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Abstract In groundwater applications, Monte Carlo methods are employed to model
the uncertainty on geological parameters. However, their brute-force application be-
comes computationally prohibitive for highly detailed geological descriptions, com-
plex physical processes, and a large number of realizations. The Distance Kernel
Method (DKM) overcomes this issue by clustering the realizations in a multidi-
mensional space based on the flow responses obtained by means of an approximate
(computationally cheaper) model; then, the uncertainty is estimated from the exact
responses that are computed only for one representative realization per cluster (the
medoid). Usually, DKM is employed to decrease the size of the sample of realizations
that are considered to estimate the uncertainty. We propose to use the information
from the approximate responses for uncertainty quantification. The subset of exact
solutions provided by DKM is then employed to construct an error model and correct
the potential bias of the approximate model. Two error models are devised that both
employ the difference between approximate and exact medoid solutions, but differ in
the way medoid errors are interpolated to correct the whole set of realizations. The
Local Error Model rests upon the clustering defined by DKM and can be seen as a
natural way to account for intra-cluster variability; the Global Error Model employs
a linear interpolation of all medoid errors regardless of the cluster to which the sin-
gle realization belongs. These error models are evaluated for an idealized pollution
problem in which the uncertainty of the breakthrough curve needs to be estimated.
For this numerical test case, we demonstrate that the error models improve the uncer-
tainty quantification provided by the DKM algorithm and are effective in correcting
the bias of the estimate computed solely from the MsFV results. The framework
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presented here is not specific to the methods considered and can be applied to other
combinations of approximate models and techniques to select a subset of realizations.

Keywords Multiscale finite volume · Distance kernel method · Stochastic
simulation

1 Introduction

In groundwater applications one has to deal with an incomplete characterization of
the aquifer: only sparse and uncertain measurements of the properties dictating the
flow response is usually available. To account for this partial information, Monte
Carlo methods are employed (Dagan 2002) which treat aquifer parameters, and in
particular the permeability (or equivalently the hydraulic conductivity), as stochastic
variables. Several realizations of the permeability field, conditioned on the available
data, are generated and the uncertainty is estimated from the variability of the re-
sponses obtained from different realizations. Despite the conceptual simplicity of this
approach, the geostatistical representation of the uncertainty is rarely sufficient for re-
alistically complex problems due to the large number of realizations required and the
consequent prohibitive computational costs. One possible strategy to overcome this
issue is to employ approximate models that are less computationally expensive. Since
in many applications large geological models are considered to describe the aquifer
with high spatial resolution, one of the most effective techniques is to upscale the per-
meability on a coarser grid and solve reduced models. Several classical techniques
exist at this end (Wen and Gómez-Hernández 1996; Renard and de Marsiliy 1997;
Christie 1996; Durlofsky 2005); more modern multiscale approaches have been de-
veloped in the last decade that allow a better representation of the fine-scale details
of the permeability field which are described by means of local numerical solution
(Hou and Wu 1997; Arbogast 2002; Aarnes et al. 2005; Jenny et al. 2003). The
Multiscale Finite Volume (MsFV) method (Jenny et al. 2003) belongs to the latter
group and has demonstrated great flexibility in modeling physically complex flows
(Jenny et al. 2006; Lunati and Jenny 2006, 2007, 2008; Hajibeygi and Jenny 2009;
Jenny and Lunati 2009; Künze and Lunati 2012). The accuracy of the MsFV method
has been studied in a deterministic context and evaluated in terms of the ability to
mimic the solution provided by the exact model in a single realization. This has
fostered the development of several iterative strategies aimed at reducing these dif-
ferences, which might be large in case of particularly challenging problems (Ha-
jibeygi et al. 2008, 2011; Lunati et al. 2011; Zhou and Tchelepi 2012; Künze and
Lunati 2012). In a stochastic context, however, a high level of accuracy might not
be necessary because the goal is not to model each realization exactly, but simply
to represent the variability of the ensemble of solutions (Chen and Durlofsky 2008;
Chen et al. 2011; Aarnes and Efendiev 2008). As all methods that provide an approx-
imate and relative inexpensive solution, the MsFV method is well suited to be applied
in a stochastic context.

