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Abstract In the present work a general theoretical framework for coupled
dimensionally-heterogeneous partial differential equations is developed. This is done
by recasting the variational formulation in terms of coupling interface variables. In such
a general setting we analyze existence and uniqueness of solutions for both the con-
tinuous problem and its finite dimensional approximation. This approach also allows
the development of different iterative substructuring solution methodologies involving
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dimensionally-homogeneous subproblems. Numerical experiments are carried out to
test our theoretical results.

Mathematics Subject Classification (2000) 35J20 · 65N55 · 65N30

1 Introduction

The geometrical multiscale modeling, that is the use of dimensionally-heterogeneous
representations of different physical systems, has been successfully applied in the past
few years in different fields [5–8,12,14,16,19,24]. The appealing aspect of such an
approach is that it allows for the interaction between different geometrical scales in
a given system. For instance, in the context of the cardiovascular system this allows
for the integrated modeling of the hemodynamics, taking into account the interplay
between the global systemic dynamics and the complex local blood flow behavior
[5,7,8,12,14,24].

Although domain decomposition methods are commonplace in practice when cou-
pling dimensionally homogeneous models, dimensionally heterogeneous models have
made the object of a rigorous analysis only sporadically (see for example the recent
publication [15]).

Motivated by the relevance of such models in several applications, and because
of the lack of a general analysis, in the present we aim at: (1) providing a general
framework for such kind of problems as well as to carry out an abstract analysis
including a study of existence and uniqueness of solutions in the continuous and in
the discrete cases, and (2) carrying out a systematic construction of partitioning meth-
odologies in the context of domain decomposition methods. As a matter of fact, some
alternative possibilities to those encountered in the classical domain decomposition lit-
erature, specifically devised for the dimensionally-heterogeneous case, are presented
and discussed. Regarding this last point we will set the baseline on top of which the
partitioning methodologies which are proposed in [15] are built.

In order to see where we stand for with the analysis and examples presented in
this work, in Fig. 1 we summarize the different contexts in which domain decompo-

Fig. 1 Application of domain decomposition concepts to different modeling problems
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sition strategies can be employed. Particularly, we point out that the construction of
a model comprises the definition of two basic elements which determine its nature:
(1) the differential operator which represents the main physical phenomenon, and (2)
the dimension of the Euclidean space in which such operator is going to be consid-
ered. Classical domain decomposition methods were born in the setting of models
sharing the same operator in the same Euclidean space (see [18,22,23] and references
therein). Heterogeneous domain decomposition methods (see [18, Chapter 8] for some
examples) are referred to those cases in which the differential operators are not the
same in different regions of the computational domain. In this category we can include
also the fluid-structure interaction coupling, Stokes-Darcy coupling, pure advection
and advection-diffusion coupling, among others (see, e.g., [2,9,10,13,20]). On the
other hand, when models with different geometrical dimensions are employed, this is
referred to as a dimensionally-heterogeneous domain decomposition method.

In this paper, we will show the way the coupling of elliptic dimensionally-
heterogeneous operators fits within such an abstract setting. Concerning the appli-
cations we present numerical examples of a 2D-1D coupled problem involving also
the Laplace operators and a 3D-1D coupled problem in the field of linear elasticity.
These examples are employed to test the validity of our theoretical results.

The present work is organized as follows. In Sect. 2 we formulate the general prob-
lem. Section 3 presents, for the simplest configuration of two coupled heterogeneous
models, some theoretical results about existence and uniqueness and also provides
the guidelines for setting up partitioning methods for the segregated solution of these
problems. In Sect. 4 we extend the framework and the corresponding results for some
cases involving multi-component systems, while in Sect. 5 the discrete problem is
addressed and some results are developed. Numerical experiments rendering some
applications and testing the theoretical results are elaborated in Sect. 6. Finally, the
main conclusions of the work are drawn in Sect. 7.

2 Abstract setting for heterogeneous coupling

2.1 Preliminaries

Let us assume that a physical system is split into two parts and that, based on the char-
acteristics of the system itself, one of the two parts can be described via a dimensionally
reduced model. A three-dimensional hydraulic network is a clear example where some
of the pipes can be described by simplified 0D algebraic relations between flow and
pressure drop, or by any other simple representation instead of considering, e.g., the
full Navier-Stokes equations in 3D. In abstract terms we deal with two kinds of models
that will be referred to as complex dimensional and simple dimensional models, or
in compact form, CD-model and SD-model. Generally speaking we can consider a
wide range of combinations of the form CD-SD with C = 1, 2, 3 and S = 0, 1, 2. In
this context we will speak of admissible combination when C > S. Therefore, we can
have situations like the coupling of 3D-2D models, where in this case the 2D acts as
the simple model, or 1D-0D models where the 1D is the complex representation.

From now on we will stick to the following assumptions for the sake of boundedness
in the work.
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Fig. 2 Scheme of the geometrical and mathematical setting

Assumption 1 We consider the cases C = 1, 2, 3 and S = 0, 1, 2 satisfying C > S

(admissible combinations).

Assumption 2 We consider only two models at the same time in a given system,
that is one CD-model and one SD-model. More general situations could involve, for
instance 3D-1D-0D representations for different parts of the system. There is no loss
of generality due to this last assumption.

In the first part of this work we develop all the theoretical results for a representation
involving two dimensionally-heterogeneous models, that is a system with one single
coupling interface. The extension to multi-component systems is carried out at a later
stage.

2.2 Extended variational formulation for heterogeneous coupling

Let UC be a Hilbert space on the domain �C, ÛC ⊆ UC be a subspace of UC and
UC ⊆ UC be the affine manifold associated to ÛC which accounts for the boundary
conditions of the problem of interest.

Let us consider the following dimensionally-homogeneous variational problem cor-
responding to the CD-model defined in a domain �C of the Euclidean space R

d(d =
1, 2, 3): find uC ∈ UC such that

aC(uC, ûC) = fC(ûC) ∀ûC ∈ ÛC,

where aC : UC ×UC → R is a bilinear continuous form, and fC : UC → R is a linear
continuous functional. We assume that aC is coercive on ÛC with respect to the norm
‖·‖UC

. In the rest of the paper we will denote by ‖v‖ÛC
and ‖w‖UC

the norm of v ∈ ÛC

and w ∈ UC, respectively. Notice that these norms are equivalent to the norm ‖ · ‖UC
.

Assume now that one part of the domain�C is replaced by a S-dimensional domain
�S where, instead of uC, we have the unknown uS ∈ US. The CD and the SD models
are suitably coupled through the coupling interfaces, �C and �S, as made clear later.

A schematic figure of the modeling problem we are addressing here is shown in
Fig. 2.

We need to identify the trace spaces over such interfaces denoted by �C and �S

and the corresponding dual spaces �′
C

and �′
S
.

Moreover, we consider the following restriction operator

RS : �C → �S, uC|�C
�→ RSuC|�C

.
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This operator must be surjective, but not necessarily injective, so in general it is not
invertible. Indeed, we may have u1

C
, u2

C
∈ UC, u1

C
	= u2

C
, such that RSu1

C|�C
=

RSu2
C|�C

.
Furthermore, we introduce the following extension operator

EC : �S → �C, uS|�S
�→ ECuS|�S

.

In turn, this operator must be injective, but in general not necessarily surjective, there-
fore, it is not invertible. Both the restriction and extension operators are linear and
continuous.

From now on we will omit the notations |�C
and |�S

since it will always be clear
from the context on which interface we are working.

Let US be a Hilbert space on the domain �S, ÛS ⊆ US be a subspace of US and
US ⊆ US be the affine manifold associated to ÛS which accounts for the boundary
conditions.

The variational problem for the coupled dimensionally-heterogeneous model reads:
for a given α ∈ {0, 1} a priori defined, find (uC, uS) ∈ UC,S such that

aC(uC, ûC)+ aS(uS, ûS) = fC(ûC)+ fS(ûS) ∀(ûC, ûS) ∈ ÛC,S (1)

where the linear space ÛC,S is defined by

ÛC,S = {(ûC, ûS) ∈ ÛC × ÛS : α(ûS − RSûC) = 0 on �S;
(1 − α)(ûC − ECûS) = 0 on �C}.

In (1) we have that aS : US × US → R is a bilinear, continuous form, coercive on
ÛS with respect to the norm ‖ · ‖US

, while fS : US → R is a linear and continuous
functional. Note that there are two constraints in the linear space ÛC,S which account
for the continuity of the traces in two different senses given by the trace spaces �C

and�S. Nevertheless, it is actually just one constraint at once that is active since α is
either 0 or 1.

Let us reformulate problem (1) by relaxing both restrictions ûS = RSûC on �S

and ûC = ECûS on �C through dual variables that act as Lagrange multipliers.
More precisely, we formulate the augmented variational formulation as follows: for
a given α ∈ {0, 1} a priori defined, find (uC, uS, λC, λS) ∈ UC × US × �′

C
× �′

S

such that

aC(uC, ûC)+ aS(uS, ûS)

+(1 − α)〈λC, ûC − ECûS〉C + (1 − α)〈λ̂C, uC − ECuS〉C
+α〈λS, ûS − RSûC〉S + α〈λ̂S, uS − RSuC〉S

= fC(ûC)+ fS(ûS) ∀(ûC, ûS, λ̂C, λ̂S) ∈ ÛC × ÛS ×�′
C

×�′
S
, (2)
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where the symbols 〈·, ·〉C and 〈·, ·〉S denote the duality pairings:

〈·, ·〉C : �′
C

×�C → R and 〈·, ·〉S : �′
S

×�S → R.

Remark 1 An alternative approach would be to work in the spaces �C and �S for
both unknowns and test functions and to replace dualities 〈·, ·〉S and 〈·, ·〉C by scalar
products (·, ·)C and (·, ·)S by making use of the Riesz representation theorem. In such
case, all proofs given in the forthcoming sections can be consistently modified in order
to get the corresponding results.

