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Exponentially decaying boundary layers as limiting cases of
families of algebraically decaying ones

Shijun Liao and Eugen Magyari

Abstract. The boundary value problem for the similar stream function f = f(η; λ) of the
Cheng–Minkowycz free convection flow over a vertical plate with a power law temperature dis-
tribution Tw(x) = T∞ + Axλ in a porous medium is revisited. It is shown that in the λ-range
−1/2 < λ < 0 , the well known exponentially decaying “first branch” solutions for the velocity
and temperature fields are not some isolated solutions as one has believed until now, but limiting
cases of families of algebraically decaying multiple solutions. For these multiple solutions well
converging analytical series expressions are given. This result yields a bridging to the historical
quarreling concerning the feasibility of exponentially and algebraically decaying boundary lay-
ers. Owing to a mathematical analogy, our results also hold for the similar boundary layer flows
induced by continuous surfaces stretched in viscous fluids with power-law velocities uw(x) ∼ xλ.
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1. Introduction and summary of the previous results

We consider the boundary value problem

f ′′′ +
λ + 1

2
ff ′′ − λf ′2 = 0

f(0;λ) = 0, f ′(0, λ) = 1, f ′(∞;λ) = 0
(1)

for the similar stream function f = f(η;λ) of the free convection boundary layer
flow over a vertical plate immersed in a porous medium as being first formulated by
Cheng and Minkowycz, [1]. The plate is assumed impermeable and its temperature
distribution is of the power-law form, Tw(x) = T∞+Axλ. The velocity components
and the temperature field are given in terms of f(η) as follows

u = [ρ∞gβK(Tw − T∞)/µ]f ′(η;λ)

v =
1
2
[αρ∞gβK(Tw − T∞)/µx]1/2[(1− λ)ηf ′ − (1 + λ)f ]

T = T∞ + (Tw − T∞)f ′(η;λ)

(2)
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(everywhere the original notation of Cheng and Minkowycz is used).
Cheng and Minkowycz, [1], solved the problem (1) numerically in the range

1/3 < λ < 1. A comprehensive study has then performed by Ingham and Brown,
[2]. Later, several analytical and numerical solutions of this problem were collected
and discussed in the monograph of Pop and Ingham [3]. The main results reported
by Ingham and Brown, [2] may be summarized as follows.

1. The Cheng–Minkowycz problem (1) does admit solutions only in the parameter
range λ > −1/2.

2. In the range −1/2 < λ < 0 both f and f ′ are non-negative for all η ≥ 0.
3. For λ = +1 and λ = −1/3 elementary analytical solutions exist (see also

below).
4. For λ > 1 a second branch of solutions exists.
5. For the dimensionless wall temperature gradient f ′′(0;λ) the integral relation-

ship

f ′′(0;λ) = −3λ + 1
2

∞∫
0

f ′2(η;λ)dη (3)

holds. However, it is important to underline here that this relationship is valid
only for the solutions which satisfy the asymptotic condition

lim
η→∞ f(η;λ)f ′(η;λ) = 0. (4)

Obviously, the exponentially decaying solutions f ≡ fexp(η;λ) satisfy this con-
dition. Thus, for these solutions Eq. (3) implies

f ′′exp(0;λ) = 0 for λ = −1
3

(5a)

and

sgn
[
f ′′exp(0;λ)

]
= −sgn

(
λ +

1
3

)
for λ 6= −1

3
. (5b)

The dependence of f ′′exp(0, λ) on λ, as calculated by Ingham and Brown [2] is
shown in Fig. 1. The domain of existence of the algebraically decaying solutions,
the main issue of the present paper, is also shown in Fig. 1. The details will
be discussed in Sections 2 and 3 below.

