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II
n the 27 December 2010 issue of New Scientist,

1

several articles discussed progress in predicting the
timing of new discoveries and forecasting the future of

science and technology. In particular, Samuel Arbesman
and Rachel Courtland used the waiting times for solving 18
mathematical problems to estimate the probability that the
‘‘P versus NP problem’’ will be solved by 2024: they arrive
at roughly 50% [1]. To do this, they constructed an
approximate representation of the cumulative distribution
of waiting times from formulation to proof (referred to as
‘‘times-to-proof’’ hereafter), based on this set of 18 solved
mathematical problems.

Their methodology created a heated debate on the New
Scientist website [2]. For instance, a comment posted on 3
February 2011, 10:27:11 GMT, criticized the authors’
methodology, stressing that ‘‘their method of estimation
looked only at problems that actually were solved,’’ which
may introduce a selection bias. A more formal attack was
published in New Scientist on 2 February 2011 [3]. In a
nutshell: using a probability distribution amounts to
assuming that the underlying generating process is sta-
tionary, but stationarity may not hold over the decades and
centuries corresponding to the investigated data, as the
population of mathematicians has grown significantly and
their theorem-proving technology has arguably improved
due, e.g., to cumulative knowledge, computers, and col-
lective work mediated by Internet and social network tools.

Nevertheless, we think the question posed by Arbesman
and Courtland is interesting. Not only is it an attempt to
guess when an unsolved problem such as the P versus NP
conjecture might be settled, but it also raises the issue of the
evolution of productivity of mathematics throughout his-
tory. In this spirit, we revisit this question and analyze a
larger database of 144 conjectures including both closed
and open conjectures.

But first, we assure you that we are well aware of the
main caveats with attempting a statistical quantification of
the generation of mathematical results during its (relatively
recent) history.

First, any assessment of the time-to-proof distribution of
mathematical conjectures can be criticized as being mean-
ingless if it ignores their content and context as well as
several other issues. Specifically,

1) A ‘‘time-to-proof’’ depends on the content of the
conjecture. Related to the content is the question of
whether mathematicians judge the conjecture worth
pursuing, and why. This is not unique to mathematics.
Indeed, consider a typical individual (a mathematician
in our context) who is subjected to a flow of information

1http://www.newscientist.com/article/mg20827923.700-2011-preview-milliondollar-mathematics-problem.html.
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(research papers to read, conferences she is attending,
visits of colleagues, and so on) and requested tasks
(teaching, administration, etc.), under time, energy,
regulatory, social, and monetary constraints. She will
respond by a sequence of actions that themselves
contribute to the flow of influences spreading to other
mathematicians. Remarkably, stationary distributions
have been documented quantitatively for the waiting
times between triggering factor and response of a
number of human activities, such as the waiting times
until an e-mail message is answered [4], the time
intervals between consecutive e-mails sent by a single
user and time delays for e-mail replies [5], the waiting
time between receipt and response in the correspon-
dence of Darwin and of Einstein [6], and the waiting
times associated with web browsing, library visits, and
stock trading [7]. In each of these activities, one could
forcefully argue that the reported distributions may be
meaningless, aggregating ‘‘carrots’’ and ‘‘potatoes,’’
because each single different human activity is strongly
influenced by its specific content and the proximate
interest it represents to its user. Yet, the evidence
suggests a kind of universal behavior that is worth

investigating, even for mathematical conjectures.
Despite the variability in the characteristics of conjec-
tures (and of other human problems and activities),
there might be a homogenous process underlying the
generation of the problems and their resolutions. In this
spirit, although the underlying generating mecha-
nism(s) of the purported distributions are not known
for certain, we suggest that recent modeling progress
based on priority queuing theory may be relevant [8, 9].
Another theoretical approach consists in thinking of
mathematical research as a bundle of random walks in
some high-dimensional mathematical space, such that
intersections between them or crossing of some bound-
ary corresponds to a successful outcome and the
establishment of the proof. Such models have been
argued to apply for instance to the space of investment
strategies used by a large populations of traders,
explaining the long memory of financial volatility as
resulting from the statistical properties of random walk
crossing in arbitrary spaces [10].

