #P -complete even on very restricted classes of net-
works [5–8]. In the context of spreading processes, how-
ever, one is often interested in more global properties in-
stead of the probability that some given set of nodes will
be reached by the process. We thus consider the following
two questions:

1. Expected spreading size: what is the expected sum of
weights of the nodes covered by the spreading process?

2. Probability of large spreadings: for a given α ∈ (0, 1),
what is the probability that the sum of weights of the
nodes covered by the spreading is at least αw(V )?

The above problems map to the unweighted case by choos-
ing a weight equal to one for all nodes.

2 Related work and our results

There has been a lot of work (see e.g. [9–11] and references
therein) on determining properties of spreading processes
on ensembles of networks, which are characterized by spe-
cific distributions for the network data such as the degree
distribution and the spreading probabilities. Typically, a
generating function approach is used to derive analytical
expressions for properties like the critical transmissibility
or the expected spreading size [12], but usually the results

are averages over the whole ensemble of networks consid-
ered and often rely on further assumptions like mean-field
approximations or the non-existence of short cycles that
are only valid in the infinite size limit. Nevertheless, the
predictions obtained from such approximative models are
in many cases remarkably good in the sense that they
match with Monte Carlo simulations of the actual pro-
cess [11,12].

In a recent effort to determine thresholds for spreading
processes on finite graphs rigorously without mean-field
approximations, Draief et al. [13,14] have used probabilis-
tic techniques to derive sufficient conditions for a spread-
ing being small, i.e., affecting an asymptotically vanishing
fraction with high probability. The analysis is based on
the spectral radius of the adjacency matrix of the network,
and the general result is that the spreading stays small if
the ratio of cure to infection rates is larger than the spec-
tral radius. The general result is then applied to different
particular graph classes, partially with similar conditions
for large spreadings. The example of the star network, for
which the expected spreading size can be calculated ex-
actly, shows that the general bound is close to the best
possible. It is interesting to note that the analysis over-
estimates the infection of a given nodes via its neighbors
using Boole’s inequality. In fact, it is exactly the intri-
cate dependency among the infection probabilities of the
neighbors that makes exact computation of the individ-
ual infection probabilities (or s-t reliabilities) difficult. A
further discussion about different techniques for analyzing
spreading processes, the infinite population limit and the
difficulty of short cycles for obtaining rigorous results is
given in [15].

In this paper, we also follow a probabilistic approach,
but we focus on computing the expected spreading size
and the probability of large spreadings for a single (but ar-
bitrary) given network. This is motivated by the fact that
in practise one is often interested in very precise state-
ments for particular network at hand, such as an actual
airline network or a concrete water or gas distribution net-
work [16]. In such examples, the actual structure might be
very different from the ensemble averages of the consid-
ered graph class [17], which is often the case for complex
engineered networks, especially when construction of the
network was subject to a variety technological, physical,
and financial constraints [18]. This setting can be seen
as complementary to the one considered in [13,14] and
to the statistical physics approach, which focuses on en-
semble averages and is instead able to make much more
general statements about how properties of the spreading
process depend on the network structure. As no general-
purpose methods besides Monte Carlo sampling seem to
be available for computing or estimating the above quan-
tities for a given networks up to now (except for simple
special cases), we will study this issue by analysing the
computational complexity (in the usual worst-case sense)
of these tasks, by making use of existing results for relia-
bility problems.

As computing infection probabilities for particular
nodes is intractable in general, it is not very surprising
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that this holds also for the expected spreading size, which
we show in this paper. One is therefore interested in ef-
ficient approximations. The most frequently used method
for obtaining approximate solutions to the above prob-
lems is a direct Monte Carlo approach, where the spread-
ing process is simulated multiple times and the quantity of
interest is estimated by the sample average. This approach
is known to be efficient only if the quantity to estimate is
not too small. Thus, the difficult cases are the estima-
tion of small expected spreading sizes and small probabil-
ities of large spreadings, i.e., the estimation of rare events.
When looking for estimation algorithms we are generally
interested in ε–δ approximations, which are algorithms re-
turning a value accurate up to a relative error of ε with
probability at least 1 − δ. A fully polynomial randomized
approximation scheme (FPRAS) is an ε–δ approximation
with a running time bounded by a polynomial in the input
size and 1/ε.