6. Ingham and Brown [2] also gave valuable estimates of f ′′exp(0;λ) for 0 < λ +
0.5 << 1 as well as for λ near to zero. These are:

f ′′exp(0;λ) = 0.078103 · (λ + 0.5)−3/4 (6)

for 0 < λ + 0.5 << 1, and

f ′′exp(0;λ) = −0.44375− 0.85665 · λ + 0.66943λ2 (7)

for |λ| << 1, respectively.
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Figure 1. In the range −1/2 < λ < 0, the whole domain f ′′(0; λ) > f ′′exp(0; λ) above the

Ingham–Brown characteristic curve f ′′exp(0; λ) corresponding to the exponentially decaying

solutions is densely “filled” with values of f ′′(0; λ) corresponding to algebraically decaying
solutions.

A comprehensive analytical and numerical investigation (for a slightly rescaled
form) of the boundary value problem (1) as it occurs in the context of the boundary
layer flows induced by continuous surfaces stretched with power-law velocities has
been reported by Banks, [4].

Recently for the exponentially decaying solutions f ≡ fexp(η;λ) of the problem
(1) analytical expressions in form of infinite series with controllable convergence
have been given by Liao and Pop, [5] by applying the homotopy analysis method
(Liao, [6]). This method allows for the calculation of the similar wall temperature
gradient f ′′exp(0;λ) and of the similar entrainment velocity fexp(∞;λ) to any desired
precision.

2. Algebraically decaying solutions

2.1. General features

We first examine the general question of the existence in the parameter range
−1/2 < λ < 0 of similar velocity and temperature profiles f ′(η;λ) with algebraic
asymptotic decay of the form

f ′(η;λ) ∼ ηb as η →∞ (8a)

which yields

f(η;λ) ∼ 1
b + 1

ηb+1 as η →∞ (8b)

where b is a constant. As a requirement of the boundary condition f ′(∞;λ) = 0,
the exponent b must be negative. Substituting (8) in Eq. (1) and balancing the
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Figure 2. Here the exponentially decaying and seven (presumably) algebraically decaying
dimensionless temperature (and velocity) profiles f ′exp(η; λ) and f ′(η; λ) are shown for
λ = −0.1. The exponentially decaying profile corresponds to the value
f ′′exp(0;−0.1) = −0.350260534 of the dimensionless wall temperature gradient. As f ′′(0;−0.1)

approaches the value of f ′′exp(0;−0.1), the family of algebraically decaying profiles goes over
continuously in the exponentially decaying one.

dominant terms, we obtain that in the range −1/2 < λ < 0 which we are interested
in, the asymptotic behavior (8) is possible for b = 2λ/(1−λ) which further implies

b + 1 ≡ β =
1 + λ

1− λ
with 0 < β < 1. (9)

Substituting Eqs. (8) in Eq. (4) we easily deduce that this condition is satisfied
by the algebraically decaying solutions only in the range −1/2 < λ < −1/3 and
it is violated in the remaining part −1/3 ≤ λ < 0 of the interval of interest
−1/2 < λ < 0. Hence, Eq. (5b) which is a consequence of Eq. (3), holds also
for our algebraically decaying solutions, but only in the range −1/2 < λ < −1/3
where f ′′(0;λ) > f ′′exp(0;λ) > 0. For −1/3 ≤ λ < 0 where f ′′exp(0;λ) ≤ 0, in the
existence domain f ′′(0;λ) > f ′′exp(0;λ) of the algebraically decaying solutions both
negative and positive values of f ′′(0;λ) are possible.

The numerical “proof” for the existence domain f ′′(0;λ) > f ′′exp(0;λ) of the
multiple solutions for −1/2 < λ < 0 is straightforward. It is illustrated in Fig. 2
where the exponentially decaying and a couple of (presumably) algebraically de-
caying dimensionless temperature (and velocity) profiles f ′exp(η;λ) and f ′(η;λ),
respectively, are shown for λ = −0.1. All these profiles have been obtained by a
direct numerical solution of the problem (1). The exponentially decaying solution
corresponds to the value f ′′exp(0;−0.1) = −0.350260534 of the dimensionless wall
temperature gradient. All the values f ′′(0;−0.1) > f ′′exp(0;−0.1) = −0.350260534
furnish (presumably) algebraically decaying solutions of the problem (1).