Finally, we introduce the adjoint operators R∗
S

and E∗
C

of RS and EC, respectively,
such that there hold

〈λC, ECuS〉C = 〈E∗
C
λC, uS〉S ∀(uS, λC) ∈ �S ×�′

C
,

〈λS,RSuC〉S = 〈R∗
S
λS, uC〉C ∀(uC, λS) ∈ �C ×�′

S
.

The characterization of these operators together with that of RS and EC, in each
specific problem, is fundamental to set up the domain decomposition framework and,
in particular, to define the extension operators of Sects. 3.2 and 3.3.

At this point we can establish an analogy with similar concepts from solid mechan-
ics, where the dimensional reduction of the model has a direct connection to constraints
introduced in the definition of the kinematics of the structure. In this sense, the dimen-
sional heterogeneity of the structure can be understood as the result of the coexistence
of different kinematics assumptions which must be matched at the coupling interfaces
through suitable coupling conditions (see [6] for a perspective in the field of solid
mechanics). For instance, if we couple a 3D solid model and a shell model under some
hypotheses, say Kirchhoff-Love hypotheses, we are trying to match a fully 3D kine-
matics and a constrained kinematics consisting of tangent and normal displacements
and tangent rotations (tangent and normal refer to the mid surface of the shell), which
leads to a 2D theory of solid mechanics. Thus, in such case we have a heterogeneous
model embodying two different kinematics.

2.3 Example of application 1: coupling 3D-1D

Let us consider a 1D Laplace problem set up in a 1D domain� (corresponding to�S)
coupled with a 3D Laplace problem set up in a 3D domain � (corresponding to �C)
(like, e.g., in Fig. 2, right). This can be a simple paradigm to describe a steady diffusion
process in a structure represented by heterogeneous 3D and 1D models. The coupling
interface is characterized by two elements. From the 3D domains the interface �C is a
surface here denoted by �, while from the 1D counterpart �S is a point denoted by γ .
Moreover, we have UC = {v ∈ H1(�) : v = 0 on ∂� \ �},�C = H1/2(�),�′

C
=

H−1/2(�),US = H1(�) + b.c.,�S = R, and �′
S

= R. The fields are denoted by
uC = u3 and uS = u1 referring to the 3D and 1D solutions respectively. The bilinear
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and linear forms are then defined as:

aC(uC, ûC) =
∫

�

k∇u3 · ∇û3 d�, fC(ûC) =
∫

�

f û3 d�,

aS(uS, ûS) =
∫

�

Ak
du1

dξ

dû1

dξ
d�, fS(ûS) =

∫

�

A f û1 d�,

where A is a scaling factor in the SD-model corresponding to the cross-sectional area
of the CD-model through which the reduction has been performed. Here we consid-
ered the material property k and the source term f constants in both the 3D and the 1D
regions. In addition, the operator RS may be defined in the following manner

RS : H1/2(�) → R, u3|� �→ u3,1|γ = 1

|�|
∫

�

u3 d�, (3)

which is clearly a surjective operator, whereas the operator EC may be given by

EC : R :→ H1/2(�), u1|γ �→ u1,3|� = u1|γ ,

being this an injective operator. Note that u1,3 is a constant function defined in all �.
Finally, the duality pairings in this case are

〈λC, ûC − ECûS〉C = (H1/2(�))′ 〈λ3, û3 − û1,3〉H1/2(�),

〈λS, ûS − RSûC〉S = |�|λ1(û1 − û3,1)|γ ,
(4)

where the factor |�| is included so that both Lagrange multipliers have the same
physical dimension. In this case λ1 ∈ R.

For this problem, the differential equations are the following:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− div(k∇u3) = f in �,

− d

dξ

(
Ak

du1

dξ

)
= A f in �,

3D boundary conditions in ∂� \ �,
1D boundary conditions in ∂� \ γ,

whereas the coupling conditions are

if α = 1

⎧⎪⎨
⎪⎩

u1 = 1

|�|
∫
�

u3 d� in γ,

k
du1

dξ
= k∇u3 · n on �,

if α = 0

⎧⎨
⎩

u1 = u3 on �,

Ak
du1

dξ
=

∫
�

k∇u3 · n d� in γ.

The equalities on � here above must be intended in the sense of traces.
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Fig. 3 Setting of the 3D-2D coupled problem

In the 3D-1D example just presented, the interface variables of the SD-model belong
to the finite-dimensional space R. This will lead to some special behavior in the dis-
crete case as we will see in forthcoming sections. Unlike this, we are going to present a
3D-2D example in the next section where the interface variables remain in an infinite-
dimensional space.

2.4 Example of application 2: Coupling 3D-2D

Let us formulate now the coupling between a 2D axisymmetric Laplace problem set
up in a 2D domain, for which �S is a 2D domain denoted by � ((r, z) are the radial
and axial coordinates respectively), with a 3D Laplace problem, for which�C is a 3D
domain denoted by�. Here the coupling interface �C is a surface denoted by � while
�S is a straight line denoted by σ (see Fig. 3).

In this case we have UC = {v ∈ H1(�) : v = 0 on ∂� \ �},�C = H1/2
00 (�),

�′
C

= H−1/2(�),US = {v ∈ H1
r (�) : v = 0 on ∂� \ σ }, where the weighted space

H1
r (�) (see [3]) is the set of measurable functions v with the norm

‖v‖2
H1

r (�)
=

1∑

=0


∑
k=0

‖∂k
r ∂

−k
z v‖2

L2
r (�)

and ‖v‖2
L2

r (�)
=

∫

�

v2(r, z)r drdz.

The associated trace space is �S = {v|σ : v ∈ H1
r (�)} and �S is its dual space. The

unknown fields are now denoted by uC = u3 and uS = u2 referring to the 3D and 2D
solutions respectively. Therefore, the bilinear and linear forms become:

aC(uC, ûC) =
∫

�

k∇u3 · ∇û3 d�,

aS(uS, ûS) =
∫

�

2πrk

[
∂u2

∂r

∂ û2

∂r
+ ∂u2

∂z

∂ û2

∂z

]
drdz,

fC(ûC) =
∫

�

f û3 d�,
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fS(ûS) =
∫

�

2πr f û2 drdz,

where the scaling factor 2πr accounts for the reduced representation with respect to
the circumferential coordinate that is taken into account in the 2D-model. The mate-
rial property k and the source term f are both constant in the 3D and 2D regions. In
the present situation, the operator RS may simply be the average operator defined as
follows

RS : H1/2(�) → H1/2
r (σ ), u3|� �→ u3,2|σ = 1

2π

2π∫

0

u3 dφ, (5)

while the extension operator EC may be given by

EC : H1/2
r (σ ) → H1/2(�), u2|σ �→ u2,3|� = u2|σ .

Notice that in this case u2,3 is a function defined in all � which varies with the radial
coordinate but it is constant with respect to the circumferential coordinate. Finally, in
this case the duality pairings read

〈λC, ûC − ECûS〉C = H−1/2(�)〈λ3, û3 − û2,3〉H1/2
00 (�)

,

〈λS, ûS − RSûC〉S = �′
S
〈2πrλ2, û2 − û3,2〉�S

.

In the second duality pairing, r is the radial coordinate ranging in [0, R], being R the
radius of the coupling interface �.

2.5 On the role and choice of the parameter α in (2)

Variational principle (2) delivers two different solutions for the two different values
of α, namely 0 and 1. So α plays a role in defining the way in which the model
represents the physical phenomenon we want to address. Generally speaking, when
α = 1 the model ensures the continuity of the value of the field u via the pairing 〈·, ·〉S
(formally speaking we get uS = RSuC on �S), whereas it can be shown (see [5])
that the dual variable is continuous in �′

C
(formally speaking, λC = R∗

S
λS on �C).

The reciprocal situation occurs when α = 0, for which the field u is continuous in the
sense of the pairing 〈·, ·〉C, while the flux is continuous in �′

S
.

The choice of α should be made a priori depending upon the problem that is being
addressed. Nevertheless, these two solutions should be close in the sense that both
coupled models are addressing the same phenomena. In other words, the quantities of
interest retrieved from the computed solutions should not be greatly affected by the
choice of the parameter α.

At this point, we can distinguish two different kind of situations: either the CD
and the SD components correspond to real geometrical heterogeneous models, or the
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original problem is geometrically homogeneous and the SD model is a mathematical
idealization of the CD one. In the latter case, if the solutions computed for different
values of α are close, then the heterogeneous representation is a good approximation
of the originally homogeneous problem.

The choice α ∈ (0, 1) deserves a comment. As noticed above, α provides the way
in which the continuity equation is taken into account. Choosing a value of α ∈ (0, 1)
would imply that both pairings, and therefore both ways, would be present in the
formulation. Notice that in such a case the definition of ÛC,S is actually independent
of α. Due to the inclusion�S ⊂ �C, we have that the continuity sense in the former is
implied by the latter. Therefore, any arbitrary value of α ∈ (0, 1) yields a completely
equivalent formulation to that one with α = 0. For this reason, the cases α /∈ {0, 1}
are not meaningful. We can conclude by saying that α plays a physical role more than
a mathematical one.

In view of the applications we have in mind it is a better practice to choose the
imposition of a weak coupling between the primal variables in the problem, yielding
the strong continuity of the dual ones. That is, we want to consider just the pairing
〈·, ·〉S, which yields the continuity in the space �S.

It must be highlighted that all the framework that will be presented in what follows
can be extended so as to embrace the case α = 0. This is omitted here for the sake of
brevity. Hence, from now on we introduce the following additional assumption.

Assumption 3 We restrict our analysis to the case α = 1 in (2).

2.6 On the quality of the solution delivered by heterogeneous modeling

The theoretical groundwork provided in the present work is not aimed at evaluating the
quality of the solution obtained when modeling a physical system using dimensionally-
heterogeneous models. The problem of assessing the quality of the solution in this class
of models can be tackled using several approaches, for instance asymptotic analysis
as in [13], or using the concept of sensitivity analysis [4].