In Section 3, we show that the problem of computing
the expected spreading size exactly is hard even when the
underlying network is acyclic and unweighted. However,
whereas the direct Monte Carlo approach is an FPRAS
for the unweighted version, the estimation of the expected
spreading size in the weighted version is computationally
of the same difficulty as the s-t reliability problem, for
which no FPRAS is known to date. In Section 4, we give
a formal argument to show that most likely, there is no
randomized constant-factor approximation for the proba-
bility of large spreading sizes even in the unweighted case.
Finally, we propose a method for obtaining an ε–δ approx-
imation of the expected spreading size in the weighted
version. The method is a hybrid of a direct Monte Carlo
approach and existing s-t reliability estimators which are
used as a black-box in our algorithm and whose usage will
be limited since they are typically computationally expen-
sive. Many existing s-t reliability estimators are designed
for estimating very small reliabilities and may perform
poorly when large reliabilities have to be estimated [19].
An important advantage of the proposed method is that
the direct Monte-Carlo approach is only used for the esti-
mation of relatively large reliabilities whereas the special-
ized s-t reliability estimators need only to estimate small
reliabilities. Thus the proposed hybrid algorithm tries to
exploit the complementary strength of both types of esti-
mators. Although the algorithm is not guaranteed to be
efficient, the performance is expected to be better than a
direct Monte Carlo approach. Numerical results to demon-
strate the behavior of the hybrid algorithm are given in
Section 5.

3 Estimating the expected spreading size

We start off by showing that exact computation of the
expected spreading size is hard. More precisely, we show
that the problem is #P -complete, where #P denotes the
complexity class of counting problems for which the num-
ber in question equals the number of accepting paths of
a nondeterministic Turing machine. Typical #P -complete
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Fig. 1. Construction of the spreading network G′ for the re-
duction from the s-t reliability problem in G to the problem of
computing the expected spreading size in G′ used in the proof
of Theorem 1.

problems include computing the permanent of a matrix [8]
or the partition function of the Ising model on general
graphs. For a discussion on the relationship of compu-
tational complexity of counting problems and statistical
mechanics, we refer to [20]. In our case, the expected
spreading size can be expressed as a weighted sum of s-t re-
liabilities, so the enumeration involved relates to the num-
ber of paths that the spreading can take to affect any given
target node t.

Theorem 1. Computing the expected spreading size in
the unweighted case is #P -complete, even when restricted
to acyclic networks and a uniform spreading probability
p ∈ (0, 1), i.e., p(e) = p for all e ∈ E.

Proof. To show that the problem is #P -hard, we build
a reduction from the s-t reliability problem with uni-
form failure probabilities, which is known to be #P -
complete [8]. Let G = (V, E) be an acyclic network, s ∈ V
be the starting node of the spreading process, p ∈ (0, 1)
some fixed uniform spreading probability and t ∈ V \ {s}.
Furthermore, let G′ = (V ′, E′) be the acyclic graph ob-
tained from G by adding a node w and an arc from t to
w (with spreading probability p), see Figure 1. By con-
struction of G′ we have E[|IG′ |] = E[|IG|] + P[w ∈ IG′ ] =
E[|IG|] + pP[t ∈ IG]. Thus, the s-t reliability P[t ∈ IG]
in G can be determined as a function of E[|IG|], E[|IG′ |]
and p, implying that computing the expected spreading
size in an acyclic graph with uniform spreading probabil-
ity is #P -hard. Furthermore, the problem lies in #P as it
can be reduced to the s-t reliability problem by observing
that E[|IG|] can be expressed in terms of s-t reliabilities
as E[|IG|] =

∑
v∈V P[v ∈ IG]. ��

Despite being #P -complete, it is easy to obtain an
FPRAS in the unweighted case just by applying a di-
rect Monte Carlo approach since the expected spread-
ing size is at least 1 as the node s is always infected.
This can be seen by applying the Generalized Zero-One
Estimator Theorem [21], which shows that the direct
Monte Carlo approach for estimating E[|IG|] is an ε–δ
approximation if the number of iterations N satisfies
N ≥ 4(e−2) ln(2/δ)(|V |/ε2). The weighted case, however,
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is of the same difficulty as the s-t reliability problem, for
which the existence of an FPRAS is still unresolved.