We underline again that the plots of Fig. 2 only show that the asymptotic
decay of the solutions corresponding to values f ′′(0;−0.1) > f ′′exp(0;−0.1) is slower
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Figure 3. Plots of the stream functions f(η; λ) corresponding to the velocity profiles of Fig. 2.
All the curves corresponding to f ′′(0;−0.1) > f ′′exp(0;−0.1) go to infinity as η →∞, while that

corresponding to f ′′exp(0;−0.1) = −0.35026 goes to the finite asymptotic value

fexp(∞;−0.1) = +1.76860.

than the decay of the profile associated with the value f ′′exp(0;−0.1) lying on the
Ingham–Brown curve of Fig. 1, i.e. it only suggests but it does not rigorously prove
the algebraic character of their asymptotic behavior. Nevertheless, this conjecture
is substantiated once more by Fig. 3 where the plots of the stream functions f(η;λ)
corresponding to the velocity profiles of Fig. 2 are shown. We see in Fig. 3, that all
the curves corresponding to f ′′(0;−0.1) > f ′′exp(0;−0.1) go to infinity as η → ∞,
while that corresponding to f ′′exp(0;−0.1) is the only one which goes to a finite
asymptotic value, fexp(∞;−0.1) = +1.76860527.

2.2. The case λ = −1/3

As it has been shown recently by Magyari et al. [7], the algebraically decaying
solutions of the boundary value problem (1) corresponding to the values f ′′(0;λ) >
f ′′exp(0;λ) of f ′′(0;λ) can be obtained for λ = −1/3 in an exact analytic form in
terms of the Airy functions,

f(η;−1/3) =
[
36f ′′(0;−1/3)

]1/3 Bi′(z0)Ai′(z)−Ai′(z0)Bi′(z)
Bi′(z0)Ai(z)−Ai′(z0)Bi(z)

(10a)

f ′(η;−1/3) = f ′′(0;−1/3) · η + 1− 1
6
f2 (10b)

where
z =

[√
6f ′′(0;−1/3)

]−2/3(1 + f ′′(0;−1/3)η
)
, z0 = z|η=0. (11)
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The far field behavior of this solution is

f(η;−1/3) →
√

6 + 6f ′′(0;−1/3)η as η →∞ (12a)

f ′(η;−1/3) → 3f ′′(0;−1/3)
(
6 + 6f ′′(0;−1/3)η

)−1/2 as η →∞ (12b)

for all f ′′(0;−1/3) > f ′′exp(0;−1/3) = 0. Hence, in this special case the values of
the exponents present in Eqs. (8) are b = −1/2 and β = +1/2. Now, we actually
see that, as already mentioned above, the condition (4) of validity of the integral
relationship (3) is not satisfied in this case.

A remarkable feature of the solution (10a) having for f ′′(0) > 0 the algebraic
asymptotic behavior (12a) is that for f ′′(0) → 0 it goes over in the well known
hyperbolic tangent solution f(η;−1/3) =

√
6 tanh

(
η/
√

6
)
. This property has

been proved by Magyari et al. [7] numerically, and later by Magyari and Rees
[8] analytically. The analytical proof uses the asymptotic properties of the Airy
functions (see e.g. [9]) and yields

f(η;−1/3) → (
6 + 6f ′′(0;−1/3)η

)−1/2 · tanh
((

1 + f ′′(0;−1/3)η
)3/2 − 1

(27/2)1/2f ′′(0;−1/3)

)
→

√
6 tanh

(
η√
6

)
(13)

as f ′′(0;−1/3) → 0. In this way for f ′′(0;−1/3) = 0 one obtains f ′(η;−1/3) =
1/ cosh2

(
η/
√

6
)

which shows explicitly that the family of solutions f ′(η;−1/3)
having for f ′′(0;−1/3) > 0 the algebraic asymptotic decay (12b) goes over for
f ′′(0;−1/3) → 0 in a solution which decays exponentially, f ′(η;−1/3) →
4 exp

( − 2η/
√

6
)
. as η → ∞. The main issue of the present paper is to prove

this remarkable feature, i.e. the continuous crossover of a family of algebraically
decaying boundary layers into an exponentially decaying one, holds for the whole
parameter range −1/2 < λ < 0 of the boundary value problem (1). The numerical
“proof” has already been illustrated in Fig. 2. The detailed analytical proof is
presented in the Appendix and its main results are summarized in Sect. 2.3 below.