The basic idea behind the sensitivity analysis is to define a cost functional of inter-
est which represents a meaningful criterion regarding the quality of the solution. As
done in [4], the problem can thus be reinterpreted as a problem of shape sensitivity
analysis, where the shape change represents the transformation of a 1D description
into a 3D model through the displacement of the coupling interface. That is, there is
shape change in both models by means of a modification in the position of the under-
lying boundary surfaces (boundaries �C and �S in Fig. 2, for instance). Evidently,
a compatibility condition in the displacement of these boundary surfaces has to be
considered. Then, the calculated sensitivity expressions are capable of quantifying the
sensitivity of the cost functional to the position of the coupling interface.

3 Interface variational formulations

In this section we rewrite the augmented variational problem (2) in terms of the sole
interface variables. Several alternatives will be considered, aimed at the development
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of iterative strategies yielding, at every step, the segregated (i.e., independent) solution
of both the complex and simple sub-models.

3.1 Notational issues and preliminary comments

Different systems of interface equations can be written according to the way the sub-
models incorporate the boundary information associated to the interfaces �C and �S.
Instances are given by the so-called Neumann-and-Neumann formulation, in which
both sub-problems are written in terms of Neumann boundary conditions on the inter-
faces, or by the Dirichlet-and-Dirichlet system of interface equations in which both
sub-problems are formulated using Dirichlet boundary conditions. Several other meth-
ods can be derived by suitably combining Dirichlet, Neumann or Robin boundary
conditions.

More precisely, when we refer to Neumann, Dirichlet or Robin boundary conditions
we are referring always to quantities defined by the SD-model (quantities with index
S), which are those chosen to formulate the continuity conditions in the problem. For
example, imposing a Dirichlet boundary condition to the CD models of Sects. 2.3 and
2.4 corresponds to imposing RSuC that is, according to (3) or (5), prescribe that the
mean value of uC is equal to a given uS on �C.

Such conditions may be introduced directly in the definition of the functional spaces.
Indeed, for σS ∈ �S we introduce the following linear manifolds

UσS

S
= {uS ∈ US : uS = σS on �S},

UσS

C
= {uC ∈ UC : RSuC = σS on �S},

ÛσS

S
= {uS ∈ ÛS : uS = σS on �S},

ÛσS

C
= {uC ∈ ÛC : RSuC = σS on �S}.

(6)

When σS = 0 in (6) above, we obtain the associated linear spaces Û 0
S

and Û 0
C

, and
the linear manifolds U 0

S
and U 0

C
with homogeneous data on �S.

This strategy, although possible, is not very convenient in practice. Thus, the ap-
proaches based on Lagrange multipliers techniques are preferred, as we will see also
in Sect. 3.3.

3.2 Extension operators for the SD-model

Consider firstly the operator DS : �S → ÛμS

S
defined by the following variational

problem: given μS ∈ �S, find DSμS ∈ ÛμS

S
such that

aS(DSμS, û I
S
) = 0 ∀û I

S
∈ Û 0

S
. (7)

It will be used whenever we want to impose a Dirichlet boundary condition on �S to
the SD-model.
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Another operator we need when imposing a Neumann boundary condition on �S to
the SD-model is NS : �′

S
→ ÛS defined by the following variational problem: given

λS ∈ �′
S
, find NSλS ∈ ÛS such that

aS(NSλS, û J
S
) = −〈λS, û J

S
〉S ∀û J

S
∈ ÛS. (8)

The Lax-Milgram theorem (see, e.g., [17]) guarantees straightforwardly the well-
posedness of problem (7) and the existence of NSλS in (8). The uniqueness of NSλS

might be guaranteed up to an additive constant depending on the boundary conditions
imposed on ∂�S \ �S. Moreover, in case a Neumann boundary condition is assigned
on ∂�S \ �S, special attention must be paid in choosing the extension NSλS so to
satisfy the compatibility condition required by a full-Neumann problem.

3.3 Extension operators for the CD-model

We proceed similarly for the CD-model by defining the operator DC : �S → ÛμS

C
as

follows: given μS ∈ �S, find DCμS ∈ ÛμS

C
such that

aC(DCμS, û I
C
) = 0 ∀û I

C
∈ Û 0

C
. (9)

This operator imposes Dirichlet boundary conditions on�C, which amounts to impose
the value of RSuC in this context.

The weak formulation (9) can be equivalently rewritten by using Lagrange mul-
tipliers to impose the condition RS(DCμS) = μS on �S, which is fulfilled by the
elements of ÛμS

C
, as follows: find (DCμS, λS) ∈ ÛC ×�′

S
such that

aC(DCμS, û I
C
)+ 〈R∗

S
λS, û I

C
〉C = 0 ∀û I

C
∈ ÛC,

〈R∗
S
λ̂S,DCμS〉C = 〈λ̂S, μS〉S ∀λ̂S ∈ �′

S
.

(10)

Finally, to impose a Neumann boundary condition to the CD-model we need the
operator NC : �′

S
→ ÛC s.t. for any given λS ∈ �′

S
,NCλS ∈ ÛC satisfies

aC(NCλS, û J
C
) = 〈R∗

S
λS, û J

C
〉C = 〈λS,RSû J

C
〉S ∀û J

C
∈ ÛC, (11)

where the right hand side is consistent with the duality pairings seen in (2) for α = 1.
About the well-posedness of problems (10) and (11), we can prove the following

result.

Proposition 1 If the adjoint operator R∗
S

: �′
S

→ �′
C

is linear and there exist two
constants 0 < C1 < C2 < ∞ such that

C1‖λ̂S‖�′
S

≤ ‖R∗
S
λ̂S‖�′

C
≤ C2‖λ̂S‖�′

S
∀λ̂S ∈ �′

S
, (12)

123



Modeling dimensionally-heterogeneous problems 311

then problem (10) is well-posed. Moreover, the operator DC is continuous, i.e. there
exists a constant C3 > 0 such that

‖DCμS‖UC
≤ C3‖μS‖�S

∀μS ∈ �S. (13)

Proof The proof follows the guidelines of Theorem 3.1 in [1].
We introduce the Hilbert space H = ÛC ×�′

S
with norm ‖(uC, λS)‖2

H = ‖uC‖2
ÛC

+
‖λS‖2

�′
S

and the bilinear symmetric form:

B(uC, λS; vC, ξS) = aC(uC, vC)+ 〈R∗
S
λS, vC〉C + 〈R∗

S
ξS, uC〉C,

for all (uC, λS), (vC, ξS) ∈ H .
Since the bilinear form aC(·, ·) is continuous in ÛC × ÛC and there is a continuous

mapping ÛC ↪→ �C, using (12) we have that also B is continuous:

|B(uC, λS; vC, ξS)| ≤ C‖(uC, λS)‖H ‖(vC, ξS)‖H ∀(uC, λS), (vC, ξS) ∈ H.

Now, denoting wC ∈ ÛC the solution of the following problem

aC(wC, vC) = 〈R∗
S
λS, vC〉C ∀vC ∈ ÛC, (14)

we can proceed like in Theorem 3.1 in [1] and obtain that there exists a constant C > 0
s.t. for any given (uC, λS) ∈ H ,

sup
(vC,ξS)∈H
(vC,ξS) 	=0

|B(uC, λS; vC, ξS)|
‖(vC, ξS)‖H

≥ C‖(uC, λS)‖H .

Notice that to obtain this result we have used the hypothesis (12) and the inequalities
‖wC‖ÛC

≤ C‖R∗
S
λS‖�′

C
and C‖R∗

S
λS‖2

�′
C

≤ 〈R∗
S
λS, wC〉C.

Thanks to Theorem 2.8 in [1] we can conclude that the weak problem (10) has a
unique solution and that (13) holds. ��

In turn, the well-posedness of (11) is a consequence of the Lax-Milgram theorem
and of the continuity of the adjoint operator R∗

S
. As in problem (8), notice that the solu-

tion might be unique up to an additive constant depending on the boundary conditions
imposed on ∂�C \ �C. Finally, remark that the extension NCλS must fulfill a com-
patibility condition if Neumann boundary conditions are imposed also on ∂�C \ �C.

Remark 2 Consider the 3D-1D example seen in Sect. 2.3. The operator RS provides
the mean value over � of a function in H1/2(�). As seen in (4), the duality �S ×�′

S
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is written as

〈λS,RSûC〉S = λ1︸︷︷︸
∈R

⎛
⎝

∫

�

u3 d�

⎞
⎠

︸ ︷︷ ︸
∈R

= H−1/2(�)〈R∗
S
λ1, u3〉H1/2(�) = 〈R∗

S
λS, ûC〉C.

We see that in the present case, for a given real number, the operator R∗
S
λS gives the

extension as a constant function defined in all �. This operator satisfies the hypotheses
of Proposition 1.

3.4 Steklov–Poincaré formulation (one unknown)

To reformulate (2) as a Steklov-Poincaré interface equation, we proceed as follows.
At first, we consider the following decompositions

uS = uI
S

+ DSμS, uC = uI
C

+ DCμS, (15)

where the extension operators DS and DC were defined in (7) and (9), respectively.
The functions uI

S
∈ U 0

S
and uI

C
∈ U 0

C
(see Eq. (6) for the definition of these affine

manifolds) are the solutions of the following problems

aS(u
I
S
, û I

S
) = fS(û

I
S
) ∀û I

S
∈ Û 0

S
,

aC(u
I
C
, û I

C
) = fC(û

I
C
) ∀û I

C
∈ Û 0

C
.

