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Retinoic acids increase expression of GLUT4 

in dedifferentiated and hypertrophied cardiac

myocytes

� Abstract Sufficient expression of the insulin-sensitive glucose transporter
GLUT4 may be crucial for the survival of cardiac myocytes in situations of
stress. Expression of GLUT4 in cardiac myocytes correlates with cell differ-
entiation and is reduced in the hypertrophied and failing myocardium. Adult
rat cardiomyocytes (ARC) in primary culture undergo dedifferentiation and
reduction of GLUT4 expression. Depending on the culture condition partial
redifferentiation and/or hypertrophy follows. All-trans (at) and 9-cis retinoic
acids (RA) are morphogenetic agents important for cell differentiation. Both
atRA and 9-cisRA restored GLUT4 expression in dedifferentiated ARC, while
only 9-cisRA could increase GLUT4 expression in hypertrophic ARC. The
effects of RA were associated with improved differentiation of the cardiac
myocytes, as assessed from the expression of atrial natriuretic factor and the
morphology of the contractile apparatus. In neonatal rat cardiomyocytes, 
9-cisRA, but not atRA, stimulated transcription from the glut4 promoter. In
conclusion, treatment with RA can restore the down-regulated expression of
GLUT4 in cardiomyocytes in association with a partial improvement of the
differentiated phenotype.

� Key words cardiac myocytes – glucose transporters – retinoic acids – gene
expression – transcription
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Introduction

Cardiac myocytes use a variety of substrate for energy
production, including free fatty acids, glucose, lactate
and ketone bodies. Substrate selection is developmen-
tally regulated. During the perinatal period, substrate
metabolism shifts from predominant glycolytic and oxi-
dative utilization of carbohydrates to predominant fatty
acid oxidation [4, 15]. This shift is associated with a
change in the expression of a number of regulatory pro-
teins of glucose and fatty acids metabolism [21, 24, 32,
38], including glucose transporting proteins. Specifically,
the ubiquitous glucose transporter GLUT1 is largely
replaced by the insulin-regulated isoform GLUT4 [24, 32,

38], although in the human heart GLUT1 is expressed at
a higher level in the adult than the fetal myocardium [25].

Myocardial hypertrophy is associated with changes in
glucose metabolism characterized by increased basal glu-
cose uptake and insulin resistance [22, 23]. Basal uptake
of glucose is mediated by GLUT1, which is expressed at a
low level in the normal adult heart, but is increased in rat
models in vivo during post-ischemic reperfusion [33] or
cardiac failure following remodeling after large myocar-
dial infarction [28]. Conversely, expression of GLUT4 is
decreased in these conditions [28, 33]. Observations in
GLUT4-null mice indirectly suggest that down-regula-
tion of GLUT4 may be involved in the pathogenesis of
hypertrophy [1, 14]. In addition, GLUT4-deficiency is
associated with impaired post-ischemic recovery [36].
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Adult rat cardiomyocytes (ARC) in primary culture
express markers of hypertrophy, including ANF and �-
smooth muscle actin, which are normally expressed dur-
ing fetal and perinatal life, but are down-regulated dur-
ing maturation [7]. In addition, ARC in primary culture
display a rapid down-regulation of GLUT4 expression
associated with dedifferentiation. Depending on the cul-
ture conditions, GLUT4 expression may either sponta-
neously recover with partial redifferentiation of ARC, in
medium containing low amounts of fetal calf serum
(FCS) [20], or remain suppressed during hypertrophy in
high FCS-containing medium [27].

Retinoic acids are physiological modulators of differ-
entiation with the ability to blunt the hypertrophic
response of neonatal rat cardiac myocytes in vitro [41,
44]. In addition, retinoic acids have been shown to induce
the differentiation of H9c2 myoblasts into cardiac rather
than skeletal myocytes [17]. Finally, retinoic acids stim-
ulate the expression of GLUT4 in skeletal myocytes [31].
In the present study, we investigated whether retinoic
acids could restore expression of GLUT4 in the two
related models of cardiac myocytes dedifferentiation and
hypertrophy mentioned above.