2.3. Series solutions

With the aid of the homotopy analysis method (Liao, [6]) we obtain the following
series solution of the problem (1):

f(η;λ) =
1
α

+∞∑
k=0

2k+2∑
n=1

2k+1+[n/2]∑
m=n−1+Xn

An,m
k (1 + αη)nβ−m. (14)
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Here [x] stands for the integer part of a real number x, α > 0, is a constant, and
the coefficients Am,n

k can recursively be calculated from the equations

An,m
k =

~
(
α2Bn,m

k + Cn,m
k

)
(nβ −m− β)(nβ −m− β + 1)(nβ −m− 2β + 2)
+ An,m

k−1X2k+2−nX2k+1+[n/2]−m

(15)

where ~ is an auxiliary parameter, nβ −m 6= β, β − 1, 2β, β − 2 and

Bn,m
k = X2k+2−nX2k+3−m+[n/2]Xm+1−n−Xn

(nβ−m+2)(nβ−m+1)(nβ−m)An,m−2
k−1 ,

(16)

Cm,s
k =

k−1∑
n=0

min{2n+2,m−1}∑
p=max{1,m+2n−2k}

min{2n+1+[p/2],s+p−m−Xm−p}∑
q=max{p−1+Xp,s+2n−2k−[(m−p)/2]}

XmX2k−s+3+[p/2]+[(m−p)/2]Xs+3−m−Xp−Xm−p

×[(m−p)β+q−s+1]
{

(1 + λ)
2

[(m−p)β+q−s]−λ(pβ−q)
}

Ap,q
n Am−p,s−q−1

k−1−n (17)

and

A1,0
k =

2(β − 1)2δ0 + (4− 3β)δ1 + δ2

β − 2
,

A1,1
k = −2βδ0 + 3δ1 − δ2

(β − 1)
,

A2,2
k =

β(1− β)δ0 − 2(1− β)δ1 − δ2

(β − 1)(β − 2)
.

(18)

In the latter equations,

δ0 =
2k+2∑
n=1

2k+1+[n/2]∑
m=n−1+Xn

An,m
k X(n−1)2+m2+1X(n−1)2+(m−1)2+1X(n−2)2+(m−2)2+1,

δ1 =
2k+2∑
n=1

2k+1+[n/2]∑
m=n−1+Xn

An,m
k (nβ−m)X(n−1)2+m2+1X(n−1)2+(m−1)2+1X(n−2)2+(m−2)2+1,

δ2 =
2k+2∑
n=1

2k+1+[n/2]∑
m=n−1+Xn

An,m
k (nβ −m)(nβ −m− 1)×

X(n−1)2+m2+1X(n−1)2+(m−1)2+1X(n−2)2+(m−2)2+1.

(19)

In above expressions,
γ = f ′′(0;λ) (20)

is given (see the existence domain shown in Fig. 1) and Xk is defined by

Xk =

{
0, k ≤ 1,

1, k > 1.
(21)
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The first three coefficients are

A1,0
0 =

4− 3β + γα−1

2− β
, A1,1

0 =
3− 3β + γα−1

β − 1
, A2,2

0 =
2− 2β + γα−1

(1− β)(2− β)
. (22)

Further details are presented in the Appendix of the present paper.
In terms of the first three coefficients (22) we can obtain all coefficients of the

expansion (14) one by one, both symbolically or numerically. In this way the series
solution (14) with algebraic asymptotic decay is fully determined. For example,
for the parameter values λ = −1/3, γ = 1, α = 1/2 and ~ = −4 we obtain:

A1,0
0 = 3, A1,1

0 = −7, A2,2
0 = 4,

A1,0
1 = −3079

2520
, A1,1

1 =
1331
72

, A1,2
1 =

9
8
, A1,3

1 =
35
24

,

A2,2
1 = −36, A2,3

1 =
784
45

, A2,4
1 = −48

35
,

A3,3
1 = 12, A3,4

1 = −140
9

,

A4,4
1 = 0, A4,5

1 =
128
35

,

(23)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
and thus

f

(
η;−1

3

)
=

4481
1260

(
1+

1
2
η

)1
2

+
827
36

(
1+

1
2
η

)− 1
2

−64
(

1+
1
2
η

)−1

+
105
4

(
1+

1
2
η

)− 3
2

+
1568
45

(
1+

1
2
η

)−2

− 1015
36

(
1+

1
2
η

)− 5
2

+
32
7

(
1+

1
2
η

)−3

+. . .

(24)

3. Discussion and conclusions

As shown in Fig. 4, for λ = −1/3 the series solution (14) agrees well with the exact
solution (10) already in the 20th-order of approximation, and its convergence can
further be accelerated by means of the homotopy–Páde technique (Liao, [6]). This
verifies the validity of the homotopy approach applied.

The expression (24) of f(η;−1/3) obtained by truncation of (14) yields an
accurate approximation for small values of η. It also describes the asymptotic
behaviour of f(η;−1/3) with an acceptable accuracy. Indeed, for η → ∞ the
leading order term of (24) behaves as

f

(
η;−1

3

)
=
√

2(A1,0
0 + A1,0

1 )
√

η =
√

2
(

3− 3079
2520

)√
η = 2.514718 · √η. (25)

This fits the asymptotic expression (12a) of the exact solution (10a),

fexact

(
η;−1

3

)
=

√
6f ′′(0;−1/3)η =

√
6 · √η = 2.449489 · √η (26)
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Figure 4. Comparison of the algebraically decaying series solutions (14) (filled circles)
associated with different positive values of f ′′(0;−1/3), with the analytic solution (10) valid for
λ = −1/3 (lines). The dashed line correspond to the well known exponentially decaying

solution f ′exp(η;−1/3) = 1/ cosh2(η/
√

6) with f ′′(0;−1/3) = 0. The open circles on this curve

denote series solution given by Liao and Pop, [5]. As f ′′(0;−1/3) approaches the value
f ′′exp(0;−1/3) = 0, the family of algebraically decaying profiles goes over continuously in the
exponentially decaying one.

with a deviation of only +2.7%.
The accuracy of the leading order term of (24) can obviously be enhanced by

taking into account in (14) several terms the degree (1+η/2)1/2. By doing so, one
obtains

f

(
η;−1

3

)
=

(√
2 ·

m∑
n=0

A1;0
n

)√
η as η →∞. (27)

One finds that for m = 40 in (27) the coefficient of
√

η in (27) approaches (although
not monotonously) the value 2.4496.

In general, for any specified λ ∈ (−1/2, 0) we can get convergent algebraically
decaying series solution for any f ′′(0;λ) > f ′′exp(0;λ) in a similar way by choosing
the values of the control parameters α and ~ suitably. On the other hand, we fail
to get any convergent series solutions if f ′′(0;λ) < f ′′exp(0;λ), in a full agreement
with the existence domain shown in Fig. 1. As an illustration, in Figs. 5 and 6 the
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Figure 5. Comparison of the series solution (symbols) with the numerical results (lines) for
λ = −1/10. The dashed and solid lines correspond to the exponentially decaying and the seven
algebraically decaying dimensionless temperature (or velocity) profiles f ′exp(η; λ) and f ′(η; λ),
respectively. The open circles denote exponentially decaying series solution given by Liao and
Pop, [5], and the filled circles are the algebraically decaying series solution obtained in this
article. As f ′(η; λ) approaches the value of f ′exp(η; λ), the family of algebraically decaying
profiles goes over continuously in the exponentially decaying one.