(16)

Correspondingly, the variations (test functions) ûS and ûC in (2) are split as follows

ûS = û I
S

+ D̂SμS = û I
S

+ DSμ̂S,

ûC = û I
C

+ D̂CμS = û I
C

+ DCμ̂S,
(17)

with ûS = μ̂S and RSûC = μ̂S on �S. With the previous definitions and using (15)
and (17) into (2) (for α = 1) we have the following equivalent problem: given uI

S
and

uI
C

solutions of (16), find μS ∈ �S such that

aS(u
I
S

+ DSμS, û I
S

+ DSμ̂S)+ aC(u
I
C

+ DCμS, û I
C

+ DCμ̂S)

= fS(û
I
S

+ DSμ̂S)+ fC(û
I
C

+ DCμ̂S) ∀μ̂S ∈ �S. (18)
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By rearranging the terms we obtain

aS(u
I
S
, û I

S
)− fS(û

I
S
)︸ ︷︷ ︸

= 0 by (16)

+aS(u
I
S
,DSμ̂S)+ aS(DSμS, û I

S
)︸ ︷︷ ︸

= 0 by (7)

+aS(DSμS,DSμ̂S)

+ aC(u
I
C
, û I

C
)− fC(û

I
C
)︸ ︷︷ ︸

= 0 by (16)

+aC(u
I
C
,DCμ̂S)+ aC(DCμS, û I

C
)︸ ︷︷ ︸

= 0 by (9)

+aC(DCμS,DCμ̂S)

= fS(DSμ̂S)+ fC(DCμ̂S) ∀μ̂S ∈ �S.

In summary, we find the following Steklov-Poincaré reformulation of (2): given uI
S

and uI
C

solutions of (16), find μS ∈ �S such that

aS(DSμS,DSμ̂S)+ aC(DCμS,DCμ̂S) = fS(DSμ̂S)− aS(u
I
S
,DSμ̂S)

+ fC(DCμ̂S)− aC(u
I
C
,DCμ̂S) ∀μ̂S ∈ �S,

or, in compact form,

s�S
(μS, μ̂S) = g�S

(μ̂S) ∀μ̂S ∈ �S, (19)

where the bilinear form s�S
: �S ×�S → R and the linear form g�S

: �S → R are
respectively given by

s�S
(μS, μ̂S) = aS(DSμS,DSμ̂S)+ aC(DCμS,DCμ̂S),

g�S
(μ̂S) = fS(DSμ̂S)− aS(u

I
S
,DSμ̂S)+ fC(DCμ̂S)− aC(u

I
C
,DCμ̂S).

In operator form (19) reads as follows

S�S
μS = g�S

in �′
S
, (20)

with obvious choice of notations.

Remark 3 When coupling 3D and 1D models like in Sect. 2.3 the variational Eq. (20)
reduces to a scalar equation with one unknown

Sμ = g in R,

where S and g are real numbers. In this case the problem is of dimension 1.

Proposition 2 There exists a unique solutionμS ∈ �S of (19). Moreover, there exists
C > 0 such that the solution satisfies

‖μS‖�S
≤ C‖g�S

‖�′
S
. (21)
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Proof From the bilinearity and continuity of aS(·, ·) and aC(·, ·) and the continuity
of the operators DS and DC it follows that s�S

is also continuous, that is, there exists
β > 0 such that

|s�S
(μS, ηS)| ≤ β‖μS‖�S

‖ηS‖�S
∀μS, ηS ∈ �S.

Using similar arguments we have that g�S
is continuous, that is, there exists γ > 0

such that

|g�S
(ηS)| ≤ γ ‖ηS‖�S

∀η ∈ �S.

Also, from the coercivity of aS(·, ·) and aC(·, ·) and from the trace inequalities it
follows that s�S

is coercive, that is, there exists α > 0 such that

s�S
(μS, μS) ≥ α‖μS‖2

�S
∀μS ∈ �S.

Thus, the existence and uniqueness of the solution μS ∈ �S is guaranteed by the
Lax–Milgram theorem, and estimate (21) holds as a corollary. ��

3.5 Augmented formulation (two unknowns)

In Sect. 3.4 the variational problem (2) was recasted into a variational interface problem
depending on the single interface unknown μS. Here we rewrite the same problem
in terms of two variables, μS and λS (primal and dual). We present three different
(equivalent) strategies. The denomination in each case will be clear from the context
and follows the comments made in Sect. 3.1.

Remark 4 Within the present framework it will be possible to select quite arbitrarily
the interface conditions to be imposed at both models arriving at a given coupling
interface. In other words, since we are keeping both variables μS and λS we can inde-
pendently set different interface conditions for both models sharing the same coupling
interface.

3.5.1 Approach 1: Dirichlet-and-Dirichlet decomposition

Let us consider the decomposition of uS and uC as in (15), with DSμS ∈ ÛμS

S
and

DCμS ∈ ÛμS

C
satisfying (7) and (9), and uI

S
∈ U 0

S
and uI

C
∈ U 0

C
satisfying (16).

The denomination Dirichlet-and-Dirichlet decomposition stems from the fact that uS

and uC are decomposed through contributions which are defined via Dirichlet sub-
problems for both the SD-model and the CD-model.

However, instead of (17) we consider

ûS = û I
S

+ DSμ̂
1
S
, ûC = û I

C
+ DCμ̂

2
S
. (22)
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Now, contrariwise to (17), it is μ̂1
S

	= μ̂2
S
. Hence, we rewrite the variational problem

(2) as follows: given uI
S

and uI
C

solutions of (16), find (μS, λS) ∈ �S ×�′
S

such that

aS(u
I
S

+ DSμS, û I
S

+ DSμ̂
1
S
)+ aC(u

I
C

+ DCμS, û I
C

+ DCμ̂
2
S
)

+〈λS, û I
S

− RSû I
C
〉S + 〈λS, μ̂

1
S

− μ̂2
S
〉S

= fS(û
I
S

+ DSμ̂
1
S
)+ fC(û

I
C

+ DCμ̂
2
S
) ∀(μ̂1

S
, μ̂2

S
) ∈ �S ×�S.

After rearranging some terms and using (7), (9) and (16) as in (18) we obtain

aS(DSμS,DSμ̂
1
S
)+ aC(DCμS,DCμ̂

2
S
)+ 〈λS, μ̂

1
S

− μ̂2
S
〉S

= fS(DSμ̂
1
S
)− aS(u

I
S
,DSμ̂

1
S
)

+ fC(DCμ̂
2
S
)− aC(u

I
C
,DCμ̂

2
S
) ∀(μ̂1

S
, μ̂2

S
) ∈ �S ×�S,

that is find (μS, λS) ∈ �S ×�′
S

such that

s�S,S(μS, μ̂
1
S
)+ 〈λS, μ̂

1
S
〉S = g�S,S(μ̂

1
S
) ∀μ̂1

S
∈ �S,

s�S,C(μS, μ̂
2
S
)− 〈λS, μ̂

2
S
〉S = g�S,C(μ̂

2
S
) ∀μ̂2

S
∈ �S.

(23)

The bilinear forms s�S,S : �S ×�S → R and s�S,C : �S ×�S → R and the linear
forms g�S,S : �S → R and g�S,C : �S → R are given by

s�S,S(μS, μ̂
1
S
) = aS(DSμS,DSμ̂

1
S
),

s�S,C(μS, μ̂
2
S
) = aC(DCμS,DCμ̂

2
S
),

g�S,S(μ̂
1
S
) = fS(DSμ̂

1
S
)− aS(u

I
S
,DSμ̂

1
S
),

g�S,C(μ̂
2
S
) = fC(DCμ̂

2
S
)− aC(u

I
C
,DCμ̂

2
S
).

From (23) we can derive (19) easily, by adding (23)1 and (23)2 and taking μ̂1
S

= μ̂2
S

=
μ̂S. As done for (20), we can write (23) in a more compact form: find (μS, λS) ∈
�S ×�′

S
such that

(
S�S,S Iλ
S�S,C −Iλ

)
︸ ︷︷ ︸

SDD

(
μS

λS

)
=

(
g�S,S

g�S,C

)
, (24)

where now SDD : �S ×�′
S

→ �′
S

×�′
S

is the block operator matrix associated to
the interface problem in the two unknowns and Iλ is the identity operator in �′

S
.

Remark 5 In the particular case of a 3D-1D coupling (see Sect. 2.3) we have that
SDD : R

2 → R
2, indeed

SDD =
(

S1 1
S3 −1

)
,

so the exact representation of the operator is in fact a matrix SDD ∈ R
2×2.
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Proposition 3 There exists a unique pair (μS, λS) ∈ �S × �′
S

solution of (23).
Moreover, there exists C > 0 such that the solution satisfies

‖μS‖�S
+ ‖λS‖�′

S
≤ C(‖g�S,S‖�′

S
+ ‖g�S,C‖�′

S
). (25)

Proof First of all note that the variational problem (23) can be written in compact
form as follows: find θS ∈ M such that

r�S
(θS, ψ̂S) = f�S

(ψ̂S) ∀ψ̂S ∈ N ,

where M = �S ×�′
S
, N = �S ×�S, θS = (μS, λS) and ψ̂S = (μ̂1

S
, μ̂2

S
). Here we

have that r�S
: M × N → R and f�S

: N → R. We also introduce the norms ‖θS‖M =
‖μS‖�S

+ ‖λS‖�′
S

and ‖ψS‖N = ‖μ1
S
‖�S

+ ‖μ2
S
‖�S

. Instead of the Lax–Milgram
theorem as done in Proposition 2, here we apply the Neças theorem [17]. Bilinearity
and continuity of r�S

follow from the well-posedness of problems (7) and (9) and the
same happens with the linearity and continuity of f�S

. The positivity in this problem
holds if the following two conditions are satisfied: r�S

is such that

sup
θS∈M

r�S
(θS, φS) > 0 ∀φS ∈ N , (26)

besides, there exists α > 0 such that

sup
φS∈N

r�S
(θS, φS)

‖φS‖N
≥ α‖θS‖M ∀θS ∈ M. (27)

To show (26) let us take θ̃S = (μ2
S
, λ1

S
) where λ1

S
can be characterized through the

variational problem:

aS(DSμ
1
S
, ŵ) = 〈λ1

S
,RSŵ〉S ∀ŵ ∈ ÛS.

Then, for ŵ = DSμ̂
1
S

and for ŵ = DSμ̂
2
S

it is

aS(DSμ
1
S
,DSμ̂

1
S
) = 〈λ1

S
, μ̂1

S
〉S ∀DSμ̂

1
S

∈ ÛS,

aS(DSμ
1
S
,DSμ̂

2
S
) = 〈λ1

S
, μ̂2

S
〉S ∀DSμ̂

2
S

∈ ÛS.