Methods

� Animals

We obtained male Sprague-Dawley rats (100–110 g) from
IFFA CREDO (L’Arbresle, France). Newborn Sprague-
Dawley rats (1–3 days) were from the Geneva University
School of Medicine animal facility. The ethical commit-
tee of the Geneva University School of Medicine and the
Geneva State Veterinary Office approved the study pro-
tocol, which conforms to the Guide for the Care and Use
of Laboratory Animals published by the US National
Institutes of Health (NIH Publication No. 85-23, revised
1996).

� Adult rat cardiomyocytes culture

Adult rat cardiomyocytes (ARC) were isolated by retro-
grade perfusion of the hearts with collagenase (type II,
Biochrom) [5, 8]. Dishes were previously coated with
0.1% gelatin for 4 h and incubated overnight with culture
medium containing 20 % fetal calf serum (FCS). For
immunofluorescence studies, cells were plated on
laminin-coated glass coverslips. Cells were plated at a
density of approximately 20000 cells/cm2. In the dedif-
ferentiation – redifferentiation model, culture medium
was M199 with Earle’s salts (Life Technologies) supple-
mented with 20 mM creatine, 100 μM cytosine-�-D-ara-

binofuranoside and 1% FCS. In the remodeling-hyper-
trophy model, the same culture medium was supple-
mented with 10% FCS.

All-trans (at) and 9-cis retinoic acids (Sigma) and
TTNPB (Calbiochem) were added from 1000 X ethanol
stock solutions to the medium at the time of plating (day
0). The medium was replaced every other day.

� Neonatal rat cardiomyocytes culture

Neonatal rat cardiomyocytes (NRC) were isolated by col-
lagenase digestion [35]. Cells were plated at a density of
2.5�105 cells per 3.5-cm dish or 5�105 cells per 6-cm dish
(day 0), transfected on day 1 and treated with atRA, 9-
cisRA or TTNPB on day 2 for two additional days.
Retinoid treatment was administered in M199 supple-
mented with 20 mM creatine, 100 μM cytosine-�-D-ara-
binofuranoside and 1% FCS as in ARC. 

� Plasmids and NRC transfection

The plasmid pLuc-GT4 encoding Photinus luciferase
under the control of the rat glut4 promoter has been
described previously [20]. It was transfected together
with a plasmid encoding Renilla luciferase under the
control of the SV40 promoter (pRL-SV40, Promega).
Transient transfection of NRC was performed using the
calcium phosphate precipitation method [35]. Transfec-
tion mixes contained 1.5 μg of pLuc-GT4 and 1.5 μg of
pRL-SV40. Photinus and Renilla luciferase activity was
measured 2 days after stimulation with retinoids with the
Dual Luciferase Reporter kit (Promega).

� Immunoblot analysis

ARC in one 6-cm dish were extracted in 200 μl RIPA [150
mM NaCl, 9.1 mM Na2HPO4, 1.7 mM NaH2PO4, pH 7.4,
1:100 protease inhibitor cocktail (Sigma P8340), 5 mM
NaF, 10 mM Na2�-glycerophosphate, 10 mM Na2parani-
trophenyl phosphate, 1 mM NaVO3]. Extracts were clar-
ified by centrifugation (12000 rpm for 5’) and super-
natants were used for SDS-PAGE and immunoblotting
[29]. A monoclonal anti-GLUT4 antibody (clone 1F8)
was obtained from ANAWA (Wangen, Switzerland). The
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Table 1 RT-PCR primers

GLUT1/4 Forward: 5’-GTCATCAACGCCCC(A/C)CAGAA-3’
Reverse: 5’-GAGAAGATGGCCACGGAGAGAG-3’

ANF Forward: 5’-AGTGCGGTGTCCAACACAG-3’
Reverse: 5’-CTTCATCGGTCTGCTCGCT-3’



anti-mouse IgG HRP-conjugated antibody was from
Sigma. Blots were revealed by chemiluminescence (ECL,
Amersham). Quantitative analysis of bands on films was
done by laser densitometry (ImageQuant 3.3, Molecular
Dynamics).