cases λ = −1/10 and λ = −19/39 ≈ −0.4872 are presented, respectively.
Therefore, the solutions obtained by the homotopy analysis method and pre-

sented in Sect. 2.3 (with details in the Appendix) prove the main result of the
present paper that in the parameter range −1/2 < λ < 0 of the Cheng and
Minkowycz problem (1) the well known exponentially decaying solutions are not
some isolated solutions but limiting cases of families of algebraically decaying
multiple solutions. In other words, in the range −1/2 < λ < 0 the points of the
Ingham–Brown curve f ′′exp(0;λ) shown in Fig. 1 are in fact branching points. From
every point of this curve there bifurcates a whole family of algebraically decaying
solutions corresponding to values f ′′(0;λ) > f ′′exp(0;λ) of the dimensionless wall
temperature gradient. In addition to the different asymptotic decay of the dimen-
sionless temperature (and velocity) fields f ′(η;λ) associated with the points of the
Ingham–Brown curve f ′′exp(0;λ) on the one hand and with the values of f ′′(0;λ)
above it, f ′′(0;λ) > f ′′exp(0;λ), the corresponding entrainment velocities f(∞;λ)
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are also basically different, as already predicted numerically (see Fig. 2). Indeed,
while fexp(∞;λ) is a finite quantity, in the case of the bifurcating algebraically
decaying solutions f(η;λ) →∞ as η →∞. These diverging entrainment velocities
are given according to Eq. (14) by

f(η, λ) = αβ−1

(
m∑

n=0

A1,0
n

)
· ηβ as η →∞. (28)

Appendix: Derivation of the series solution (14)

Consider the solutions with algebraic asymptotic property at infinity

f ∼ aηβ , η → +∞, (A-1)

where β is defined by Eq. (9). When −1/2 < λ < 0, it holds

2β − 2 < β − 1 < β < 1.

Under the transformation

f(η;λ) = g(ξ;λ)/α, ξ = 1 + αη, α > 0,

the original equation becomes

α2gm(ξ;λ) +
(

1 + λ

2

)
g(ξ;λ)g′′(ξ;λ)− λ[g′(ξ;λ)]2 = 0 (A-2)

subject to the boundary conditions

g(1;λ) = 0, g′(1;λ) = 1, g′(+∞;λ) = 0, (A-3)

where the primes denote the differentiation with respect to ξ.
According to the algebraic property at infinity, (A-1), and the boundary con-

ditions (A-3), the solution can be expressed by the following set of base functions{
ξmβ−n|mβ − n < 1, β < 1,m ∈ N, n ∈ N

}
in the form

g(ξ;λ) = b1,0ξ
β +

+∞∑
m=1

+∞∑
n=1

bm,nξm(β−n), (A-4)

which provides us with the so-called Rule of Solution Expression suggested by
Liao, [6]. Note that a solution expressed by the Rule of Solution Expression
(A-4) automatically satisfies the boundary condition at infinity, i.e. g′(+∞;λ) = 0,
which therefore becomes a non-effective boundary condition. The problem can be
closed by providing an additional boundary condition f ′′(0;λ) = γ, corresponding
to

g′′(1;λ) = γ/α, (A-5)

where γ is a given constant.
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Figure 6. Comparison of the series solution (symbols) with the numerical results (lines) for
λ = −19/39. The dashed and solid lines correspond to the exponentially decaying and the four
algebraically decaying dimensionless temperature (or velocity) profiles f ′exp(η; λ) and f ′(η; λ),
respectively. The open circles denote exponentially decaying series solution given by Liao and
Pop, [5], and the filled circles are the algebraically decaying series solution obtained in this
article. As f ′(η; λ) approaches the value of f ′exp(η; λ), the family of algebraically decaying
profiles goes over continuously in the exponentially decaying one.

According to the Rule of Solution Expression (A-4) and the boundary condi-
tions (A-3) and (A-5), it is straightforward to choose an initial approximation

g0(ξ;λ) =
(4− 3β + γα−1)

(2− β)
ξβ − (3− 3β + γα−1)

(1− β)
ξβ−1

+
(2− 2β + γα−1)
(1− β)(2− β)

ξ2β−2.