2) In addition, the definition of what constitutes a ‘‘proof’’
has changed with time, and, within a given definition
paradigm, proofs hold different standings. For instance,
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consider the famous first proof [11, 12] of the four-color
theorem. No human or group of humans has currently
verified this proof in full, and hence some may not
consider it fully proven. Its status has in fact been
evolving through time, with the initial lengthy com-
puter-assisted proof [11, 12] being confirmed later by
simpler proofs that rely on well-tested general purpose
theorem-proving software [13]. This raises the question
of which proof to use to measure a time-to-proof. There
are also a variety of proof types, such as constructive
and nonconstructive. We propose to refer to the
‘‘wisdom of crowds’’ or, more precisely, the wisdom
of the mathematical community, which has built up
collectively the list of conjectures and their proofs,
reported in the free web encyclopedia Wikipedia. We
comment later on the quality of this dataset.

3) Finally, some famous conjectures might in fact be
undecidable. This corresponds to the situation where
there is a nonzero probability mass (atom) at infinity in
the distribution of time-to-proof, a situation that is
generic in priority queuing models when the average
arrival rate of tasks to perform is larger than the average
rate of performing or solving these tasks [8, 9]. This has
also been documented empirically in the distribution of
waiting times exhibited by human users before upgrad-
ing computer programs [14]. Thus, our expression (7)
below has to be restricted to the set of decidable open
conjectures, which we do not know a priori. Thus,
deviations from relation (7) by the empirical distribu-
tions of closed and open conjectures may be taken as
diagnostics of the existence of such undecidable con-
jectures. In the following, we discuss other issues
involved with (7) resulting from the additional and
arguably dominating nonstationarity.

With these caveats, we use the larger Wikipedia data-
base of 144 conjectures including both closed and open
conjectures to dissect the major problems associated with
the inference of the distribution of times-to-proof for
mathematical conjectures, given the available data and the
intrinsic nonstationarity of the system. We show that, even
under the naı̈ve assumption of constant average produc-
tivity per mathematician, because of the approximate
exponential growth of the mathematician population, the
true time-to-proof distribution is hidden, preventing us
from analyzing it directly. Moreover, even under the
assumption of a constant average productivity per mathe-
matician, we could not reject the simplest model of an
exponential rate of conjecture proof with a rate of 0.01/year
for the dataset (translating into an average waiting time to
proof of 100 years). Our analysis highlights the major
challenges behind applying quantitative methods to the
assessment of time-to-proof.

First, we present the dataset. Then, we review and adapt
the theory of recurrence processes to the distribution of
time-to-proof. In subsequent sections, we present the
empirical distribution of time-to-proof obtained from our
dataset, formulate the consequences of the nonstationarity
of the births of conjectures, and combine this nonstation-
arity with different models for the intrinsic distribution of

time-to-proof to fit the empirical distributions. Finally, we
stress the caveats of the proposed analysis.

Dataset
The dataset that the mathematical community has collec-
tively contributed in constructing the page ‘‘list of
conjectures’’ in Wikipedia, the free web encyclopedia,
consists of about 160 proved and unsolved conjectures [15].
Although it is difficult, if not impossible, to establish that
this list is representative and does not represent a biased
sample, other tests have shown that the accuracy of Wiki-
pedia’s articles compares well with that of the standard,
Encyclopaedia Britannica [16]. We think it better to try to
work with what is available than to do nothing. At least we
may learn something about the limitations that we need to
overcome. And even a small partial insight toward this grail
of characterizing the process of mathematical creativity and
production is worth trying. Perhaps this article will
encourage the community to develop a more extensive
database of mathematical conjectures, in the spirit of the
Erdös Number Project [17] in Graph Theory, which studies
research collaboration among mathematicians.