Theorem 2. Computing or estimating the expected
spreading size in a weighted spreading network is of the
same computational complexity as computing or estimat-
ing s-t reliabilities on the same underlying graph.

Proof. The s-t reliability of a reliability network G =
(V, E, p) with s, t ∈ V is the expected spreading size on
the spreading network G′ = (V, E, p, s, w) where the node
t has a weight equal to one and all other nodes have zero
weight. On the other hand, the expected spreading size on
a spreading network G = (V, E, p, s, w) can be expressed
as the weighted sum of |V | s-t reliabilities as in the proof of
Theorem 1 as E[|IG|] =

∑
v∈V w(v)P[v ∈ IG]. Thus, an ε–

δ approximation for E[|IG|] can be obtained by getting for
every v ∈ V an ε–δ′ approximation Xv of P[v ∈ IG] with
δ′ = δ/|V | and estimating E[|IG|] by Y =

∑
v∈V w(v)Xv .

Hence, Y is an ε-approximation of E[|IG|] if Xv is an ε-
approximation of P[v ∈ IG] for all v ∈ V , which happens
with probability at least 1−|V |δ′ = 1−δ (this error bound
is even valid when the s-t estimators {Xv | v ∈ V } are not
independent). ��

4 Estimating the probability of large
spreadings

Let α ∈ (0, 1) be the threshold at which an outcome of
a spreading process is considered as large; we call this an
α-spreading. The main idea in this section is to reduce
the K-terminal reliability problem to the problem of es-
timating the probability of large spreading sizes. For this
reduction we need the following simple observation.

Lemma 1. For every weighted spreading network G =
(V, E, p, s, w) with positive integer weights w an un-
weighted spreading network G′ = (V ′, E′, p′, s′) of size
|V ′| = w(V ) and |E′| = |E| + w(V ) − |V | can be con-
structed in O(|E|+ w(V )) time such that w(IG) and |IG′ |
have the same distribution.

Proof. G′ can be constructed on the base of G by adding
for every node v ∈ V a set of w(v)−1 additional nodes and
arcs from v to the added nodes that are active with prob-
ability one. To verify that the distributions of w(IG) and
|IG′ | are equal, one can observe the following correspon-
dence between the random outcomes of the two spreading
processes. Whenever a node v ∈ V , which contributes a
value of w(v) to the weighted spreading spreading size,
is in IG, its corresponding node v′ ∈ V ′ is in IG′ in the
unweighted network, plus the w(V ) − 1 additional nodes
that are connected to v′ as their arcs are active with prob-
ability one. Conversely, any additional node can only be
in IG′ if the node v′ it is connected to is also in IG′ , which
corresponds to the event that its associated original node
v ∈ V is in IG. ��

It is natural to expect that finding the probability of
large spreadings should not be easier than finding the
expected spreading size because by solving (respectively

Fig. 2. (Color online) Construction of the weighted spread-
ing network G′ to which the K-terminal reliability problem is
reduced in the proof of Theorem 3.

approximating) the probability of large spreadings for
different values of α, we could determine (respectively
estimate) the whole distribution of |IG| and not only its
expected value. As usual, the direct Monte Carlo approach
is an FPRAS when the probability of an α-spreading is
bounded by the reciprocal of a polynomial in the input
size, but the following theorem shows that it is hard to ap-
proximate α-spreading probabilities in general and implies
that, unless NP ⊆ BPP , there is no randomized constant-
factor approximation for this problem. Here, NP stands
for the complexity class of decision problems solvable by a
nondeterministic Turing machine in polynomial time (i.e.,
a given solution can be verified in polynomial time), and
BPP (referring to Bounded-error, Probabilistic, Polyno-
mial time) for the class of decision problems solvable by a
probabilistic Turing machine in polynomial time with an
error probability of at most 1/3 for all instances.