With this choice, taking φS = (μ1
S
, μ2

S
), and using the symmetry and coercivity of

s�S,S(·, ·) and s�S,C(·, ·) we have

r�S
(θ̃S, φS) = s�S,S(μ

2
S
, μ1

S
)+ s�S,C(μ

2
S
, μ2

S
)+ 〈λ1

S
, μ1

S
〉S − 〈λ1

S
, μ2

S
〉S

= s�S,S(μ
1
S
, μ1

S
)+ s�S,C(μ

2
S
, μ2

S
) ≥ αS‖μ1

S
‖2
�S

+ αC‖μ2
S
‖2
�S

≥ α‖φS‖2
N .

Since this is valid for all φS ∈ N and is valid for a particular θ̃S ∈ M we have that

sup
θS∈M

r�S
(θS, φS) ≥ r�S

(θ̃S, φS) ≥ α‖φS‖2
N > 0 ∀φS ∈ N ,
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which is (26). To prove (27) we choose φ̃S = (μ̃S,
1
2 μ̃S), for which it is

r�S
(θS, φ̃S) = s�S,S(μS, μ̃S)+ 1

2
s�S,C(μS, μ̃S)+ 〈λS, μ̃S〉S − 1

2
〈λS, μ̃S〉S

= s�S,S(μS, μ̃S)+ 1

2
s�S,C(μS, μ̃S)+ 1

2
〈λS, μ̃S〉S.

Dividing by ‖φ̃S‖N = 3
2‖μ̃S‖�S

we obtain

r�S
(θS, φ̃S)

‖φ̃S‖N
= 2

3

s�S,S(μS, μ̃S)

‖μ̃S‖�S

+ 1

3

s�S,C(μS, μ̃S)

‖μ̃S‖�S

+ 1

3

〈λS, μ̃S〉S
‖μ̃S‖�S

.

Notice that taking the supremum over φ̃S ∈ N implies taking the supremum over
μ̃S ∈ �S. In addition, the supremum over φS ∈ N is bounded below by the supre-
mum over φ̃S ∈ N (in the latter case we are restricting the supremum to all φ̃S with a
very particular form equal to (μ̃S,

1
2 μ̃S)). Therefore

sup
φS∈N

r�S
(θS, φS)

‖φS‖N
≥ sup
φ̃S∈N

r�S
(θS, φ̃S)

‖φ̃S‖N

= sup
μ̃S∈�S

[
2

3

s�S,S(μS, μ̃S)

‖μ̃S‖�S

+ 1

3

s�S,C(μS, μ̃S)

‖μ̃S‖�S

+ 1

3

〈λS, μ̃S〉S
‖μ̃S‖�S

]
.

(28)

Recalling that s�S,S and s�S,C are coercive, using the definition of the norm for �′
S

and noting that (28) is valid for all θS ∈ M , we get

sup
φS∈N

r�S
(θS, φS)

‖φS‖N
≥ 2

3
α̃S‖μS‖�S

+ 1

3
α̃C‖μS‖�S

+ 1

3
‖λS‖�′

S
≥ α‖θS‖M ,

from which (27) follows. Hence, the existence and uniqueness of the solution (μS,

λS) ∈ �S ×�′
S

(that is θS ∈ M) is ensured by the Neças theorem. The estimate (25)
is also a corollary of the Neças theorem. ��

3.5.2 Approach 2: Dirichlet-and-Neumann decomposition

In this approach we will slightly change the way we split uS and uC. More precisely,
for the SD-model we consider a Dirichlet problem and for the CD-model a Neumann
problem. We therefore set

uS = uI
S

+ DSμS, uC = u J
C

+ NCλS, (29)

where operators DS and NC are defined according to (7) and (11). In turn, u J
C

∈ UC

is given by the solution of the following variational problem:

aC(u
J
C
, û J

C
) = fC(û

J
C
) ∀û J

C
∈ ÛC. (30)
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The denomination Dirichlet-and-Neumann decomposition stems from the fact that the
splitting (29) involves Dirichlet and Neumann sub-problems, respectively.

The admissible variations in this case are

ûS = û I
S

+ DSμ̂S, ûC = û J
C

+ NCλ̂S.

Then, our variational problem becomes: given uI
S

and u J
C

solutions of (16) and (30),
find (μS, λS) ∈ �S ×�′

S
such that

aS(u
I
S

+ DSμS, û I
S

+ DSμ̂S)+ aC(u
J
C

+ NCλS, û J
C

+ NCλ̂S)

+〈λS, û I
S

− RSû J
C
〉S + 〈λS, μ̂S − RS(NCλ̂S)〉S

+〈λ̂S, uI
S

− RSu J
C
〉S + 〈λ̂S, μS − RS(NCλS)〉S

= fS(û
I
S

+ DSμ̂S)+ fC(û
J
C

+ NCλ̂S) ∀(μ̂S, λ̂S) ∈ �S ×�′
S
.

Rearranging terms, using (7) and (16) as in (18), and using (11) and (30), and the fact
that uI

S
∈ U 0

S
we obtain the problem:

aS(DSμS,DSμ̂S)+ aC(NCλS,NCλ̂S)

+〈λS, μ̂S − RS(NCλ̂S)〉S + 〈λ̂S, μS − RS(u
J
C

+ NCλS)〉S
= fS(DSμ̂S)− aS(u

I
S
,DSμ̂S)

+ fC(NCλ̂S)− aC(u
J
C
,NCλ̂S) ∀(μ̂S, λ̂S) ∈ �S ×�′

S
.

Now, notice that, due to (30) and making use of (11) we obtain

aS(DSμS,DSμ̂S)+ 〈λS, μ̂S〉S + 〈λ̂S, μS − RS(u
J
C

+ NCλS)〉S
= fS(DSμ̂S)− aS(u

I
S
,DSμ̂S) ∀(μ̂S, λ̂S) ∈ �S ×�′

S
.

Once again, here we keep both variables, μS and λS, for which the two equations are
provided by μ̂S and λ̂S. In this case, the problem is expressed in compact form, with
obvious meaning of notation, as follows: find (μS, λS) ∈ �S ×�′

S
such that

s�S,S(μS, μ̂S)+ 〈λS, μ̂S〉S = g�S,S(μ̂S) ∀μ̂S ∈ �S,

〈λ̂S, μS〉S − 〈λ̂S,RS(NCλS)〉S = 〈λ̂S,RSu J
C
〉S ∀λ̂S ∈ �′

S
.

(31)

Similarly to (24) we can write (31) in block operator matrix form

(
S�S,S Iλ
Iμ −T�S,C

)
︸ ︷︷ ︸

SDN

(
μS

λS

)
=

(
g�S,S

RSu J
C

)
, (32)
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where in this situation the definition of the operator T�S,C is 〈λ̂S, T�S,CλS〉S =
〈λ̂S,RS(NCλS)〉S and it is SDN : �S × �′

S
→ �′

S
× �S. Here Iλ and Iμ are

the identity operators in �′
S

and �S, respectively.

Proposition 4 There exists a unique pair (μS, λS) ∈ �S × �′
S

solution of (31),
moreover there exists C > 0 such that

‖μS‖�S
+ ‖λS‖�′

S
≤ C(‖g�S,S‖�′

S
+ ‖RSu J

C
‖�S

).

Proof It follows similar guidelines to those employed in Proposition 3 and is not
presented here for the sake of brevity. ��

3.5.3 Approach 3: Neumann-and-Neumann decomposition

Another possible decomposition involves the solution of Neumann problems for both
the CD-model and the SD-model. The decompositions of the solution functions in this
case are as follows

uS = u J
S

+ NSλS, uC = u J
C

+ NCλS,

with admissible variations given by

ûS = û J
S

+ NSλ̂
1
S
, ûC = û J

C
+ NCλ̂

2
S
.

Proceeding as before we obtain the following interface formulation: find (μS, λS) ∈
�S ×�′

S
such that

〈λ̂1
S
, μS〉S − 〈λ̂1

S
,NSλS〉S = 〈λ̂1

S
, u J

S
〉S ∀λ̂1

S
∈ �′

S
,

〈λ̂2
S
, μS〉S − 〈λ̂2

S
,RS(NCλS)〉S = 〈λ̂2

S
,RSu J

C
〉S ∀λ̂2

S
∈ �′

S
.

(33)

In block operator matrix form (33) corresponds to

(
Iμ −T�S,S

Iμ −T�S,C

)
︸ ︷︷ ︸

SN N

(
μS

λS

)
=

(
u J

S

RSu J
C

)
, (34)

where, as before, the operator T�S,S is defined by 〈λ̂1
S
, T�S,SλS〉S = 〈λ̂1

S
,NSλS〉S, and

then it is SN N : �S ×�′
S

→ �S ×�S.

Proposition 5 There exists a unique pair (μS, λS) ∈ �S ×�′
S

solution of (33), and
a constant C > 0 such that

‖μS‖�S
+ ‖λS‖�′

S
≤ C(‖u J

S
‖�S

+ ‖RSu J
C
‖�S

).
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Fig. 4 Large system featuring several CD and SD sub-systems (NC = 9, NS = 14, N = 23,M = 26).
For simplicity in this figure we stick to the case C = 3 and S = 1

Proof The proof is analogous to the proofs of Propositions 3 and 4, and is omitted
here for the sake of brevity. ��
Remark 6 The Dirichlet-and-Dirichlet, Dirichlet-and-Neumann, and Neumann-and-
Neumann approaches represent three equivalent forms of reformulating the same prob-
lem. Therefore, the (continuous) systems (24), (32) and (34) feature the same solution.
Finally, notice that, if for modeling reasons other type of coupling conditions (e.g., of
Robin type) have to be considered on the interface, they can be easily accommodated
within the present framework.

4 Analysis of multi-component systems

In this section we extend the previous theory to the more general case of networks
containing an arbitrary number of components. Then we study the specific problem
involving the coupling of CD-SD models (S = 0, 1) and explore some peculiarities
arising in that case.