Another strategy to limit the computational cost of Monte Carlo approaches is to
reduce the number of realizations for which the exact model is solved to estimate the
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uncertainty. Several methods exist to determine an optimal subset of realizations and
coarsen the stochastic space. Some ranking methods classify the realizations based on
static criteria such as geostatistical measures of connectivity or conductivity (McLen-
nan and Deutsch 2005). As they do not exploit information about the flow response,
these methods are extremely efficient in terms of computational costs but have lim-
ited accuracy, which may result in a biased estimate of the uncertainty. Accuracy can
be improved by using methods that sort the realizations based on a measure that de-
pends on the flow response, such as in dynamic ranking methods (Ballin et al. 1992)
or in the Distance Kernel Method (DKM) (Scheidt and Caers 2009a, 2009b). While
those approaches lead to much better results, as they can be tailored to the question
of interest, the problem remains of being able to inexpensively compute the dynamic
measure. In this paper, the MsFV method and the DKM are combined. However,
rather than simply employing the MsFV method as an approximate model to com-
pute the dynamic measure in the DKM, the approximate MsFV solutions are used to
obtain a first estimate of the uncertainty. The DKM selects a subset of realizations for
which the exact model is solved; then, an error model to correct the potential bias of
the MsFV estimate is constructed from the difference between the exact and the ap-
proximate solutions, which are available for the subset. Here, the ranking technique
is used not solely to reduce the number of flow simulations, but rather to provide a
representative subset of exact solutions to be compared to the approximate solutions.
Note that whereas ranking techniques, or methods like DKM, make in general no di-
rect use of the dynamic measure, in our approach this information is further exploited
to construct an error model with negligible extra costs. The paper is organized as fol-
lows: after a brief problem statement, we review the MsFV method and the DKM;
then we present two error models that are devised by combining MsFV and DKM;
finally, we present a thorough evaluation of the error models for a numerical test case
that is representative of fluvio-glacial aquifers. The paper ends with some concluding
remarks and perspectives for future development.

2 Problem Statement

Here we consider the problem of predicting the breakthrough curve of a contaminant,
which behaves as an ideal tracer (i.e., it does not alter the density and the viscosity
of the fluid). The evolution of the contaminant concentration in the aquifer, c, is
described by the following system of equations

∇ · (K∇h) = 0, (1)

φ
∂c

∂t
+ ∇ · (cu − D∇c) = 0, (2)

where

u = −K∇h (3)

is the Darcy velocity; K the hydraulic conductivity (which is obtained dividing the
permeability by the water viscosity); φ the porosity; and D the hydromechanical-
dispersion tensor, which includes the effects of molecular diffusion and dispersion.
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When appropriate boundary and initial conditions are assigned, the system above can
be solved and the breakthrough curve at the location of interest can be computed as a
function of time, C(t). The solution strongly depends on the structure of permeability
and porosity fields (Lunati et al. 2003), which are usually not fully characterized on
the basis of experimental observations. To model the uncertainty on these parame-
ters, Nr realizations are generated, {Ki,φi}i=1,2,...,Nr , which represent the variability
of the properties due to the limited characterization of the aquifer. To evaluate the
propagation of this uncertainty to the quantity of interest, flow and transport prob-
lems are solved in each realization and the breakthrough curve is computed, Ci(t).
(Here, initial and boundary conditions are treated as deterministic variables.) The set
of curves, {Ci(t)}i=1,2,...,Nr , obtained by these procedures, allows a characterization
of the uncertainty on the breakthrough curve conditioned to the set of realizations
that have been generated. In the following we are concerned with the problem of
reducing the computational cost of these procedures, which can become prohibitive
in presence of many geological realizations containing a large number of cells and
involving complex physical processes.

3 Methodology

There are two natural strategies to overcome this issue: one is to use an approx-
imate model that reduces the cost of computing a set of (approximate) curves
{Ca

i (t)}i=1,2,...,Nr ; the other is to reduce the dimensionality of the stochastic space
and consider only a subset of Ns < Nr realizations with breakthrough curves,
{Ci(t)}i=1,2,...,Ns . Both strategies, however, might lead to biased predictions of the
uncertainty. The main idea of the present work is that the bias can be reduced by a
combination of these two approaches. In the DKM, for instance, approximate models
are used only to select the subset of realizations, {Ki,φi}i=1,2,...,Ns , on the basis of
their flow response. However, these approximate solutions can be used to estimate
the variability neglected by the subset selection. On the other hand, the exact-model
responses calculated for the selected realizations can be used to construct an error
model and reduce the bias of the uncertainty estimated by the approximate model. In
this paper we are precisely concerned with the problem of devising a methodology
which allows an optimal exploitation of the information contained in the two sets of
curves, that is {Ca

i (t)}i=1,2,...,Nr and {Ci(t)}i=1,2,...,Ns .