Theorem 3. Unless P = NP, there is no constant-
factor approximation for estimating the probability of
α-spreadings for any fixed α ∈ (0, 1), even when the un-
derlying network is unweighted.

Proof. Let G = (V, E, p) be a reliability network, s ∈ V
and K ⊆ V \{s}. We begin by reducing the K-terminal re-
liability problem on G, which asks to determine the prob-
ability that all nodes in K can be reached from s after the
edge failures, to the problem of determining the probabil-
ity of an α-spreading in a weighted spreading network G′
with positive integer weights. The network G′ is obtained
from G by adding an additional isolated node r with a
weight of �2 1−α

α |K||V |�. Furthermore, we assign a weight
of 	 α

1−α |V |
 to the node s, a weight of 2|V | to each node
in K, while other nodes have unit weight (see Fig. 2). We
now have to check that a spreading in G′ is an α-spreading
if and only if the spreading reaches all nodes in K. We can
upper bound the weight of G′ as

w(G′) = w(s) + w(V \ (K ∪ {s})) + w(r) + w(K)

=
⌈

α

1 − α
|V |

⌉

+ |V | − |K| − 1

+
⌊

2
1 − α

α
|V ||K|

⌋

+ 2|V ||K|

≤ 1
1 − α

|V | + 2
α
|V ||K|
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so hitting the set K is sufficient for having an α-spreading.
A lower bound on w(G′) is given by

w(G′) = w(s) + w(V \ (K ∪ {s})) + w(r) + w(K)

=
⌈

α

1 − α
|V |

⌉

+ |V | − |K| − 1

+
⌊

2
1 − α

α
|V ||K|

⌋

+ 2|V ||K|

≥ 1
1 − α

|V | − |K| − 2 +
2
α
|V ||K|

which together with the observation that

w(G′) − 2|V | < w(s) + w(K) − 2|V | + |V | − 2 < αw(G′)

shows that hitting K is also necessary to have an α-
spreading. Thus, the probability of an α-spreading in G′
is exactly the K-terminal reliability in G. Furthermore,
the input size of G′ is still bounded by a polynomial of
the input size of G. Lemma 1 implies that the role of G′
can be replaced by an unweighted spreading network with
input size being polynomial in the size of G. Finally, since
there is no constant-factor approximation for K-terminal
reliability unless P = NP [5], the theorem follows. ��

5 A hybrid estimation algorithm

We propose a simple hybrid algorithm for estimating the
expected spreading size, which is based on the fact that an
ε–δ approximation of E[|IG|] can be obtained by ε–δ′ ap-
proximations of the s-v reliabilities for all nodes v ∈ V as
shown in the proof of Theorem 2. We can therefore profit
from a large set of known algorithms for computing, ap-
proximating or bounding s-t reliability on different types
of graphs [22–29].

The key idea is that we do not have to estimate the
s-t reliabilities separately for all nodes in V . As usual, the
s-v reliabilities that are not very small can easily be es-
timated by a direct Monte Carlo algorithm. This can be
done by applying a direct Monte Carlo approach for some
fixed number of iterations and determine for all nodes the
fraction of outcomes in which they were reached by the
spreading process. For each node v ∈ V for which the es-
timation of the s-v reliability by the direct Monte Carlo
approach is not an ε–δ′ estimation we estimate the s-v re-
liability by applying one of the known s-t reliability esti-
mation algorithms. Thus, the specialized algorithm is only
applied for the estimation of small s-t reliabilities, which
is the problem setting for which those algorithms are typi-
cally designed. To determine whether for some given node
v, the estimated s-v reliability is an ε − δ′ approximation
we used the criterion presented in the Stopping Rule Al-
gorithm in [21].