Distribution of Time-to-Proof: Definition
and Theory
For each conjecture i present in the ‘‘list of conjectures’’ in
Wikipedia, we searched for the exact year ti

1 when it was
stated and the exact year ti

2 when it was resolved (or
whether it still remains open), always striving to obtain the
first original source or reference. For 16 conjectures, we
were unable to determine the exact values of ti

1 and/or ti
2,

thus reducing our usable dataset to 144 conjectures, of
which 60 have been solved so far (January 2012) and 84 are
still open problems.

We determine the time-to-proof sc
l for each of the 60

conjectures that have been solved (or proven wrong) using
the formula

sc
l :¼ ti

2 � ti
1 ð1Þ

For the 84 open conjectures, the relevant variables are the
so-called ‘‘backward recurrence times’’ defined by

sb
l :¼ t � ti

1 ð2Þ

where t is 2012. We study the complementary cumulative
distribution functions (ccdf) (also called ‘‘survivor func-
tions’’) ScðsÞ and SbðsÞ corresponding to the times-to-proof
sc
i and sb

i , respectively.
We will assume that the generating mechanisms for the

waiting times to proof of closed and open conjectures are
similar. At first glance, one might think that closed and
open conjectures form two distinct classes, with closed
conjectures easier to solve because they have been solved.
This argument may be valid for conjectures that have been
closed very fast, say on time scales ranging from months to
a few years. However, for conjectures that we examine that
have taken decades or centuries to close, we find this
argument less compelling. Indeed, any conjecture that
takes decades or more to close forms a kind of bold
extension to current knowledge and to existing

12 THE MATHEMATICAL INTELLIGENCER



mathematical ‘‘technology.’’ The formulation of such a
challenging new conjecture is an intrinsic part of the research
and creative process. We propose that the reason open
conjectures still remain open is because tools and ideas have
not yet reached the threshold needed for their solution.

Moreover, we assume more boldly that the average
productivity per mathematician contributing to this dis-
covery procedure is constant throughout the years. This
may or may not be the actual case. However, with this
assumption we can turn to the other major challenges
(beside data availability) that underlie the application of
any quantitative methods to the assessment of the time-to-
proof distribution.

The mathematical theory of interval distributions for
stationary point processes provides an exact correspon-
dence between the survival functions of closed conjectures
and open conjectures that we can use when interpreting
the empirical distributions. Defining N ðs; sþ t� as the
number of events in the time interval ðs; sþ t� (which
excludes the left side and includes the right side of the time
interval), the backward recurrence time of an event gen-
erated by a point process, is defined formally as

st :¼ inffu [ 0 : N ðt � u; t�[ 0g ð3Þ

where t ¼ 2012 [18]. In words, it is the time interval from
the latest event (the formulation of a conjecture) to present
(at which time the conjecture is still open), such that there
is one event in this interval. For a stationary process, we
have the identity [19]

PrfN ð0; sÞ� 1;N ðs; sþ tÞ ¼ 0g
¼ PrfN ðs; sþ tÞ ¼ 0g � PrfN ð0; sþ tÞ ¼ 0g ð4Þ

In words, the probability PrfN ðs; sþ tÞ ¼ 0g that there are
no events in ðs; sþ tÞ is equal to the probability
PrfN ð0; sþ tÞ ¼ 0g that there are no events in ð0; sþ tÞ
plus the probability PrfN ð0; sÞ� 1;N ðs; sþ tÞ ¼ 0g that
there are no events in ðs; sþ tÞ and at the same time there is
at least one event in ð0; sÞ. In other words, the fact that the
interval ðs; sþ tÞ has no event can be associated with the
occurrence of either no event or of some events earlier in
ð0; sÞ. Dividing both sides by s, taking the limit s) 0 of
expression (4), and using the definitions