3.1 The Multiscale Finite Volume (MsFV) Method

The approximate model employed in this study is the MsFV method, which has been
devised to efficiently solve the flow problem, Eq. (1), and deliver an approximate but
fully conservative velocity field that can be used in the transport equation without in-
troducing mass-balance errors (Jenny et al. 2003; Lunati and Jenny 2006). Although
extensions of the MsFV method have been proposed in the past to solve the trans-
port problem (Lee et al. 2009; Künze and Lunati 2012), here the MsFV method is
employed only to solve the flow problem, whereas the transport problem is solved
exactly.
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Fig. 1 Representation of the auxiliary coarse grids used in the MsFV method. The dual (coarse) grid (red
lines) is used to construct a set of local interpolators, which are local numerical solutions, whereas the cells
of the (primary) coarse grid (white lines) serve as control volumes to build a coarse problem that defines
the coarse-scale unknown at the nodes of the dual grid, or centers of the coarse grid (blue circles). Once
the coarse solution is obtained, the interpolator can be used to obtain an approximate fine-scale solution

We use the operator formulations employed in Lunati and Lee (2009) to briefly
present the MsFV method. First, we introduce the discrete form of Eq. (1)

Ah = r, (4)

where h is the vector of the unknown hydraulic heads; A is the coefficient matrix,
which depends on the hydraulic conductivity K ; and r is the vector containing the in-
formation about the boundary conditions. In addition to the fine-scale grid introduced
to define Eq. (4), the MsFV method employs two auxiliary coarse grids: a (primary)
coarse grid and the corresponding dual (coarse) grid, which are represented in Fig. 1.
The main idea of the MsFV method is to approximate the hydraulic head by means
of a set of interpolators, which are local numerical solutions computed on the cells of
the dual grid, that is

h ≈ hms = Bhn + Cr, (5)

where B is the basis-function operator, whose columns interpolate the hydraulic head,
hn, at the node of the dual grid (which are at the centers of the coarse grid, Fig. 1)
to the fine-scale grid; C is the correction function operator, which accounts for the
local effects of r and can be regarded as a source-term interpolator. In the MsFV
method, errors are introduced by the localization assumptions that are required to as-
sign the boundary conditions of the local problems and compute basis and correction
functions. Depending on flow conditions and on medium heterogeneity, localization
might prevent a faithful description of long-correlation structures as channels or flow
barriers (Lunati and Jenny 2004, 2007; Lunati et al. 2011). The node hydraulic head,
hn, is solution of the coarse equation

Mnnhn = (χAB)hn = χ(I − AC)r, (6)

which is obtained by imposing the mass balance on the cells of the coarse grid (which
serve as control volumes), that is by applying to Ahms = r the summation operator,
χ , which sums up all fine-cell values belonging to the same coarse cell and is the
discrete analogous of control-volume integration. The computational advantage of
the MsFV method stems from the fact that a large problem, Eq. (4), is split into a
set of small local problems (which are solved to construct B and C), and a coarse
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problem, Eq. (6), whose coefficient matrix, Mnn = χAB, is smaller than the original
matrix, A.

Once the approximate pressure solution, hms, is obtained, a fine-scale conser-
vative velocity field is constructed by solving a second set of local problems on
the cells of the coarse grid and used in the transport equation. We refer to the ex-
isting literature for further details on the MsFV method (Lunati and Lee 2009).
Here, we simply remark that this framework offers great flexibility to implement
several adaptive strategies: the MsFV method can be seen as a numerical upscal-
ing procedure, if the fine-scale velocity is not reconstructed and the transport is
solved on the coarse grid (Lee et al. 2009; Künze and Lunati 2012); as an itera-
tive linear solver, if a procedure is introduced to iteratively correct the boundary
conditions of the localized problems (Hajibeygi et al. 2008; Lunati et al. 2011;
Zhou and Tchelepi 2012); or as a downscaling method, if the original grid is taken as
the coarse grid (Künze and Lunati 2012). Here, the MsFV method is used (with con-
struction of a conservative velocity) as an approximate model to compute a velocity
field in each geostatistical realization; then, the MsFV approximate velocity is used
in the transport equation, Eq. (2), to obtain a set of approximate breakthrough curves
{Cms

i (t)}i=1,2,...,Nr , which can be used to estimate the uncertainty.

3.2 Distance Kernel Methods (DKM)

DKM (Scheidt and Caers 2009a, 2009b) is an alternative to traditional ranking tech-
niques to select a subset of realizations that preserves the uncertainty spread of the
sample. Dynamic ranking techniques (Ballin et al. 1992) sort realizations based on
the responses of an approximate model and solve the exact model only for a sub-
set of realizations that correspond to the desired quantiles. DKM, instead, employs
the approximate information to quantify similarities between geostatistical models
and selects a subset aiming at reproducing the same statistics as the full set of re-
alizations. The first step is to compute a distance matrix d (a square matrix of size
Nr × Nr ), which measures dissimilarity between realizations from the approximate
flow responses. Here, the distance between two realizations, i and j , is defined as the
l2-distance between their breakthrough curves

dij =
√
√
√
√

nt∑

t=1

[

Cms
i (t) − Cms

j (t)
]2

, (7)

where Cms
i (t) is the curve obtained using MsFV as an approximate model, and the

sum is taken over all nt discrete times at which the concentration is recorded (in our
case the nt time steps of the simulation). Equation (7) naturally defines a multidimen-
sional space, S , where each realization is represented by a point and the distance be-
tween points is proportional to their dissimilarity in terms of breakthrough response.
It is natural to attempt to coarsen the space of uncertainty by grouping the realizations
into Ns clusters based on their distances and assume that each cluster, Γk , can be rep-
resented by a representative realization (e.g., the medoid) weighted by the number
of realizations in the cluster, NΓk