4.1 Interface problems for multi-component systems

Let us consider a network composed by N components, NC made by CD-models and
NS by SD-models, as shown schematically in Fig. 4. In this system we have M cou-
pling points, for each of them we identify the coupling interfaces�S,m ,m = 1, . . . ,M ,
to which we associate two unknowns in the present scalar problem, namely μS,m
and λS,m .

Recall that the dimensionally-heterogeneous system seen in Fig. 4 is somehow
a geometrical multi-scale representation of a dimensionally-homogeneous one. The
variational formulation reads:
find ({uC, j }NC

j=1, {uS,i }NS

i=1, {λS,m}M
m=1) ∈ ∏NC

j=1 UC, j ×
∏NS

i=1 US,i ×
∏M

m=1�
′
S,m such

that
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NC∑
j=1

aC, j (uC, j , ûC, j )+
NS∑

i=1

aS,i (uS,i , ûS,i )+
M∑

m=1

〈λS,m, ûS,i |m − RS,mûC, j |m〉S,m

+
M∑

m=1

〈λ̂S,m, uS,i |m − RS,muC, j |m〉S,m =
NS∑

i=1

fS,i (ûS,i )+
NC∑
j=1

fC, j (ûC, j )

∀({ûC, j }NC

j=1, {ûS,i }NS

i=1, {λ̂S,m}M
m=1) ∈

NC∏
j=1

UC, j ×
NS∏

i=1

US,i ×
M∏

m=1

�′
S,m .

The notation uS,i |m is used to denote the restriction of uS,i to the m-th interface �S,m
and so on.

To derive the interface formulation, and for the sake of simplicity, we will con-
sider the situation in which we decompose the solution in each sub-model imposing a
Dirichlet boundary condition, that is, imposing the value of RSuC, j |m over each inter-
face �C,m . In this general setting one component can have more than one coupling
interface. So, considering the K j and the Ki coupling interfaces of the j-th com-
plex and i-th simple components, respectively, the decompositions and the variations
become

uS,i = uI
S,i +

Ki∑
k=1

DS,i RS,i |kμS,m, ûS,i = û I
S,i +

Ki∑
k=1

DS,i RS,i |kμ̂1
S,m,

uC, j = uI
C, j +

K j∑
k=1

DC, j RC, j |kμS,m, ûC, j = û I
C, j +

K j∑
k=1

DC, j RC, j |kμ̂2
S,m,

where now DC, j and DS,i are the extension operators defined by (7) and (9) in the
corresponding components, and uI

C, j , and uI
S,i are also the solutions of problems sim-

ilar to those in (16). Moreover, the matrices RC, j |k ∈ R
K j ×M and RS,i |k ∈ R

Ki ×M

select among the interface unknowns μS,m those associated to the K j or Ki interfaces
of the j-th or i-th component, respectively. Following similar steps to those which led
us to Eq. (23) yields in this case: given the functions {uI

C, j }NC

j=1 and {uI
S,i }NS

i=1, find

({μS,m}M
m=1, {λS,m}M

m=1) ∈ ∏M
m=1�S,m × ∏M

m=1�
′
S,m such that

NC∑
j=1

K j∑
k=1

aC, j (DC, j RC, j |kμS,m,DC, j RC, j |kμ̂2
S,m)

+
NS∑

i=1

Ki∑
k=1

aS,i (DS,i RS,i |kμS,m,DS,i RS,i |kμ̂1
S,m)+

M∑
m=1

〈λS,m, μ̂
1
S,m − μ̂2

S,m〉S,m

=
NS∑

i=1

Ki∑
k=1

(
fS,i (DS,i RS,i |kμ̂1

S,m)− aS,i (u
I
S,i ,DS,i RS,i |kμ̂1

S,m)
)
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+
NC∑
j=1

K j∑
k=1

(
fC, j (DC, j RC, j |kμ̂2

S,m)− aC, j (u
I
C, j ,DC, j RC, j |kμ̂2

S,m)
)

∀({μ̂1
S,m}M

m=1, {μ̂2
S,m}M

m=1) ∈
M∏

m=1

�S,m ×
M∏

m=1

�S,m .

In compact form, with obvious meaning of notation, the interface variational problem
is written as follows: given uI

S
and uI

C
, find (μS,λS) ∈ �S × �′

S
such that

s�S,S(μS, μ̂
1
S)+ 〈λS, μ̂

1
S〉S = g�S,S

(μ̂
1
S) ∀μ̂

1
S ∈ �S,

s�S,C(μS, μ̂
2
S)− 〈λS, μ̂

2
S〉S = g�S,C

(μ̂
2
S) ∀μ̂

2
S ∈ �S.

(35)

We have therefore the following formulation, which is a counterpart of (24):

(S�S,S Iλ

S�S,C −Iλ

) (
μS

λS

)
=

(
g�S,S

g�S,C

)
. (36)

We can state the following result (proof as in Proposition 3).

Proposition 6 There exists a unique pair (μS,λS) ∈ �S × �′
S

solution of (35) and
a constant C > 0 such that

‖μS‖�S
+ ‖λS‖�′

S
≤ C(‖g�S,S

‖�′
S
+ ‖g�S,C

‖�′
S
).

The Steklov-Poincaré formulation is obtained by adding the two equations in (35)
and assuming that μ̂

1
S = μ̂

2
S = μ̂S, leading to

s�S,S(μS, μ̂S)+ s�S,C(μS, μ̂S) = g�S,S
(μ̂S)+ g�S,C

(μ̂S) ∀μ̂S ∈ �S.

Equivalently, we can write

s�S
(μS, μ̂S) = g�S

(μ̂S) ∀μ̂S ∈ �S. (37)

The existence and uniqueness of a solution to problem (37) can be proved in the same
manner as in Proposition 2.

4.2 Coupling CD-SD models (S = 0, 1) in the multi-component case

From this section on, we replace Assumption 1 by the following.

Assumption 4 We consider admissible combinations (C > S) where the simple
model is given by S = 0, 1.

In this situation, the interface variables belong to 1D or 0D models and, therefore,
they belong to finite dimensional spaces. Indeed, μS ∈ �S = R

M and λS ∈ �′
S

= R
M .
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An example is provided by the 3D-1D coupled problem described in Sect. 2.3.
Under Assumption 4, we can characterize the operators in (36) through the corre-

sponding matrices, yielding

(
S�S,S 1
S�S,C −1

) (
μS

λS

)
=

(
g�S,S

g�S,C

)
, (38)

where S�S,S,S�S,C, 1 ∈ R
M×M and g�S,S

, g�S,C
∈ R

M .
Similarly, we can write the system of equations when we employ Dirichlet (for

the SD model) and Neumann (for the CD model) boundary conditions, or Neumann
conditions for both models, leading, respectively, to

(
S�S,S 1

1 −T�S,C

) (
μS

λS

)
=

(
g�S,S

RSuJ
C

)
, (39)

and

(
1 −T�S,S

1 −T�S,C

) (
μS

λS

)
=

(
uJ

S

RSuJ
C

)
. (40)

These expressions are analogous to (32) and (34), respectively, for which it is also
T�S,S,T�S,C ∈ R

M×M .

Remark 7 Once the physical system is defined we have proper matrices corresponding
to each of the augmented problems (Eqs. 38, 39 and 40). It is interesting to investi-
gate the relation between the condition number of those matrices and the number of
unknowns in the problem, that is the number of coupling interfaces between CD-
models and SD-models. As we will see in Sects. 5 and 6, the condition numbers are
increasing functions of the number of coupling interfaces M . This feature becomes
relevant when attempting to solve the heterogeneous problem in a segregated manner
by solving iteratively dimensionally-homogeneous sub-problems.

5 Discrete dimensionally-heterogeneous problem

Suppose now that we approximate each component in the system by a Galerkin finite
element discretization. We denote by hC,i , i = 1, . . . , NC, and hS, j , j = 1, . . . , NS

the characteristic sizes of the elements used in the discretizations of the CD and
SD subdomains, and h = (hC, hS), where hC = {hC,i }NC

i=1 and hS = {hS, j }NS

j=1.

Then, the approximate augmented interface problem reads: given uI
C,hC

and uI
S,hS

,

find (μS,h,λS,h) ∈ �S,h × �′
S,h such that

s�S,S(μS,h, μ̂
1
S,h)+ 〈λS,h, μ̂

1
S,h〉S = g�S,S

(μ̂
1
S,h) ∀μ̂

1
S,h ∈ �S,h,

s�S,C(μS,h, μ̂
2
S,h)− 〈λS,h, μ̂

2
S,h〉S = g�S,C

(μ̂
2
S,h) ∀μ̂

2
S,h ∈ �S,h .

(41)
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Analogously, the discrete Steklov-Poincaré formulation reads as follows

s�S
(μS,h, μ̂S,h) = g�S

(μ̂S,h) ∀μ̂S,h ∈ �S,h . (42)

In the case S = 2, we should construct suitable conforming finite element spaces to
approximate �S and �′

S
to guarantee the well-posedness of (41). More precisely, we

would have to choose a suitable pair �S,h ×�′
S,h to be able to prove the discrete coun-

terpart of Proposition 3, that is that there exists a unique pair (μS,h,λS,h) ∈ �S,h×�′
S,h

solution of (41) and that there exists C > 0 such that the solution satisfies

‖μS,h‖�S,h + ‖λS,h‖�′
S,h

≤ C(‖g�S,S,h‖�′
S,h

+ ‖g�S,C,h‖�′
S,h
).

The construction of such spaces is not straightforward and it would lead to a too
wide discussion that goes beyond the aim of this work. For this reason, we stick to
Assumption 4 so that we work only with �S = �′

S
= �S,h = �′

S,h = R
M .

Thus, the discrete version of Eq. (41) in block operator form reads: find (μS,h,

λS,h) ∈ R
M × R

M such that

(
S�S,S,h 1
S�S,C,h −1

)(
μS,h
λS,h

)
=

(
g�S,S,h
g�S,C,h

)
, (43)

whereas the analogous to (42) is: find μS,h ∈ R
M such that

S�S,hμS,h = g�S,h .