Sc tð Þ ¼ lims!0PrfN ðs; sþ tÞ ¼ 0jN ð0; sÞ� 1g ð5Þ

and

Sb tð Þ ¼ PrfN ð0; tÞ ¼ 0g ð6Þ

for the complementary cumulative distribution functions
ScðsÞ and SbðsÞ corresponding to the times-to-proof sc

i and
sb
i , respectively defined by (1) and (2), identity (5) trans-

lates into the Palm-Khinchin relation [18–20]

SbðtÞ ¼ �
1

k
d

dt
ScðtÞ ð7Þ

where k is the inverse of the average time-to-proof (i.e.,
k ¼ lims!0PrfN ð0; sÞ ¼ 1g=sÞ. The conditioning in (5)
ensures that the counting of the time to the next event is
indeed starting from the previous one (the condition
N ð0; sÞ� 1Þ:

Empirical Distributions of Time-to-Proof
The birth flow of mathematical conjectures is not uniformly
distributed with time. For the dataset of 60 solved conjec-
tures, Figure 1 shows a scatter plot, with the abscissa giving
the year when the conjecture was stated and the ordinate
the year when it was solved. The time axes cover the
period from 1600 CE to present. We can see that the plot is
significantly crowded at the upper right part of the figure.
This implies that the birth flow of conjectures is increasing
with time.

Figure 2 quantifies this visual impression by showing
the cumulative number of stated problems NclosedðtÞ (that

Figure 1. Scatter plot showing when a mathematical problem

was stated and when it was resolved for the 59 closed problems

(excluding the honeycomb conjecture) in our dataset, starting

from the year 1600.

Figure 2. Cumulative number of stated problems NclosedðtÞ
that have found a solution (circles), cumulative number of

stated problems NstatedðtÞ that are both closed and still open

(triangles), and cumulative number NsolutionðtÞ of the solutions

of the solved problems (crosses) from 1850 CE to 2000. The

continuous lines correspond to the exponential growth mod-

els (8–10).
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have found a solution) and NstatedðtÞ (that are both closed
and still open) and the cumulative number NsolutionðtÞ of the
solved problems from 1850 CE to 2000. Exponential growth
models fit rather well the different data sets. The best fits to
these three data sets give, respectively

NclosedðtÞ ¼ exp½0:02 � ðt � 1790Þ� þ 1:9 ð8Þ

NstatedðtÞ ¼ exp½0:02 � ðt � 1875Þ� þ 2:3 ð9Þ

NsolutionðtÞ ¼ exp½0:035 � ðt � 1902Þ� � 6:5 ð10Þ

where t is given in units of years and is counted since the
beginning of the present era. Table 1 summarizes the
estimated parameters together with their 95% confidence
intervals.

The average growth rate of the number of new conjec-
tures is approximately equal to 0.02 year-1, corresponding
to a tripling of the number of new conjectures every
55 years. This growth rate is close to the average growth
rate of the world human population over the same period,
as shown in Figure 3. The best exponential fit to the world
population from 1750 to present (data retrieved from the
United Nations website [21]) is

N ðtÞ ¼ exp½0:018 � ðt � 1905:6Þ� þ 0:552 ð11Þ

Taking the growth of the world population as a proxy for
the growth of the number of mathematicians (though this

may underestimate the true number of mathematicians),
we see that the average growth rate of the number of new
conjectures is closely tied to the increase of the population
of mathematicians. This average exponential law (11) is
only a first-order approximation, as it is well known that
the growth rate of the world population has varied signif-
icantly during the last few centuries [22–24]. However,
given the coarse-grained nature of our dataset on mathe-
matical conjectures, the average exponential growth (11)
provides a reasonable first representation of the nonsta-
tionarity resulting from the increase of the population of
mathematicians.