. In DKM the clustering is not applied directly in
the original multidimensional space, S , but a kernel expansion is used to project the
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points onto a new space (the feature space F ) in the attempt to linearize the space of
uncertainty. Although the expansion is associated with a kernel function of the form
κ[Cms

i (t),Cms
j (t)] = 〈ϕ[Cms

i (t)], ϕ[Cms
j (t)]〉, where ϕ is the mapping function from

S to F , the distance matrix in the feature space, dF , can be computed without an
explicit definition of ϕ by using only the scalar product computed by κ . Then the
distance in the feature space is written as

dF
ij = √

Kii + Kjj − 2Kij , (8)

where K is the kernel matrix associated to the kernel function. Among the many
possible choices of the kernel matrix, we use a standard Gaussian kernel of the form

Kij = exp

{−dij
2

2σ 2

}

, (9)

where σ is the kernel width parameter. Based on dF , a k-medoid clustering algorithm
(Hastie et al. 2009) is applied to find the many-to-one mapping, f , that assigns each
curve, Cms

i (t), to a cluster (i.e., f (i) = k if Cms
i (t) ∈ Γk). The mapping corresponds

to an optimization procedure, which finds

f = arg min
f

∑

i,j :f (i)=f (j)

dF
ij (10)

and minimizes the average intra-cluster distances. In parallel to the definition of clus-
ters, the algorithm identifies the medoids as the realizations that satisfies

ik = arg min
i:f (i)=k

∑

j :f (j)=k

dF
ij . (11)

The main advantage of k-medoids over k-means is that it does not require explic-
itly computing points in the feature space and employs only the distance matrix in
that space (Hastie et al. 2009). Moreover, k-medoids are not limited to Euclidean
distances as k-means. This gives some freedom in defining the choice of the dis-
similarity measure, which can be adapted to the question of interest. The medoids
define a subset of realizations, {Kik ,φik }k=1,2,...,Ns , for which the exact flow model
is solved and a subset of exact curves {Cik (t)}k=1,2,...,Ns is obtained. Classical DKM
uses solely {Ci(t)}i=1,2,...,Ns to compute experimental quantiles (Scheidt and Caers
2009a, 2009b, 2010). This is done by assuming that all the realizations behave as the
medoid realization, which leads to computing the experimental quantiles by weight-
ing the medoid curves by the number of realizations in their cluster (or in other words,
by considering a multiset of medoid curves, each having multiplicity equal to the
number of cluster elements).

3.3 Error Models

With the techniques described above, two sets of curves can be used to estimate
the uncertainty of the predicted breakthrough curve that is {Cms

i (t)}i=1,2,...,Nr and
{Cik (t)}k=1,2,...,Ns . In both cases, a sample of Nr realizations,

{

C∗
i (t)

}

i=1,2,...,Nr
, (12)
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is used to compute experimental quantiles. If one choose to use only the approximate
curves

MsFV : C∗
i (t) = Cms

i (t), (13)

the MsFV uncertainty estimation is obtained. Employing the standard DKM is equiv-
alent to choosing

DKM : C∗
i (t) = Cik (t), with k = f (i), (14)

which constructs a multiset where each medoid has multiplicity equal to the number
of realizations in its cluster. When the DKM is employed, information from approx-
imate and exact responses is available and can be combined to improve uncertainty
quantification at almost zero additional costs. On one hand, the information contained
in the approximate curves can be used to estimate the intra-cluster variability, which
is completely neglected by Eq. (14): the variability of cluster can be represented by
the differences between each approximate curve and the approximate curve of its
medoid, Cms

i (t) − Cms
ik

(t). On the other hand, the exact curves of the medoids can be
used to construct an error model aimed at reducing potential biases of the MsFV es-
timate: the difference between the exact and the approximate curves of the medoids,
Cik (t) − Cms

ik
(t), can be used to correct all the curves in the cluster. These conceptu-

ally different approaches lead to exactly the same corrected curves

C∗
i (t) = Cik (t) + [

Cms
i (t) − Cms

ik
(t)

] = Cms
i (t) + [

Cik (t) − Cms
ik

(t)
]