� RT-PCR analysis

ARC or NRC in one 6-cm dish were extracted in 1 ml TRI-
ZOL (Life Technologies) and total RNA was purified
according to the manufacturer’s protocol. 125 ng total
RNA was used for reverse transcription and subsequent
polymerase chain reaction using the OneStep RT-PCR kit
(Qiagen). Primers capable of coamplifying GLUT1 and
GLUT4 cDNAs were used (Table 1), which allowed
resolving their respective products on the basis of a 12-
base pair-size difference [30]. For the measurement of
ANF expression, 18S rRNA was amplified in the same
reaction using primers and competimers from the Quan-
tumRNA kit (Ambion). Cycling conditions were as fol-
lows: 30 min at 50 °C for reverse transcription, 15 min at
95 °C for reverse transcriptase inactivation and poly-
merase activation followed by 25 cycles of 30 sec at 94 °C,
1 min at 55°C and 1 min at 72°C. After a final extension
step of 10 min at 72°C, PCR products were resolved by
electrophoresis on 10% polyacrylamide gels in 1X TBE
(89 mM Tris-borate, 2 mM EDTA) buffer. The gels were
stained with ethidium bromide and a fluorescent image
acquired with a digital camera. Quantitative analysis of
bands on gel was done with the ImageJ software.

� Immunofluorescence 

ARC cultured on glass coverslips were fixed with 4%
paraformaldehyde in PBS and permeabilized with 0.3%
Triton X-100 in PBS. The primary antibody used was
directed against sarcomeric �–actinin (Sigma A7811).
The fluorophore-conjugated secondary antibody was
anti-mouse IgG-Alexa588 (Molecular Probes, Eugene,
OR). Both antibodies were diluted in PBS containing
1.5% non-immune goat serum. Counterstaining for F-
actin was obtained with phalloidin-Alexa536 (Molecular
Probes). DNA was stained with TO-PRO3 (Molecular
Probes). Slides were mounted with VectaShield (Vector
Laboratories) and examined with a Carl Zeiss LSM510
confocal microscope. A 1 μM-thick confocal slice was
acquired at the base of the nuclei, that is at the shoulder
of the myofibrillar ball (see below). Images luminosity
and contrast were digitally enhanced with Photoshop
3.0.5 (Adobe Systems).

� Statistics

Statistical analyses were performed with the Prism4 soft-
ware (GraphPad Softwares). Data are presented as mean
± SEM. Multiple groups were compared by ANOVA fol-
lowed by Bonferroni’s post-hoc test. Differences were
considered significant when p was less than 0.05. In dose-
response experiments, the EC50 for each agonist was
obtained by curve-fitting the average of several experi-
ments and is presented with a 95% confidence interval.

Ch. Montessuit et al. 29
Retinoids increase GLUT4 expression in cardiomyocytes

Fig. 1 Retinoic acids increase GLUT4
expression in the dedifferentiation-red-
ifferentiation model. ARC were isolated
and plated in 1% FCS medium in the
presence of either 10 nM RA (panels A
and B), 100 nM RA (panels C and D) or
the vehicle. Two and 7 days after, plat-
ing ARC total RNA and proteins were
extracted and the relative expression of
the GLUT4 protein (panels A and C) and
the GLUT4/GLUT1 mRNA ratio (panels B
and D) were determined. Results are
mean � SEM of 14 or more experi-
ments. *p < 0.05; ** p < 0.01; 
***p < 0.001 vs. respective control by
ANOVA



The data were fitted to a sigmoid dose-response equation
from the Prism4 equations library.