The Consequence of Increasing Birth Flow
The exponential growth of the birth flow of conjectures
implies that the observable distribution of times-to-proof
is bounded by an exponential distribution with rate 0.02.
In other words, it cannot decay more slowly asymptoti-
cally than an exponential with rate 0.02. In terms of a
CCDF plot, this implies that the empirical times-to-proof
distribution of closed and open problems lies to the left of
this exponential distribution. To see this, write the distri-
bution PðsÞ of waiting times between formulation and
proof in terms of the rate rðt1Þ ¼ r0eat1 of conjecture for-
mulations and of the conditional distribution p(t2|t1) =

f(t2 - t1) that the conjecture will be proved at t2 given that
it has been formulated at t1. We assume a constant growth
rate a for r(t1) and stationarity for p(t2|t1). This second
condition provides an upper bound for the distribution. In
other words, the true distribution will decay at least as fast
as derived from the assumption of stationarity of p(t2|t1).
We have

PðsÞ ¼
Z t

0

dt1

Z t

0

dt2rðt1Þpðt2jt1Þdðt2 � t1 � sÞ

¼ r0

Z t

0

dt2eaðt2�sÞf ðsÞ ¼ Ce�asf ðsÞ ð12Þ

where

C ¼ r0

Z t

0

dt2eat2 ð13Þ

Thus, PðsÞ decays no more slowly than e�as
, that is,

proportionally to the inverse of the rate of conjecture
births.

Figure 4 plots the CCDF of the times-to-proof of closed
and open conjectures defined by equations (1) and (2),
together with the exponential bound derived above.
Comparing the three distributions, we see that the CCDF
for the open conjectures lies above the exponential bound.
This implies that a significant number of conjectures are
likely to be still missing in the bulk of the distribution. In
other words, there are many missing conjectures with
intermediate values of their time-to-proof, compared with
the conjectures with extremely large waiting times. Figure 5
depicts the empirical distribution obtained by removing all
times-to-proof smaller than 20 years, that is, by introducing

Figure 3. Growth of the world population from 1750 to

present (data retrieved from the United Nations website [6]),

taken as the simplest proxy for the growth of the relevant

population of mathematicians. This growth can be reasonably

approximated by an exponential growth given by expression

(11) (continuous line).

Table 1. Summary of the estimated parameters for equations (8) to (10)

a b c

N_closed 0.02 [0.019,0.021] 1790 [1778,1802] 1.9 [0.78,3.02]

N_stated 0.02 [0.019,0.021] 1875 [1865,1885] 2.3 [-0.09,4.7]

N_solution 0.035 [0.031,0.039] 1902 [1889,1915] -6.5 [-9.4,-3.57]

The fitted equation is N ðtÞ ¼ exp½a � ðt � bÞ� þ c. Numbers in square brackets

represent 95% confidence intervals.
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a lower threshold, so that we can hope that the number of
missing conjectures is reduced and the data are less
incomplete. We can see that the time-to-proof of closed
and open conjectures lies just on the exponential bound,
except for the four largest data points to which we will
return later. Pushing the threshold above 20 years does not
change this behavior that both CCDF’s lie on the expo-
nential bound. The fact that the two distributions coincide
confirms that the underlying distribution of time-to-proof is
asymptotically close to an exponential distribution.

Simulation Analysis
We now attempt to find distributions of time-to-proof and
their associated parameters that could generate the distri-
butions shown in Figure 5. We first generate a set of N
instants ti

1; i ¼ 1; . . .;N , corresponding to the formulation
times of N mathematical problems. These N times are
sampled according to a Poisson process with an intensity
growing exponentially with the rate 0.02 year-1, obtained
from the fits shown in Figure 2. This generation of con-
jectures mimics the structure of our dataset. This reflects a
scenario in which each mathematician generates on
average the same number of conjectures per unit time,
while the number of mathematicians increases roughly
exponentially in parallel with the growth of the human
population. A naı̈ve approach would go as follows. For each
conjecture inception time t1

i , we draw a random number sc
i

corresponding to the time-to-proof of this conjecture. This
random number sc

i is generated by using an intrinsic distri-
bution associated with the way mathematics would be
practiced by apopulation ofmathematicians of constant size,
technology, and mental prowess.