(15)

with k = f (i). An error model of this form has been proposed in Scheidt et al.
(2011) to estimate an upscaling error that is assumed to be the same for all real-
izations in the same cluster. In Scheidt et al. (2011), however, the corrected curves
are used to generate realizations constrained to dynamic data. Notice that, if applied
directly, Eq. (16) might lead to corrected curves that are unphysical and not con-
strained between zero and one. This is a severe limitation if the corrected curves are
used to obtain an estimate of the uncertainty. To avoid this problem, the breakthrough
curves are not corrected directly: first a logistic transformation is applied to all curves,
Ĉi = logit−1(Ci); then the transformed curves are corrected, Ĉ∗

i ; and finally, the cor-
rected curves are transformed back via logit transformation, C∗

i = logit(Ĉ∗
i ). This

yields the Local Error Model (LEM)

LEM : C∗
i (t) = Clem

i (t) = logit
{

Ĉms
i (t) + [

Ĉik (t) − Ĉms
ik

(t)
]}

, (16)

which delivers corrected curves that lay between zero and one. The error model
above, which considers only intra-cluster information, can be readily extended by
considering a set of linear combinations of corrected curves

C∗
i (t) =

Ns∑

k

βik

{

Cms
i (t) + [

Cik (t) − Cms
ik

(t)
]}

, (17)

where the weights, βik , might be chosen to enforce that the corrected curves have
some desired characteristics (that they are constrained between zero and one, or that
they are monotonic). Although the choice of the weighting function might be critical,
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here we chose a simple weighting function that depends exclusively on the distance
in the feature space

βik = exp(−dF
iik

)
∑Ns

k exp(−dF
iik

)
. (18)

The underlying assumption is that realizations that are closer in the feature space have
more similar errors. As for the LEM, to guarantee concentration values constrained
between zero and one the logistic transformation used before applying the GEM and
the corrected transformed curves are then transformed back via a logit transformation.
This yields the Global Error Model (GEM)

GEM : C∗
i (t) = C

gem
i (t) = logit

{

Ĉms
i (t) +

Ns∑

k

βik

[

Ĉik (t) − Ĉms
ik

(t)
]

}

, (19)

where it is assumed that
∑

k βik = 1, and observed that Cms
i (t) is independent of k.

Equation (19) can be interpreted as an error model for the MsFV method. The exact
curves computed for the Ns medoids are compared with the approximate curves of
the medoids, and their difference is used to correct the approximate solution for each
realizations i. Note that for an arbitrary weight, βik , all the medoid differences are
used to correct each approximate curve. If βik = δi,f (i), the GEM reduces to the LEM
and only intra-cluster information is used. If the constraint

∑

k βik = 1 is relaxed, the
MsFV estimate of the uncertainty can be obtained by choosing βik = 0. A flowchart
of the uncertainty analysis proposed here (which combines MsFV, DKM, and an error
model) is presented in Fig. 2.

4 Numerical Results

4.1 An Idealized Pollution Problem

The methodology described above is applied to an idealized pollution problem in
which the breakthrough curve of a contaminant has to be predicted. We consider a
two-dimensional section of a confined aquifer of length 10.8 m and depth 5.1 m. The
conductivity field, K , is inspired by the geology of a sedimentary aquifer, typical
of braided river deposits. A vertical section acquired at the Herten site (Germany)
(Bayer et al. 2011) is used as an input training image in the Direct Sampling method
(MPDS) (Mariethoz et al. 2010) to perform multiple point geostatistical simulations
and generate 1000 synthetic realizations. The 10 facies of the original data (Bayer
et al. 2011) are reduced to five facies by grouping similar lithofacies. The porosity
and hydraulic conductivity values are reported in Fig. 3, together with the facies dis-
tribution of four realizations and the corresponding breakthrough curves. No-flow
conditions are applied at the upper and lower boundary of the domain, whereas two
types of boundary conditions are considered for the left and right boundaries: pre-
scribed incoming flux (BCF), or prescribed hydraulic-head difference (BCH). The
contaminant is released at the left boundary with normalized concentration c = 1,
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Fig. 2 Starting from an set of geostatistical realizations {Ki,φi }, MsFV simulations are run to compute
a set of breakthrough curves, {Cms

i
(t)}. To select a subset of realizations, the Euclidean distance between

the curves, Eq. (7), is interpreted as a measure of dissimilarity. After the distance matrix d (Eq. (7)) is
constructed, a kernel method is used to compute a new distance in a feature space, dF , Eq. (8). Based on
dF the k-medoid algorithm, Eqs. (10) and (11), is used to cluster the realizations and finds a representative
realization for each cluster (the medoid). After exact breakthrough curves are obtained for the medoids,
the error model is constructed and generates the corrected curves, {C∗

i
(t)}, which are used to compute the

experimental quantiles

and the breakthrough curves are computed by averaging the concentration of the out-
coming fluxes at the right boundary. In accordance with realistic natural gradient con-
ditions simulations in which contaminant transport is dominated by advection (Péclet
number Pe > 50) are run.