(A-6)

From Eq. (A-2) and the Rule of Solution Expression (A-4), we choose the auxiliary
linear operator

L[f ] = ξ3f
′′′

+ a2(ξ)ξ2f ′′ + a1(ξ)ξf ′ + a0(ξ)f, (A-7)

where the primes denote the differentiation with respect to ξ, a0(ξ), a1(ξ), a2(ξ) are
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unknown functions to be determined soon. Enforcing the first three base functions

ξβ , ξβ−1, ξ2β−2

to be the solutions of the linear equation L[f ] = 0, we have

a0 = −2β(1− β)2, a1 = (β − 1)(5β − 6), a2 = −2(2β − 3).

Thus, to obey the Rule of Solution Expression (A-4), it is natural for us to choose
the linear auxiliary operator

L[f ] = ξ3f ′′′ − 2(2β − 3)ξ2f ′′ + (β − 1)(5β − 6)ξf ′ − 2β(β − 1)2f, (A-8)

which possesses the property

L
[
C0ξ

β + C1ξ
β−1 + C2ξ

2β−2
]

= 0, (A-9)

for any constants C0, C1 and C2. Besides, we are led from Eq. (A-2) to define a
nonlinear operator

N[φ(ξ;λ, q)] = α2 ∂3φ(ξ;λ, q)
∂ξ3

+
(

1 + λ

2

)
φ(ξ;λ, q)

∂2Φ(ξ;λ, q)
∂ξ2

− λ

[
∂φ(ξ;λ, q)

∂ξ

]2

,

(A-10)

where q ∈ [0, 1] is an embedding parameter. Let ~ denote a non-zero auxiliary
parameter, H(ξ) a non-zero auxiliary function, and q ∈ [0, 1] is an embedding
parameter. We construct the so-called zeroth-order deformation equation

(1− q)L[φ(ξ;λ, q)− g0(ξ;λ)] = q~H(ξ)N[φ(ξ;λ, q)], (A-11)

subject to the boundary conditions

φ(1;λ, q) = 0,
∂φ(ξ;λ, q)

∂ξ

∣∣∣∣
ξ=1

= 1,
∂2φ(ξ;λ, q)

∂ξ2

∣∣∣∣
ξ=1

=
γ

α
,

∂φ(ξ;λ, q)
∂ξ

∣∣∣∣
ξ→+∞

= 0.

(A-12)

Obviously, when q = 0, we have from Eqs. (A-11) and (A-12) the solution

φ(ξ;λ, 0) = g0(ξ;λ). (A-13)

When q = 1, Eqs. (A-11) and (A-12) are equivalent to the original ones (A-2),
(A-3) and (A-5), provided

φ(ξ;λ, 1) = g(ξ;λ). (A-14)

Thus, as q increases from 0 to 1, the solution φ(ξ;λ, q) of the zeroth-order defor-
mation equations (A-11) and (A-12) varies from the initial approximation g0(ξ;λ)
to the solution of the original equations (A-2), (A-3) and (A-5).



790 S. Liao and E. Magyari ZAMP

Assume that ~ and H(ξ) are properly chosen so that the variation (or deforma-
tion) is smooth enough and thus φ(ξ;λ, q) can be expanded in the Taylor series

φ(ξ;λ, q) = φ(ξ;λ, 0) +
+∞∑
k=1

gk(ξ;λ)qk, (A-15)

where

gk(ξ;λ) =
1
k!

∂ + kφ(ξ;λ, q)
∂qk

∣∣∣∣
q=0

,

and besides the series (A-15) converges at q = 1. Then, using (A-13) and (A-14),
we have the solution series

g(ξ;λ) = g0(ξ;λ) +
+∞∑
k=1

gk(ξ;λ). (A-16)

which provides us with a relationship between the solution g(ξ;λ) and the initial
guess g0(ξ;λ).

Define the vector
−→g k =

{
g0(ξ;λ), g1(ξ;λ), g2(ξ;λ), . . . , gk(ξ, λ)

}
.