We have constructed synthetic catalogues of conjectures
with their birth and proof times, using four different fami-
lies of distributions, namely exponential, lognormal,
inverse Gaussian and Burr type-III distribution. For each of
these four families of distributions, the parameters were set
so as to fit the empirical distribution as closely as possible
and, at the same time, to reproduce the ratio of the number
of closed to open conjectures (i.e., 42:80). For the expo-
nential family, we find that the rate k ¼ 0:01/year provides
the best fit. For the lognormal distribution, the best
parameters correspond to a log-average of l ¼ 4:2, and
standard deviation r ¼ 1:2. For the inverse Gaussian dis-
tribution,

figðxÞ ¼
k

2px3

� �0:5

exp
�kðx � lÞ2

2l2x
ð14Þ

the best parameters are k ¼ 170, l ¼ 72:25. For the Burr
distribution

pdfBurrIII ðxÞ ¼
cd

xcþ1ð1þ x�cÞdþ1
ð15Þ

the best parameters are c ¼ 0:5, d ¼ 3. As was expected
from the result of the previous section, the goodness of fit
of the distributions seems to be slightly better for distri-
butions that asymptotically behave like an exponential
distribution rather than a power-law distribution. For this
reason, we show only the distributions for the exponential
family together with the empirical distributions in
Figure 6.

The paucity of our dataset makes it nearly impossible to
distinguish whether one of these distributions provides a
better fit than any other distribution. Using the exponential
distribution corresponds to following Occam’s razor of
parsimony with the simplest model providing the best fit.
This suggests that most of the conjectures in our database
can be described approximately by an underlying waiting
time-to-proof distribution that is an exponential distribution
with rate of 0.01/year.

Figure 5. Complementary cumulative distribution functions

(ccdf) of the times-to-proof for open problems (rectangles),

closed problems (circles), and an exponential distribution with

rate 0.02 (continuous line), obtained by introducing a lower

threshold equal to 20 years, that is, by removing all times-to-

proof smaller than 20 years.

Figure 4. Complementary cumulative distribution functions

(ccdf) of the predicted times-to-proof for open problems

(rectangles), closed problems (circles), and an exponential

distribution with rate 0.02 (continuous line).
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Concluding Remarks
As we dug into this statistical analysis, we realized the need to
take into account the strong nonstationarity of the problem.

As Figure 6 suggests, our best model is not the whole
story. In particular, a half-dozen closed conjectures depart
rather significantly from the proposed best model. One
possible reason for this deviation is that the assumption of
an exponential growth of the rate of conjecture births may
be too simple due to the known deviation of the human
population growth from a simple exponential process [22–
24]. A more realistic birth-flow model of conjectures would
be to observe the impact of a possible increase in mathe-
matical productivity.

Another question is the incompleteness of the available
dataset, in particular of the likely severe undersampling of
the many conjectures whose time-to-proof is in the range of
years to a few decades. Only conjectures that have resisted
mathematicians’ assaults or have played particularly dis-
tinguished and meaningful roles in the structure and history
of mathematics are likely to acquire the status and fame to
be recorded in databases such as the one we have used. We
also neglected the possibility that the average productivity
per mathematician might not be stationary. With the
advances of modern technology, assuming that nonsta-
tionarity stems only from the increase in the population of
mathematicians might be overly simplistic. However, with
our limited data, it is impossible to disentangle this factor
from the growth of the mathematician population. These
remarks illustrate the difficulties associated with any
attempt to extract the distribution of time-to-proof that
would really show the intrinsic productivity of mathemati-
cians throughout history.

To conclude, notwithstanding all these difficulties and
caveats, if we have to make a best guess and revisit the

question first raised by Arbesman and Courtland (2010), we
can use the exponential distribution with rate 0.01/year
together with the exponential growth of the mathematician
population to calculate the probability that the ‘‘P versus
NP problem’’ will be solved by the year 2024. We calcu-
late the value 41.3% (with the 95% confidence interval
being [38.3; 44.4%]). This suggests that Arbesman’s and
Courtland’s original estimate of a 50% chance [1] was
somewhat optimistic but was still of the right order of
magnitude.
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