4.2 Application of the Methodology

In this section, the methodology outlined in Fig. 2 is applied to the idealized pol-
lution problem. Simulations with the exact model are performed on the full set of
realizations and the variability of the responses, {Ci(t)}i=1,2,...,Nr (Fig. 4(a)), is taken
and has the reference uncertainty to evaluate the performance of the error models.
Estimates provided by MsFV and DKM are also computed to illustrate the improve-
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Fig. 3 (a–d) Examples of stochastic fields generated by DS (Mariethoz et al. 2010); (e) table of the
hydraulic conductivity and the porosity of the five lithofacies; (f) breakthrough curves of the whole set of
realization (gray) and of the four fields depicted in (a), (b), (c), and (d) (colors)

ment achieved by LEM and GEM. Experimental quantiles are calculated based on
the approximate breakthrough curves, {Cms

i (t)}i=1,2,...,Nr (Fig. 4(b)), and provide the
MsFV estimate of the uncertainty. Then, a distance matrix is constructed using MsFV
curves and DKM is applied to identified NΓk

clusters and a subset of realizations se-
lected. The number of clusters should be sufficient to capture the error and estimate
the desired quantiles, but not too large in order to limit the computational costs. Al-
though a procedure could be devised to identify an optimal number, here we simply
set NΓk

= 20, which corresponds to a coarsening factor of 50 for the uncertainty
space and allows for computing the 10th and 90th percentiles (P10 and P90, respec-
tively) by the DKM. The identification of the subset is performed in the feature space
using a Gaussian-kernel expansion. After a sensitivity analysis, the width parameter
is set equal to the standard deviation of the distance matrix, which is 0.55 and 0.98
for BCF and BCH, respectively. The clustering is performed only on the base of the
kernel matrix and does not require constructing the feature space explicitly. The k-
medoids algorithm is used to identify NΓk

medoids for which the exact responses are
computed, {Cik (t)}k=1,2,...,NΓk

.
A two-dimensional representation of the clustering in the feature space is shown

in Fig. 5. The realizations seem continuously distributed rather than arranged in well
separated clusters. Although this might be partially due to the two-dimensional visu-
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Fig. 4 Ensemble of the breakthrough curves corresponding to each model, for the two types of boundary
conditions: BCH (left), and BCF (right)

alization of the feature space, the fact that clusters are not well defined is confirmed
by the instability of the clustering algorithm: different initializations of the algo-
rithm (which require an initial guess on the NΓk

medoids) lead to different cluster
repartitions and different uncertainty predictions, independently of the kernel width
choice. A set of exact breakthrough curves obtained for one of the cluster repartitions,
{Cik (t)}k=1,2,...,NΓk

, is shown in Fig. 4(c). The approximate curves for the entire set
of realizations and for the medoid exact response are then used to construct the error
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Fig. 5 A two-dimensional representation of the feature space for BCH on the left and BCF on the right.
Each dot is a realization, and each color represents a cluster. The realizations represented by a square
are the medoids defined by the clustering algorithm, for which exact simulation are run. Note that this
representation is obtained by the Multidimensional Scaling (Borg and Groenen 2005; Cox and Cox 2008;
Scheidt and Caers 2009a), which is used here for visualization purposes only

model. Here our approach differs from the standard DKM, which estimates the quan-
tiles based exclusively on the subset of exact curves and does not make any direct use
of the set of approximate curves. In contrast, we use the differences between the ap-
proximate and exact medoid responses to correct the entire set of approximate curves,
which is then used to estimate the quantiles. In the LEM the responses are corrected
using only local (intracluster) information and the set of curves {Clem

i (t)}i=1,2,...,Nr

(Eq. (16), Fig. 4(d)) is used to compute the quantile. In the GEM the responses are
corrected globally, regardless of the cluster to which they belong, and the set of curves
{Cgem

i (t)}i=1,2,...,Nr (Eq. (19), Fig. 4(e)) is obtained. Notice that few outliers are not
effectively corrected due to the limited coverage of the extreme regions by the set of
medoids. As it will be seen in the next section, this few outliers do not sensitively
affect the estimate of P10, P50, and P90. However, in cases where uncertainty on
extremes needs to be quantified, a different strategy has to be used to identify the
subset of realizations used to construct the error models and extreme regions have to
be more densely sampled. Note that due to the non-clear repartitions of the realiza-
tions into well defined clusters, this global model is more consistent with the data and
it is expected to lead to more stable uncertainty estimations in terms of dependency
on the initial medoids guess.