Concerning the well-posedness of these problems we can state the following result
which is a particular case of Proposition 3.

Proposition 7 There exists a unique pair (μS,h,λS,h) ∈ R
M × R

M solution of (43).
Also, there exists C > 0 such that the solution satisfies

|μS,h | + |λS,h | ≤ C(|g�S,S,h | + |g�S,C,h |).

Proof We have only to prove the analogous of Proposition 1, then the thesis follows
from Proposition 3. We show this result for one component, i.e. we fix j, k and m. More
precisely, we prove in the continuous case that the following problem is well-posed:
find (DCμS, λS) ∈ ÛC × R such that

aC(DCμS, û I
C
)+ 〈λS,RSû I

C
〉S = 0 ∀û I

C
∈ ÛC,

〈λ̂S,RS(DCμS)〉S = 〈λ̂S, μS〉S ∀λ̂S ∈ R.
(44)

Notice that in this context the duality pairing 〈·, ·〉S reduces to the Euclidean scalar
product in R.
Let wC ∈ ÛC be the solution of the following problem:

aC(wC, û I
C
) = −〈1,RSû I

C
〉S ∀û I

C
∈ ÛC. (45)
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Then DCμS = λSwC satisfies the first equation in (44). If we require that it satisfies
also the second equation, we obtain:

λS〈λ̂S,RSwC〉S = 〈λ̂S, μS〉S ∀λ̂S ∈ R.

Thanks to the coercivity of the bilinear form aC(·, ·), from (45) it follows that 〈λ̂S,

RSwC〉S 	= 0 whenever λ̂S 	= 0, so that λS exists.
To prove uniqueness, let (u1

C
, λ1

S
), (u2

C
, λ2

S
) ∈ ÛC × R be two solutions of (44).

Then, there holds:

aC(u
1
C

− u2
C
, û I

C
)+ 〈λ1

S
− λ2

S
,RSû I

C
〉S = 0 ∀û I

C
∈ ÛC,

〈λ̂S,RS(u
1
C

− u2
C
)〉S = 0 ∀λ̂S ∈ R.

Taking û I
C

= u1
C

− u2
C

, by coercivity of aC(·, ·) we obtain ‖u1
C

− u2
C
‖UC

= 0 from
which u1

C
= u2

C
a.e. in �C. The equality λ1

S
= λ2

S
follows straightforwardly. ��

Finally, concerning the conditioning of the problem, we have the following result.

Proposition 8 The condition number of matrices S�S,h and
(

S�S,S,h 1
S�S,C,h −1

)
is indepen-

dent of h = (hC, hS).

Proof The proof is by contradiction. Consider matrix S�S,h . Assume that the condition
number depends on a negative power of h. Note that the space where the approximate
solution is looked for does not depend on h = (hC, hS). Indeed, the space where both
the exact and the approximate solutions live is exactly the same. Since the operator
S�S,h is invertible, the matrix S�S,h associated to the discrete problem is also invertible.
The independence of the condition number of the system with respect to parameter
h stems from the following argument. The matrix S�S,h of the continuous operator
has a condition number K (S�S,h) that obviously does not depend on h. Therefore, for
h → 0, we have

S�S,h → S�S
and K (S�S,h) → K (S�S

).

The former is a convergence in R
M×M , so the analysis is straightforward and we can

conclude by contradiction that K (S�S,h) does not depend on h. For the case of block

matrix
(

S�S,S,h 1
S�S,C,h −1

)
the same arguments hold and the result follows. ��

Remark 8 In a completely analogous way, it can be seen that the discrete versions of
the problems defined by Eqs. (39) and (40) enjoy the same property. That is, the con-

dition number of block matrices
(

S�S,S,h 1
1 −T�S,C,h

)
and

(
1 −T�S,S,h

1 −T�S,C,h

)
is independent of

h = (hC, hS).

6 Numerical experiments

In this section we present two applications of our theory. Particularly, we provide
numerical evidence to the conclusions drawn in Remark 7, and Proposition 8. The
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Fig. 5 Schematic representation of a thermal fin

applications considered are the heat transfer problem with pure diffusion phenomena
and the linear elasticity problem.

6.1 Coupling 2D-1D systems: heat transfer

In this example, we consider a 2D heat sink designed for the thermal management of
high-density electronic components, formed by a base or spreader which supports a
number of plate fins exposed to flowing air (see [21]). A schematic representation of
the computational domain is presented in Figure 5.

The system is described by the following equations:

−div (k∇u2) = 0 in �s ∪� f ,

k
∂u2

∂n
= 0 on �ins,

u2 = u∗
2 on �base,

k
∂u2

∂n
+ Bi u2 = 0 on �ex ,

where k is the adimensional thermal conductivity: k = ks/k f , ks and k f being the
thermal conductivities of the spreader and of the fin, respectively. Finally, Bi is the
adimensional Biot number: Bi = hcdper/k f where hc is the heat transfer coefficient
and dper the distance between the fins. u2 represents the adimensional temperature
inside the heat sink.

On the interfaces �C we impose the continuity of the mean temperature and that
of the heat fluxes.

For large systems of thermal fins, in order to reduce the computational cost, one
may replace the fins by 1D structures. This approximation is significant especially
when the Biot number is small, which corresponds to a temperature distribution in the
fins which behaves almost as a 1D distribution.

In such a case, according to the notation introduced in this work, we have S =
1,C = 2,�1 is the domain of 1D fins (with coordinate ξ ) while �2 is the domain
made of the spreader and possible 2D fins (with coordinates (x, y)). Moreover, �1 and
�2 are the 1D and 2D coupling interfaces, respectively.

The linear manifolds become U2 = H1(�2)+b.c. and U1 = H1(�1)+b.c., while
we have �2 = H1/2(�2),�

′
2 = H−1/2(�2),�1 = �′

1 = R. The problem is defined
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2 1D fins 4 1D fins

6 1D fins 8 1D fins

Fig. 6 Different heterogeneous configurations for the same physical system

by the following continuous and coercive bilinear forms:

a2(u2, û2) =
∫

�2

k∇u2 · ∇û2 d�2 +
∫

�ex

Bi u2û2 d�ex ,

a1(u1, û1) =
∫

�1

kδ
du1

dξ

dû1

dξ
d�1 +

∫

�1

2Bi u1û1 d�1,

where δ is the width of the fins.
The operators R1 and R∗

1 are defined as

R1(u2|�2) = u2,1|�1 = 1

|�2|
∫

�2

u2 d�2 and R∗
1(λ1) = λ1|�2 ,

and we have

〈λ1, u1〉1 = |�2|λ1u1|�1,

〈λ1,R1(u2|�2)〉1 = |�2|λ1u2,1|�1 =
∫

�2

λ1|�2 u2 d�2 = 〈R∗
1(λ1), u2〉2.

Following the same steps of Remark 2, it can be easily seen that these operators satisfy
the hypotheses of Proposition 1.

We solve the coupled problem by considering the four configurations shown in
Fig. 6. In the first case we have M = 2 interfaces so that the augmented system has
dimension 4 × 4, in the second case M = 4 corresponding to a 8 × 8 system, while
in the last two cases M = 6 and 8, respectively, corresponding to augmented systems
of dimensions 12 and 16.

We use the Dirichlet-and-Neumann and the Neumann-and-Neumann approaches
(39) and (40), respectively.
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Table 1 Number of degrees of freedom for the different configurations

2 1D fins 4 1D fins 6 1D fins 8 1D fins

dofs �1 dofs �2 dofs �1 dofs �2 dofs �1 dofs �2 dofs �1 dofs �2

grid 1 22 165 44 137 66 109 88 81

grid 2 42 537 84 449 126 361 168 273

grid 3 82 1,905 164 1,601 246 1,297 328 993

grid 4 162 7,137 324 6,017 486 4,897 648 3,777

grid 5 322 27,585 644 23,297 966 19,009 1,288 14,721

Fig. 7 Solution computed for the second configuration with 4 1D fins

For our simulations we consider k = 1, u∗
2 = 3,Bi = 0.1 and δ = 0.3. We carry

out a finite element discretization considering P1 Lagrangian elements and several
computational grids depending on h1 and h2 as shown in Table 1.

In Fig. 7 we show the solution computed for the second configuration, while in
Fig. 8 we compare the solution on one of the fins using two different configurations
(those with 4 and 6 1D fins) corresponding to treating that fin as a 1D or as a 2D
model. Finally, in Table 2 we report the condition numbers of the augmented systems
and the number of iterations required to converge. Despite their small dimensions,
the linear systems have been solved using BiCGStab iterations (with tolerance 10−6

on the relative residual) to avoid computing explicitly the Dirichlet-to-Neumann or
Neumann-to-Dirichlet operators for the 2D problem.

As pointed out in Proposition 8, we can observe that the condition numbers are
independent of both h1 and h2 and, although mildly, the condition number grows
with M .

6.2 Coupling 3D-1D systems: linear elasticity

In this section we consider the problem of a linear elastic body governed by the Navier
equations. Particularly, we perform the analysis of a structural component in the fre-
quency domain, for which we make use of the frequency domain equations, which are
called reduced field equations of elastodynamics [11]. In this case we assume that the
boundary conditions are harmonic in time with angular velocity ω. Let us assume that
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Fig. 8 Temperatures computed with the 1D model (solid line) and mean values obtained from the 2D
model (squares) for a sample fin, using the configurations with 4 and 6 1D fins, respectively

Table 2 Condition numbers and number of iterations (between brackets) for the Dirichlet-and-Neumann
method (left) and for the Neumann-and-Neumann method (right)

Dirichlet-and-Neumann method Neumann-and-Neumann method

2 1D fins 4 1D fins 6 1D fins 8 1D fins 2 1D fins 4 1D fins 6 1D fins 8 1D fins

grid 1 3.1095 (4) 3.1615 (4) 3.1799 (6) 3.1994 (5) 2.0014 (3) 2.0529 (4) 2.0708 (4) 2.0895 (4)

grid 2 3.0685 (4) 3.1123 (4) 3.1282 (5) 3.1437 (4) 1.9367 (3) 1.9808 (4) 1.9966 (4) 2.0115 (4)

grid 3 3.0549 (4) 3.0970 (4) 3.1121 (5) 3.1264 (4) 1.9121 (3) 1.9550 (4) 1.9701 (4) 1.9838 (4)

grid 4 3.0506 (4) 3.0923 (4) 3.1072 (5) 3.1211 (4) 1.9039 (3) 1.9466 (4) 1.9615 (4) 1.9748 (3)

grid 5 3.0493 (3) 3.0909 (4) 3.1058 (5) 3.1195 (4) 1.9014 (2) 1.9440 (4) 1.9589 (4) 1.9721 (3)

the mechanism is endowed with a continuously-distributed kinematic linear control
system.