To demonstrate the behavior of the hybrid estima-
tion algorithm we give computational results on a directed
acyclic Delaunay graph. An instance is characterized by
two parameters, the number of nodes n and a uniform arc

s

Fig. 3. Instance of a directed acyclic Delaunay graph used as
a test case. The shading of the nodes indicates their weights.

spreading probability p, and created as follows. We dis-
tribute n nodes uniformly at random in the unit square
and consider the undirected graph given by a Delaunay
triangulation of these points. The initially infected node
s is chosen as the node closest to the origin. The edges
are then oriented towards the node with the maximum
Euclidean distance to s, which we call t. Thus, an (undi-
rected) arc {v, w} is oriented as (v, w) if the vector from
v to w and the one from s to t have a non-negative scalar
product, otherwise we take the orientation (w, v). We then
equip all nodes with a weight that decreases exponentially
with the distance from t. Figure 3 shows the generated test
instance with the node weights indicated in different gray
scales, from smallest (white) to largest (black) weight. We
chose n = 100 and p = 0.1.

As a Delaunay graph is planar, it allows a nice two-
dimensional illustration of the progression of the estima-
tion accuracies for the individual nodes, as shown later in
Figure 5. Moreover, the degree distribution is more het-
erogeneous compared to a regular lattice, which makes it
more interesting, while the average path lengths are not
too small. In other words, we chose an instance that should
be difficult for simple Monte Carlo sampling and good to
visualize.

We start the algorithm with target confidence 1 − δ
with δ = 0.001 and target approximation error ε = 0.01.
Figure 4 shows how the estimated weighted spreading
size develops over time for the direct Monte Carlo sam-
pling, which is applied in the first phase. It is noticeable
that even after a large number of iterations, the Monte
Carlo estimator fluctuates considerably, and the guaran-
teed accuracy of one percent is only reached after about
8 × 109 iterations (almost 104 s of execution time). In
comparison, we switch to the second phase and apply
a dedicated s-t reliability approximation algorithm after
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Fig. 4. Results of a sample run showing how the estimated
spreading size develops over time.

2 × 107 interactions, which corresponds to the first data
point in Figure 4. At this point, the accuracy of the indi-
vidual s-t reliabilities from the Monte Carlo sampling is
as displayed in Figure 5, where the gray scale indicates
the accuracy, and nodes beyond the dotted boundary are
still not within the one percent accuracy range (for the
adjusted confidence 1 − δ′ with δ′ = δ/n = 10−5). The fi-
nal ε-δ approximation after phase 2 is then obtained much
faster, as indicated in Figure 4, which shows the benefit of
the hybrid approach using targeted importance sampling.

6 Conclusions

The complexity of determining the expected final size of a
spreading process and the probability of large spreadings
in networks with unweighted and weighted nodes was an-
alyzed. All of the considered problems are difficult when
an exact solution has to be found. However, when we are
interested in efficient approximations, the problems can
be divided into three groups:

1. Problems for which an FPRAS is known (expected
spreading size in the unweighted case).

2. Problems for which no FPRAS is known but we neither
have an argument that it is hard to find one (expected
spreading size in a weighted network), and

3. Problems for which no FPRAS is known, and we have
an argument showing that it is hard to find one (prob-
ability of large spreadings in the weighted and un-
weighted case).

It would be of particular interest to close the gap for the
problem of estimating the expected spreading size in a
weighted network, that is, either to find an FPRAS or to
prove that this problem is hard. As we have seen in Sec-
tion 4, this is equivalent to answering the same question
for the s-t reliability problem. Another interesting direc-
tion would be to develop practically useful algorithms for

s

Fig. 5. Map of the accuracies obtained after 2×107 iterations
of direct Monte Carlo sampling.

the different problems we studied for instances that can-
not be solved efficiently by direct Monte Carlo simulation.
The hybrid algorithm proposed here would be one option,
although it is not guaranteed to be efficient.

The questions considered in this paper are mainly of
computational nature, focusing only on the quantity of in-
terest and not on how this number depends on structural
properties of the network. The results are thus applicable
to concrete networks whose link structure is completely
known and relatively fixed compared to the time scale of
the spreading process, and where it is important to deter-
mine the risk and impact of a spreading as precisely as pos-
sible for this particular network. This setting might also be
relevant for the interaction networks of meta-population
models [1], where the number of nodes (sub-populations)
might be too small to justify the infinite size limit and ex-
act computation on a single instance is the main interest.
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