Results

� Dedifferentiation-redifferentiation model

In previous experiments, we observed a reduction in
GLUT4 expression in ARC in primary culture that was
transient in low serum conditions [18]. Treatment of
ARC with retinoic acids (RA) (Fig. 1) at concentrations
of 10 and 100 nM from the moment of isolation pre-
vented the loss of GLUT4 expression at day 2 and
enhanced the recovery of GLUT4 expression at day 7 (Fig.
1). These effects were observed both at the mRNA and at
the protein levels and were consistently more robust with
9-cisRA than with atRA. RA did not modify the expres-
sion of the glucose transporter GLUT1 (data not shown).

Both atRA and 9-cisRA can activate Retinoic Acid
Receptors (RAR), whereas only 9-cisRA activates
Retinoid X Receptors (RXR). To gain insight into the
type of retinoid receptor involved in the restoration of
GLUT4 expression, we constructed dose-response curves
(Fig. 2). Half-maximal stimulation of GLUT4 mRNA
expression was achieved with a concentration of 9-cisRA
that was below that of atRA by one to two orders of mag-
nitude (Table 2). Intriguingly, half-maximal stimulation
of GLUT4 protein expression was obtained with a con-
centration of 9-cisRA that was by two to three orders of

magnitude below that of atRA. On the other hand,
GLUT4 protein expression declined with the highest dose
of 9-cisRA (10–6 M), which was not taken into account 
for curve-fitting. Another feature of the dose-response
curves was the higher sensitivity to both atRA and 9-
cisRA by day 7. 

To further assess the role of RAR, we stimulated ARC
with the RAR-specific agonist 4-[(E)-2-(5,6,7,8-tetrahy-
dro-5,5,8,8-tetramethyl-2-naphtalenyl)-1-propenyl]ben-
zoic acid (TTNPB) [12]. TTNPB at the dose of 10 nM effi-
ciently increased both the GLUT4/GLUT1 mRNA ratio
and the relative expression of the GLUT4 protein (Fig. 3).
ANOVA analysis of the data in Fig. 3 indicated an over-
all highly statistically significant effect of TTNPB 
(p < 0.001). However, pair-wise comparison with post-
hoc Bonferroni’s correction achieved significance only
for GLUT4 protein expression on day 2 and for GLUT4/
GLUT1mRNA ratio on day 7. The large inter-experimen-
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Fig. 2 Dose-response curves of the
effects of RA on GLUT4 expression. ARC
were isolated and plated in 1% FCS
medium in the presence of increasing
concentrations of RA or the vehicle.
Two (panels A and B) and 7 days (pan-
els C and D) after plating, ARC total RNA
and proteins were extracted and the
relative expression of the GLUT4 protein
(panels A and C) and the GLUT4/GLUT1
mRNA ratio (panels B and D) were
determined. Results are mean � SEM
of five or more experiments. Dose-
response curves were fitted as
described in Methods: Statistics. EC50
obtained by curve fitting are presented
in Table 2

Table 2 EC50 of the effect of RA on GLUT4 expression

GLUT4/GLUT1 GLUT4 protein
mRNA ratio

atRA Day 2 26 nM 28 nM
20–33 nM 25–32 nM

Day 7 1.15 nM 16 nM
0.94–1.41 nM 13–20 nM

9-cisRA Day 2 0.69 nM 88 pM
0.51–0.96 nM 50–154 pM

Day 7 0.28 nM 17 pM
0.18–0.43 nM 13–23 pM



tal variations inherent to primary culture may explain
these effects.

Two days following plating of the ARC, cells were
either rod-shaped or rounded up by hypercontraction,
with only minimal cell spreading. No differences were
apparent between control and RA-treated ARC. After 7
days in culture, ARC had started to disassemble the con-
tractile apparatus and spread onto the substratum. A
“myofibrillar ball” persisted in the perinuclear region of
control ARC (Fig. 4). ARC cultured in the presence of 
10 nM of atRA, 9-cis RA or TTNP showed reduced

spreading and retained a higher level of sarcomeric
organization. ARC treated with 100 nM RA were larger
than control cells, but still exhibited a high level of sar-
comeric organization.