4.3 Comparison of Quantile-Curve Estimates

In general, the characterization of uncertainty is done on the basis of a limited num-
ber of experimental quantiles; here we consider the 10th, 50th and 90th percentiles
(P10, P50, and P90, respectively). Figures 6 and 7 compare the three quantile curves
obtained with the four models (MsFV, DKM, LEM, and GEM) with the reference
quantile curves for both sets of boundary conditions. Notice that due to the instability
of the DKM algorithm, which depends on the initial guess on the medoids, very dif-
ferent quantile curves can be obtained with DKM, LEM, and GEM. Here we present
the comparison for an initialization which yield an average performance, whereas
the variability in model response due to the stability of DKM is investigated in the
next section. For BCF, MsFV provides a good measure of the statistical variability
but tends to slightly underestimate contaminant concentration of about 4.5 % at early
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Fig. 6 Quantiles curves estimated by MsFV (blue), DKM (green), LEM (yellow), and GEM (red) for the
BCF

Fig. 7 Quantiles curves estimated by MsFV (blue), DKM (green), LEM (yellow), and GEM (red) for
BCH

times (note that the concentration will be overestimated at later time due to the con-
straint that the approximate MsFV solution is conservative and therefore the mean
arrival time of the contaminant must be exact with this type of boundary conditions).
DKM leads to curves that are less smooth due to the reduction of statistical space,



Math Geosci (2013) 45:601–620 615

which deteriorates the estimates of quantile curves; the average maximum fluctu-
ations are of the order of 3 %. LEM provides smoother curves than DKM, whereas
GEM gives an excellent estimation of the uncertainty (average maximum fluctuations
LEM and GEM are of 1.8 % and 1.5 %, respectively). MsFV bias is effectively cor-
rected and the uncertainty is correctly represented by the MsFV approximate curves.
For BCH, MsFV quantile curves are in good agreement with the reference (maxi-
mum difference between the curves is of 5.2 %). DKM estimate is less good and the
20 exact medoid responses provide a worse uncertainty estimate than the set of ap-
proximate responses (fluctuations of 6.1 %). This shows that in some cases DKM can
lead to a deteriorated prediction of approximate solutions on which it is based. LEM
also smooths the DKM estimation for this set of boundary conditions, but P10 and
P90 remain underestimate (averaged maximum fluctuations of 4.3 %); GEM leads
again to an excellent estimate (3.3 %).

4.4 Quantification of the Quality of the Estimate and Stability

To illustrate the dependence of clustering on the initialization, DKM, LEM, and GEM
are applied 500 times with a different initial guess of the medoid set (seed). The
overall quality of the different models is evaluated by considering the l2-norm of the
quantile error

l2 :
√

∑

t

(

PT (t) − PE(t)
)2

, (20)

where PT (t) is the reference quantile curve and PE(t) is the estimated quantile.
Figures 8 and 9 shows the errors for the two set of boundary conditions and for the

500 seeds. For each quantiles, the mean error of each method is represented by a bar
plot, whereas the error bars represent the 80 % confidence interval (i.e., the interval
in which one finds 80 % of the 500 results obtained with different seeds). These plots
clearly show that the DKM error can be much larger than what is observed in Figs. 6
and 7, which correspond to an initialization leading to an error close to the mean of
the results from the 500 initializations.

Fig. 8 Errors on the quantile curves measured by the l2-norm between the models and the reference
curves. The bar plots represent the mean error of each method for each quantile curve. The error bars show
the 80 % confidence interval obtained for 500 results computed with different seeds. BCF is shown on the
left and BCH on the right. Results for the l∞-norm are shown in Fig. 9
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Fig. 9 Errors on the quantile curves measured by the l∞-norm between the models and the reference
curves, for BCF (left) and BCH (right)

For BCF, DKM performs, in average, better than MsFV for P50 and P90. MsFV
responses provide an accurate selection of representative realizations, but yield a rel-
atively poor estimate of the uncertainty due to the systematic underestimation of the
concentration (see Fig. 6). However, DKM shows a large variability depending on the
initialization of the clustering algorithm and for some seed can lead to larger errors
than MsFV (1.7 times higher for P10 in 10 % of the cases). LEM and GEM result in
a much better estimate and lead to a considerable reduction of the dependency on the
initialization of the algorithm. GEM performs better than LEM on both aspects (al-
though for P90 GEM shows a slightly larger seed dependency). For BCH, the MsFV
estimate yields a sensibly lower error than the one obtained by DKM, and this despite
the fact that information from 20 exact simulations is used in DKM. This is likely due
to the large instability of the clustering algorithm that can lead to very unreliable es-
timates. This example clearly demonstrates how dangerous relying only on medoid
information could be; thus on an extremely small stochastic space, for estimate P10
and P90. The error models can correct this problem and lead to a better estimate than
MsFV for GEM. For P90, one can observe a dramatic reduction of the seed depen-
dency with respect to DKM, whose upper bound of the 80 % confidence interval lays
at 0.57; LEM reduces this to 0.39 and GEM to 0.16. In conclusion, MsFV provides
a good estimate of the statistical variability but tend to present some systematic bias.
DKM provides a good subset of representative realizations, but is strongly affected
by the reduction of statistics. Both error models improve substantially the quantifi-
cation of uncertainty by combining the whole available information. They both lead
to a reduction of dependency on the algorithm seed; and GEM provides an excellent
and much more stable estimate in both situations.