In view of the geometrical characteristics of the mechanism under study we con-
struct a representation through coupled dimensionally-heterogeneous 3D-1D models
as shown in Fig. 9. The mechanism consists of one centered 3D model, four cornered
3D models, four diagonal 1D bars connecting the centered 3D model to the cornered
ones and four in-plane 1D bars connecting the cornered 3D models among them. In this
example we have that M = 16 is the number of coupling interfaces, so the dimension
of the interface problem is 2M = 32. The structure is component-wise homogeneous,
since the 1D bars have a different material parameter than the 3D components.

According to the notation introduced so far, the computational model for this prob-
lem is characterized by being S = 1 and C = 3 (recall that α = 1), for which �1 is
the domain of the bar components (with coordinate ξ ) and�3 is the 3D domain of the
solid components (with coordinates (x, y, z)). Also, �1 is the 1D coupling interface
(point) and �3 is the 3D coupling interface (planar surface) with outward unit nor-
mal n (which coincides with the axial direction of the bar). The linear manifolds are
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Fig. 9 Structural mechanism modeled by means of 3D-1D coupled models

U3 = H1(�3) + b.c. and U1 = H1(�1) + b.c., while it is �3 = H1/2(�3),�
′
3 =

H−1/2(�3) and �1 = �′
1 = R. Here u1 denotes the axial displacement in the 1D bar

and u3 is the displacement field (vector field) in the 3D domain.
When incorporating the distributed kinematic control system, the bilinear and linear

forms for the reduced field equations are as follows

a1(u1, û1) =
∫

�1

(K − ρω2)Au1û1 d�1 +
∫

�1

AẼ
du1

dξ

dû1

dξ
d�1,

a3(u3, û3) =
∫

�3

(K − ρω2)u3 · û3 d�3 +
∫

�3

E(∇u3)
s · (∇û3)

s d�3,

f1(û1) =
∫

�1

Agû1 d�1,

f3(û3) =
∫

�3

g · û3 d�3.

The operators R1 and R∗
1 are defined by

R1(u3|�3) = u3,1|�1
= 1

|�3|
∫

�3

u3 · n d�3,

R∗
1(λ1) = λ1|�3 n,

and the duality pairings are given by

〈λ1, u1〉1 = A|�1λ1u1|�1 ,
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〈λ1,R1(u3|�3)〉1 = A|�1λ1u3,1|�1
=

∫

�3

λ1|�3n · u3 d�3 = 〈R∗
1(λ1),u3〉3.

In the expressions above A is the cross sectional area of the bar, noting that A|�1 =
|�3|,E is the fourth order elasticity tensor in the solid domain, Ẽ is the effective elas-
ticity modulus in the axial direction of the bar (Ẽ = E · (n ⊗ n ⊗ n ⊗ n)), g is a
volume source in the solid domain, while g is a volume source in the axial direction
of the bar (g = g · n). As well, K is responsible for the linear control system acting
in a distributed manner over the mechanism. Here the parameters are set always such
that K − ρω2 > 0.

Evidently, the forms a1 and a3 are bilinear, continuous and also coercive, while
the forms f1 and f3 are linear functionals. In turn, the operator R1 is linear and con-
tinuous, while its transpose R∗

1 satisfies the requirements stated in Proposition 1 [see
inequalities (12)]. As a matter of fact, for the right inequality we have

‖R∗
1λ1‖H−1/2(�3)

= sup
u3∈H1/2(�3)

H−1/2(�3)
〈R∗

1λ1,u3〉H1/2(�3)

‖u3‖H1/2(�3)

= sup
u3∈H1/2(�3)

R〈λ1,R1u3〉R
‖u3‖H1/2(�3)

= |λ1| sup
u3∈H1/2(�3)

|R1u3|
‖u3‖H1/2(�3)

= |λ1|
|�3| sup

u3∈H1/2(�3)

∫
�3

u3 · n d�3

‖u3‖H1/2(�3)

≤ |λ1|
|�3| sup

u3∈H1/2(�3)

‖u3‖L2(�3)
|�3|

‖u3‖H1/2(�3)

≤ C |λ1| ∀λ1 ∈ R.

For the left inequality let us take û3 such that |û3| = û3 · n = 1, that is, it is a con-
stant function equal to one in the direction of the normal vector. Then R1û3 = 1 and
‖û3‖H1/2(�3)

= 1, hence

|λ1| = |R〈λ1,R1û3〉R|
‖û3‖H1/2(�3)

≤ sup
u3∈H1/2(�3)

R〈λ1,R1u3〉R
‖u3‖H1/2(�3)

= sup
u3∈H1/2(�3)

H−1/2(�3)
〈R∗

1λ1,u3〉H1/2(�3)

‖u3‖H1/2(�3)

= ‖R∗
1λ1‖H−1/2(�3)

∀λ1 ∈ R.

Particularly, for this example we take g = 0, g = 0,E is characterized by the Young
modulus E3D = 20.0 and the Poisson ratio ν = 0.3, while Ẽ = E1D(1−ν)

(1+ν)(1−2ν) , being

E1D = 37 the Young modulus of the 1D components. The density is ρ = 7.86 · 10−6

and the control system is characterized by K = 1.0.
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Fig. 10 Results at coupling points l, d and u of the mechanism

The boundary conditions are such that the displacement is prescribed on the upper
part of the centered 3D model in Fig. 9, and in the frequency domain its value is
ū3 = −δuez, δu = 0.1, being ez the unit vector in the z-direction. In addition, the cor-
nered 3D models in the lower part of the mechanism are fixed in the vertical direction
and are free in the two in-plane directions, that is in the (x, y)-plane. The spatial dis-
cretization with the characteristic lengths given by h3 and h1 are such that the meshes
have: 10270 nodes for the centered 3D model, 23305 nodes for the cornered 3D models,
81 nodes for the diagonal 1D bars and 61 nodes for the in-plane 1D bars. The dimen-
sions that define the mechanism are A1 = 0.7854, A2 = 0.6504, L1 = 12.0, L2 =
19.5959, a1 = 1.0, a2 = 4.0, a3 = 1.5, a4 = 20.0, a5 = 2.0 and a6 = 2.4495.

In spite of the symmetry of the geometry and of the loading we keep the original
structure involving the five 3D solid models and the eight 1D bar models. Particularly,
this problem was solved using a Neumann-and-Neumann approach, that is Neumann
boundary conditions for all the components according to (40). The linear problem
was solved using the Newton method which takes 2M = 32 iterations to evaluate the
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Fig. 11 Displacement field in the mechanism for − log(ω) = 3

Jacobian, where M is the number of coupling interfaces (recall that M = 16 in this
problem).

The frequency analysis performed in the present application entails studying the
way in which the coupling quantities (μ1, λ1)m,m = 1, . . . ,M depend upon the fre-
quency ω of the excitation, that is the frequency of the prescribed displacement over
the upper part of the mechanism (over the centered 3D model). Due to the symmetries
of the mechanism we have three average displacements and three coupling forces,
denoted by (μl , λl), (μd , λd) and (μu, λu). The indexes l, d and u denote the solu-
tion at the coupling points which are equivalent, that is (μl , λl) = (μi , λi ), i =
1, . . . , 8, (μd , λd) = (μi , λi ), i = 10, 12, 14, 16 and (μu, λu) = (μi , λi ), i =
9, 11, 13, 15 (see Fig. 9 for the numeration of the coupling points).

Figure 10 presents the way in which the coupling quantities at points l, d and
u depend on the frequency ω. In both, mean displacement and coupling force, the
saturation point is easily noticed when the frequency ω approaches from the limit

value
√

K
ρ

. These results are not further discussed because this goes beyond the scope

of the present work.
In view of the load acting over the mechanism, the four diagonal bars are in a

compression state, and so the sign of the coupling force is such that it is a compressive
force, while the in-plane bars are all in a traction state, and therefore the coupling force
is indeed a traction force. As a result, the mean displacements are such that the mech-
anism undergoes a center-to-outer deformation. Figure 11 displays the displacement
vector field in the mechanism as well as the solution (magnitude of the displacement
field) in some slices cutting the 3D components. In turn, in Fig. 12 the original and
deformed configurations are shown, for which an amplification factor has been used
over the displacement field. In such figure we can observe what was said above, that is,
the traction and compressive states of the bars as a result of the 3D-1D heterogeneous
interaction of the entire component.
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Fig. 12 Original and deformed configuration for − log(ω) = 3 (displacements are amplified)

7 Conclusions

In this work, the mathematical framework for coupling dimensionally-heterogeneous
models was set up. This was carried out starting from an extended variational formu-
lation devised for dealing with heterogeneous problems. The problem was recasted in
terms of interfaces variables, from which different interface variational formulations
were derived. The conditions under which it is possible to have existence and unique-
ness results of such different formulations were established, and the corresponding
results were proved. Within this context, the decomposition of the original heteroge-
neous problem into homogeneous decoupled subproblems could be straightforwardly
introduced. Additionally, it was possible to study some relevant properties of the
resulting interface problem also in the case of a system with an arbitrary number of
components. Finally, two examples of application were presented in order to confirm
the numerical results obtained and to show the effectiveness and motivate the use of
such models in certain applications.
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