To obtain governing equation and boundary conditions for the unknown gk(ξ;λ) in
the order k = 1, 2, 3, . . ., we differentiate the zeroth-order deformations (A-11) and
(A-12) k times with respect to the embedding parameter q, then divide them by
k!, and finally set q = 0. In this way, we have the so-called k th-order deformation
equation

L[gk(ξ;λ)−Xkgk−1(ξ;λ)] = ~H(ξ)Rk(−→g k−1), (A-17)

subject to the boundary conditions

gk(1;λ) = g′k(1;λ) = g′′k (1;λ) = g′k(+∞;λ) = 0, (A-18)

where

Rk(−→g k−1) = α2(gk−1)′′′+
k−1∑
n=0

[(
1 + λ

2

)
gn(gk−1−n)′′−λ(gn)′(gk−1−n)′

]
(A-19)

and

Xk =

{
0, k ≤ 1,

1, k > 1.
(A-20)

Note that, substituting (A-15) in Eqs. (A-11) and (A-12), and equating the co-
efficients of the same powers of q, we can obtain the same equations as given
above.

To obey the Rule of Solution Expression (A-4), the auxiliary function H(ξ)
must be in the form H(ξ) = ξµ, where µ is an integer to be determined. It is
found that, when µ ≥ 2, Rk(−→g k−1) contains the term ξ2β−2, and thus, due to
(A-9), the solution gk(ξ) has the term ξ1nξ. However, the term ξ1nξ disobeys the
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Rule of Solution Expression (A-4). When µ ≤ 0, the solutions of the high-order
deformation equations do not contain the term ξ2β−1. This, however, disobeys
the Rule of Coefficient Ergodicity, i.e. coefficients of all base functions could be
modified as the order of approximation tends to infinity, as suggested by Liao
(2003). Thus, we must choose µ = 1, corresponding to H(ξ) = ξ. In this way, all
of the linear equations (A-18) and (A-19) have solutions which comply the Rule of
Solution Expression (A-4). And it is found that gk(ξ;λ) can be expressed in such
a general form

gk(ξ, λ) =
2k+2∑
n=1

2k+1+[n/2]∑
m=n−1+Xn

An,m
k ξnβ−m, k = 0, 1, 2, 3, · · · (A-21)

where An,m
s is a constant coefficient, the operator [x] takes the integer part of the

number x. Substituting (A-21) into (A-19), we have

Rk =
2k+2∑
n=1

2k+1+[n/2]∑
m=n−1+Xn

(
α2Bn,m

k + Cn,m
k

)
ξnβ−m−1,

where

Bn,m
k =X2k+2−nX2k+3−m+[n/2]Xm+1−n−Xn

(nβ−m+2)(nβ−m+1)(nβ−m)An,m−2
k−1 ,

and

Cm,s
k =

k−1∑
n=0

min{2n+2,m−1}∑
p=max{1,m+2n−2k}

min{2n+1+[p/2],s+p−m−Xm−p}∑
q=max{p−1+Xp,s+2n−2k−[(m−p)/2]}

XmX2k−s+3+[p/2]+[(m−p)/2]Xs+3−m−Xp−Xm−p

× [(m− p)β + q− s + 1]
{

1 + λ

2
[(m− p)β + q− s]−λ(pβ− q)

}
Ap,q

n Am−p,s−q−1
k−1−n .

Substituting these expressions into the high-order deformation equations (A-18)
and (A-19), we obtain the recurrence formulas given in section 3.2. The first three
coefficients A1,0

0 , A1,1
0 , A2,2

0 are obtained by comparing (A-21) with the initial guess
(A-6).

The above recurrence formulas contain two auxiliary parameters, α > 0 and
~. The value of α > 0 is determined by the minimum value of the residual error
of the governing equation about the initial guess (A-6). Then, only the auxiliary
parameter ~ is unknown, which provides us with a simple way to control and adjust
the convergence of the series (A-16), as shown by Liao, [5]. In all cases considered
in this articles, we choose α = 1/2 and ~ = −4.
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