� Remodeling-hypertrophy model

ARC in primary culture with medium containing a high
concentration of FCS (10–20 %) undergo phenotypic
changes reminiscent of in vivo hypertrophy. We investi-
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Fig. 3 A RAR-specific agonists
increases GLUT4 expression in ARC. ARC
were isolated and plated in 1% FCS
medium in the presence of either 10 nM
TTNPB or the vehicle. Two and 7 days
after plating, ARC total RNA and pro-
teins were extracted and the relative
expression of the GLUT4 protein (left
panel) and the GLUT4/GLUT1 mRNA
ratio (right panel) were determined.
Results are mean � SEM of eight or
more experiments. ***p < 0.001 vs.
respective control by ANOVA

Fig. 4 Effects of retinoic acids on car-
diac myocytes morphology in the dedif-
ferentiation-redifferentiation model.
ARC were isolated and plated in 1% FCS
medium in the presence of either 10 nM
RA or TTNPB, 100 nM RA or the vehicle.
Two hours (ex vivo) or 7 days after plat-
ing, ARC were fixed and stained for
immunofluorescence. Red: F-actin;
green: �-sarcomeric actinin; blue:
nuclear DNA. Scale bar: 50 nM



gated the effects of RA on the phenotype of ARC and on
GLUT4 expression in this setting.

Inclusion of RA (100 nM) in the culture medium from
the day of plating significantly curbed the increase in
ANF expression observed after 2 days in primary culture.
Later, by the time hypertrophy fully developed (day 7 and
thereafter), there was only a non-significant trend toward
reduction of ANF expression (Fig. 5A). Similarly, the
notable increase in cell size observed between day 7 and
day 14 was not appreciably reduced by treatment with RA
(data not shown). However, ARC cultured for 7 days in
the presence of RA displayed a more differentiated mor-
phology with increased myofibrillar organization (Fig.
5B). Thus, RA do not seem to prevent hypertrophy, but
promote a more differentiated cardiomyocyte pheno-
type.

In the presence of a high concentration of FCS (10%),
9-cisRA (100 nM) stimulated the expression of the
GLUT4 mRNA at days 2 and 14 (Fig. 6). By day 7, the

GLUT4/GLUT1 mRNA ratio had largely recovered as
compared to day 2, perhaps explaining the lack of effect
of 9-cisRA at this time point. Expression of the GLUT4
protein in response to 9-cisRA was increased at all time
points. Although individual time points did not reach
statistical significance, the effect of 9-cisRA throughout
the culture period was significant (p < 0.01 by ANOVA).
In 10% FCS conditions, atRA failed to affect the expres-
sion of GLUT4 at all time points.

� Transcriptional effects of retinoic acid

Because both RAR and RXR belong to the family of
nuclear hormone receptors/transcription factors, we
determined whether treatment of cardiac myocytes with
RA increased transcription from the glut4 promoter. We
resorted to neonatal rat cardiomyocytes (NRC) for these
experiments because ARC are not amenable to conven-
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Fig. 5 Retinoic acids reduce initial ANF
overexpression and increase myofibril-
lar organization in hypertrophy. ARC
were isolated and plated in 10% FCS
medium in the presence of either 100
nM RA or the vehicle. A Immediately
after isolation and after 2, 7 and 14
days, total RNA was extracted and rela-
tive ANF mRNA expression determined.
Note the logarithmic scale. *p < 0.05;
***p < 0.01 vs. control at the same time
point by ANOVA. Results are mean �
SEM of nine or more experiments. 
B Two hours (ex vivo) or 7 days after
plating, ARC were fixed and stained for
immunofluorescence. Red: F-actin;
green: �-sarcomeric actinin; blue:
nuclear DNA. Scale bar: 50 �M

B

Fig. 6 Effect of RA on GLUT4 expres-
sion in hypertrophy. ARC were isolated
and plated in 10% FCS medium in the
presence of 100 nM atRA, 100 nM 9-
cisRA or the vehicle. Two, 7 and 14 days
after plating, ARC total RNA and pro-
teins were extracted and the relative
expression of the GLUT4 protein (top
panel) and the GLUT4/GLUT1 mRNA
ratio (bottom panel) were determined.
Results are mean � SEM of ten or more
experiments. *p < 0.05 vs. respective
control by ANOVA



tional transfection techniques. Similar to the situation in
ARC, 9-cisRA significantly increased the GLUT4/GLUT1
mRNA ratio in NRC. However, atRA and TTNP failed to
alter the GLUT4/GLUT1 mRNA ratio in NRC (Fig. 7A).
Accordingly, 9-cisRA clearly stimulated transcription
from the glut4 promoter in NRC, whereas neither atRA
nor TTNPB had a significant effect (Fig. 7B). 