4.5 Cumulative Distribution Function at a Given Time Step

Finally, we consider the estimated Cumulative Distribution Function (CDF) at two
time steps: t = 70 for BCF (Fig. 10), and t = 14 (Fig. 11) for BCH, respectively.
The CDFs in Figs. 10 and 11 refer to a single initialization (seed) of DKM, which
has been chosen to be representative of the average result. Depending on the cluster
initialization, however, the quality of the DKM results would be different.

For fixed-flux boundary conditions (BCF), one can observe a systematic shift of
the MsFV CDF towards smaller concentrations; whereas for fixed-head boundary
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Fig. 10 CDF of contaminant concentration at time step t = 70 for BCF

Fig. 11 CDF of contaminant concentration at time step t = 14 for BCH

conditions (BCH), the MsFV CDF is close to the reference. Depending on the per-
centile, the error of the DKM estimate could be as high as 5 % of concentration for
BCF and 12 % for BCH. The DKM CDF exhibits a staircase behavior, which is the re-
sult of the clustering and the subsequent reduction of the number of realizations used
to compute the CDF: the DKM estimate employs only the NΓk

medoid curves and
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neglects intra-cluster variability. This problem can be overcome by using the LEM or
the GEM which construct a sample containing the same number of realizations as the
original set, {Clem

i (t)}i=1,2,...,Nr . As a consequence a smooth CDF is obtained and
the error is reduced. GEM provides an excellent estimate of the CDF for BCF and
does just as well as MsFV for BCH.

5 Conclusions

The DKM is applied to estimate uncertainty at lower computational costs than a
brute-force Monte Carlo approach. The method relies on an approximate model to
select a subset of representative realizations for which the exact model is solved;
then, the uncertainty is estimated only on the basis of the exact-response subset with
no additional use of the approximate solutions. This approach neglects intra-cluster
variability, leads to a dimensional reduction of the statistical space, and provides un-
certainty estimates with a lower resolution than allowed for by the original set of
realizations. For our numerical test case, the DKM is not stable with respect to the
initialization (seed) of the clustering algorithm and this can lead to inaccurate predic-
tions: in most critical cases, the DKM can even deteriorate the uncertainty estimate
provided solely by the approximate solutions. On the other hand, however, using
only the approximate responses obtained with the MsFV method can lead to biased
estimates of the uncertainty due to the localization assumptions, which reduce the
accuracy of the solution in presence of long structures spanning several coarse cells.
If this is an issue in a deterministic context (where iterative schemes are usually re-
quired to achieve the desired accuracy), in a stochastic framework this is a minor
problem, which can be solved by means of an error model. Two error models are de-
vised that aim at exploiting the whole available information and combine the MsFV
approximate responses with the exact responses obtained for medoids selected by the
DKM. Both models employs the difference between approximate and exact solutions
for the medoid realizations, but differ in the way this discrepancy is interpolated to
correct each realization. The LEM applies the same correction to all realizations be-
longing to the same cluster and can be seen as a natural way to model the intra-cluster
variability of the responses; the GEM corrects each realization by a linear interpola-
tion of all medoid errors (weighted by a function of the distance in the feature space)
regardless to the cluster to which it belongs. Both models improve the DKM estimate
and reduce the dependency on the initialization of the clustering. The GEM leads to
excellent uncertainty estimates and performs systematically better than the LEM; this
is likely due to the fact that a global error model (which does not rely only on intra-
cluster information) is more consistent with the data considered in this study, which
are not separated in clearly defined clusters.

The framework presented here is not specific to the methods considered (namely
MsFV and DKM) but can be applied to other combinations of approximate mod-
els and techniques to select a subset of realizations. For instance, it can be used in
a multiphysics context where the approximate model employs a simplified physical
description and an error model is developed to predict a more complicated physical
process (e.g., single phase vs. multiphase flow problems). Some of the steps can be
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extended and generalized to ameliorate the reliability of the error model for challeng-
ing test cases. In particular four main improvements can be suggested: the selection
of the representative realizations can be modified to obtain a larger number of real-
izations in regions of interest rather than uniformly covering the entire feature space;
the subset of representative realizations could be iteratively enlarged until a number
of realizations is selected that allows the required level of accuracy (note that this
would require an a-posteriori estimate of the accuracy to define the stopping crite-
rion); the weights used in the global error model can be obtained from the solution
of an optimization problem, which can be tailored to guarantee that the corrected re-
sponses satisfy certain physical constraints (this entails a more profound re-thinking
of all steps to determine the ideal subset); finally, Functional Data Analysis (FDA)
can be used to keep an explicit time dependence and work with breakthrough curves
in a functional space rather than with points in a feature space.
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