Discussion

Sufficient expression of the insulin-sensitive glucose
transporter GLUT4 may be crucial for the survival of car-
diac myocytes in situations of post-ischemic stress [36].
Indeed, GLUT4 translocation during ischemia [19, 42]
allows for a rapid activation of glycolytic flux early dur-
ing reperfusion that is important for the restoration of
the ionic homeostasis [10, 11]. Expression of GLUT4 is
dependent on cell differentiation in adipocytes [13] and
skeletal muscle myocytes [26], as well as in cardiac
myocytes [20, 27]. In this series of experiments, we
demonstrated that retinoic acids, morphogenetic agents
that influence the differentiation of cardiac myocytes,
restore the expression of GLUT4 in dedifferentiated and
hypertrophic cardiac myocytes. The positive influence of
retinoic acids on the differentiation of cardiac myocytes
in culture has been demonstrated in different experi-
mental settings such as stem cells [40, 43], the H9c2
myoblastic cell line [17] and the HL-1 atrial cell line [39].
In contrast, experiments in stem cells [34] and in embry-
onic carcinoma cells [9] have shown a repressive effect of
retinoic acids on the differentiation of cardiac myocytes.
These discrepancies may arise from the different con-
centrations of retinoic acid used. Studies reporting a dif-
ferentiating effect of retinoic acids used them at 10–9–10–8

M, whereas in experiments showing anti-differentiation
effects of retinoic acids, the concentrations of the agents
were 10–7–10–6 M. This interpretation is consistent with
our findings that EC50 for the effect of retinoic acids on

GLUT4 expression were in the nanomolar range, or even
in the picomolar range in the case of 9-cisRA.

Little information is available on the effects of retinoic
acids on the adult myocardium. Administration of atRA
to normal rats induced a slight cardiac hypertrophy with
improved contractility [6], while atRA treatment of spon-
taneously hypertensive (SHR) rats reduced interstitial
fibrosis of the myocardium [16].

The regulation of gene expression by retinoic acids is
mediated by two subfamilies of receptors from the
nuclear receptor/transcription factor family, Retinoid
Acid Receptors (RARs) and Retinoid X Receptors
(RXRs). 9-cisRA is the bona fide ligand for RXRs, while
both all-trans and 9-cisRAs are ligands for the RARs with
similar affinities in the nanomolar range [2, 3]. There-
fore, the data obtained in dose-response experiments
indicate that increased expression of GLUT4 in response
to retinoic acids could very well be mediated by RARs, as
RARs are activated  by either all-trans or 9-cisRA. How-
ever, in the presence of biological membranes, atRA can
be partially isomerized to 9-cisRA [37]. Thus, based on
the dose-response data we could not rule out that atRA
was partially isomerized to 9-cisRA and that only RXRs
were involved. In addition, these this mechanisms would
explain the largely different apparent EC50 for atRA and
9-cisRA. However, TTNPB, a RAR-specific RA analog,
stimulated expression of both the GLUT4 mRNA and
protein, pointing to a role of RARs.

As for most nuclear receptors/transcription factors,
regulation of gene expression by retinoic acid receptors
is thought to mainly involve transcriptional regulation.
Using a luciferase reporter transfected into neonatal rat
cardiomyocytes (NRC), we observed that only 9-cisRA
stimulated transcription from the glut4 promoter, while
atRA or TTNPB did not. This result suggests that tran-
scription from the glut4 promoter is under the control of
RXR. However, this interpretation raises several ques-
tions. First, it seemingly contradicts findings in ARC that
RAR activation leads to increased expression of the
GLUT4 mRNA. However, it should be noted that the RAR
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Fig. 7 Effects of RA on GLUT4 expres-
sion in neonatal rat cardiomyocytes.
NRC were transfected one day after
isolation with plasmids encoding
luciferase under the control of either
the glut1 or the glut4 promoter. On day
2, NRC were stimulated with atRA, 9-
cisRA or TTNPB for two additional days.
A NRC total RNA was extracted and the
GLUT4/GLUT1 mRNA ratio determined.
B NRC were lysed and luciferase
expression, indicative of either the
glut1 or the glut4 promoter activity,
was measured in a luminescence-based
assay. Results are mean � SEM of four-
five experiments. *p < 0.05 vs. control
treatment by ANOVA
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agonist atRA and TTNPB failed to raise the GLUT4
mRNA content in NRC, perhaps indicating developmen-
tal changes in RAR expression. Second, RXR functions as
an obligatory dimer, either with itself or with another
member of the nuclear receptor/transcription factor
family, such as RAR or peroxisome proliferator-activated
receptors (PPARs). The identity of the RXR partner
remains to be determined. RAR is probably not the part-
ner of RXR in the transcription experiments as neither
atRA nor TTNPB stimulated transcription from the glut4
promoter. It is also unlikely that PPAR are involved given
that selective stimulation of PPAR�, PPAR� or PPAR�/�
in ARC does not modify GLUT4 expression (C. Pellieux,
personal communication).

In the remodeling-hypertrophy model, retinoids were
able to alleviate some, but not all, features of the hyper-
trophic phenotype. Although myofibrillar organization
was improved in ARC treated with atRA and 9-cisRA, the
increase in cell size was not blunted. With regard to the
expression of ANF, treatment with retinoids blunted the
initial rise in ANF expression, but failed to curb the large
increase observed during the development of hypertro-
phy. Although the initial rise of ANF expression was
independent of the concentration of FCS in the culture,
the following massive overexpression was only observed
in high FCS culture conditions (C. Pellieux, personal
communication). This observation is, therefore, similar
to that of Zhou et al. [44] who found that, in neonatal rat
cardiomyocytes, RA prevented hypertrophy and ANF
expression induced by phenylephrine or endothelin, but
not by FCS. Indeed, in ARC isolation triggers MAP kinase
pathways such as ERK1/2 and p38 MAPK [18] that are
responsive to phenylephrine and endothelin in NRC. In
contrast to the dedifferentiation-redifferentiation model,
in the remodeling-hypertrophy model, only 9-cisRA was
able to stimulate GLUT4 expression. It is possible that the

complement of RAR and RXR expressed in the two mod-
els is different and varies with the time in culture.

� Study limitations

One major limitation of the adult rat cardiomyocytes
(ARC) model is that ARC are not amenable to conven-
tional transfection techniques. We, therefore, had to
resort to neonatal rat cardiomyocytes (NRC) for studies
involving transfection of a reporter gene under the con-
trol of the glut4 promoter. In doing so, we assumed that
the regulation of GLUT4 expression by RA was similar in
ARC and NRC; this assumption is partially supported by
the data of Fig. 6A.

The issue of the relative implication of RAR and RXR
in the regulation of GLUT4 expression is not entirely
resolved by the experiments in this study. Experiments
with pharmacological inhibitors of either RAR or RXR
could possibly have helped clarify this point. However, to
the best of our knowledge, none were commercially avail-
able when this study was performed.

Conclusion

In conclusion, retinoic acids and particularly the 9-cis
isoform are able to restore GLUT4 expression in dedif-
ferentiated and hypertrophied adult rat cardiac myo-
cytes. This effect occurs in a context of improved differ-
entiation of the cardiac myocytes and involves tran-
scription form the glut4 promoter. The causal relation-
ship between GLUT4 expression and the differentiation
phenotype, if any, remains to be investigated.
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