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Abstract Prices are macro-observables of a financial market that result from
the trading actions of a huge number of individual investors. Major stylized facts
of empirical asset returns concern (i) non-Gaussian distribution of empirical
asset returns and (ii) volatility clustering, i.e., the slow decay of auto-
correlations of absolute returns. We propose a model for the aggregate dynamics
of the market which is generated by the coupling of a ‘slow’ and a ‘fast’ dynami-
cal component, where the ‘fast’ component can be seen as a perturbation of the
‘slow’ one. Statistical properties of price changes in this model are estimated
by simulation; sample size is 4 × 106. It is shown that increasing the decoupling
of these two dynamical levels generates a crossover in the distribution of log
returns from a concave Gaussian-like distribution to a convex, truncated Levy-
like one. For a sufficiently large degree of dynamic decoupling, the return trails
exhibit pronounced volatility clustering.

1 Introduction

Today, a huge proportion of the economic welfare of individuals and of whole
countries is tightly bound to the functioning of international networks of
economic institutions and financial markets. It is of vital interest to understand
their organization and particularly their dynamics. Markets exhibit structures
on various levels of organization. These structures put the agents’ actions into
interdependencies. In a connected network, interdependencies do not remain
local in general (see Foellmer, 1974). For understanding dynamic properties,
such as price evolution, it is therefore important to consider the dynamics of the
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individual states of the agents (their wealth dynamics, for example), as well as
the dynamics of network structure itself.

Typically, an agent lives in a situation where both the number and diversity
of his interactions is huge, while interactions might be long-range instead of
localized. On the other hand, agents realistically only have finite computational
power, and in general can only recognize their neighborhoods instead of the
entire network. How, then, can they deal with this situation? The assumption
of rationality would help solve this dilemma, but is quite unrealistic. This was
already mentioned some time ago by Simon (1957). It is therefore natural to
consider a financial market as an evolving network of interacting agents which
are ‘boundedly rational’. For a detailed survey and discussion of Heteroge-
neous Agents’ Models and their properties, see the survey by Hommes (2006)
for deep discussions and an extended overview of literature on various aspects
and models.

Weakening the assumption of strict rationality opens the door for a vari-
ety of ad hoc ‘behavioral’ assumptions in such models and hence for some
arbitrariness. Typically, such models exhibit strong non-linearities and have
many degrees of freedom, allowing for a wide range of qualitatively different
results. It may not be surprising that such models can generate time series that
look realistic. The natural question then, of course, is whether related properties
are generic or left to particular parameter settings only. While single parameters
might not be measurable with sufficient precision, the question is which model
in this ‘zoo’ is reasonable. Our standpoint is that this judgement has to be left
to data, while the simplicity of a model is another criterion for its explanatory
value! What are the relevant data? Given that the outcome of an experiment is
merely stochastic, these data can only be typical statistical properties, i.e., prop-
erties that are common to almost all realizations. For a financial market, this
means that relevant data are those statistical properties that are common to all
empirical observations. These invariant properties were termed ‘Stylized Facts’.
Therefore, a particular model is judged in terms of its capability to reproduce
stylized facts.

The number of agents in a financial market is huge. As a result of their aggre-
gated actions, prices are formed on this market; prices thus have to be regarded
as ‘macro-observables’. A strict bottom-up modeling approach therefore would
consist in writing down the ‘equations of motion’ of these individual agents. For a
realistic number of traders on the market, this is not only practicably impossible,
but also unnecessary, because the quantity being dealt with—prices—is an
‘average property’ of the ensemble. Individual dynamics are therefore largely
irrelevant. This is precisely analogous to the situation in Thermodynamics,
which considers macroscopic properties of systems consisting of 1023 parti-
cles, in the order of magnitude. Thermodynamics is one of the most successful
disciplines in physics, and it has survived fundamental paradigmatic changes in
physics because it considers typical properties of the system, i.e., properties that
are, by definition, independent from a particular microscopic realization, such
as the temperature of a gas or its pressure.
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Serious consideration of prices as typical properties of a financial market has
an important consequence: the macroscopic level cannot be seen as a simple
‘up-stream’ analog of the microscopic level. As an example, consider a Bernoulli
random graph with a fixed and large number of nodes, in which edges exist with
some probability independently from each other. Nodes are identical in the
sense that all nodes have the same probability to have a given edge degree. On
the macro level the distribution of degrees in this random graph is not uniform
but binomial. This binomial distribution does not have any analog on the micro-
scopic level. In the context of economic reasoning, the lesson to be drawn may
be the following: while microscopic equations of motions of the agents might be
derived from some ‘micro-founded, optimization-based’ framework, this does
not necessarily carry over to typical properties. Therefore, there is no need to
assume that the behavior of a market on the aggregate level has to be directed
by principles that exist on the micro level. In other words, even if the behavior
of all traders were consistent with rational behavior, there is no reason that the
dynamics of prices should be generated by something like a ‘rational’ agent (see
Kirman, 1992).

From these considerations, the main topic of our note follows: the data we are
concerned with are so-called stylized facts of empirical asset returns. We want to
understand better the origin of these data by means of an economically reasonable
model for the dynamics of a financial market on an aggregate level.

The next section gives a brief overview of the empirical stylized facts we
are concerned with: the non-Gaussian distribution of empirical returns and
‘volatility clustering’ in return trails. Section 2 defines our interacting agents
model, while in Sect. 3 we consider the ‘adiabatic’1 market model whose sim-
ulations are displayed in Sect. 4. We show that stylized facts mentioned above
are reproduced by this financial markets model. In particular, the distribution
of log returns exhibits a crossover from a concave Gaussian like distribution, as
observed on long time-scales such as months or years, to a convex (truncated)
Levy-like distribution, as observed in high-frequency data. Simulated return
trails also exhibit volatility clustering, which becomes more pronounced the
further both components are decoupled from each other.

2 Stylized facts to be considered

Asset prices are macro-observables of a financial market, while index prices
are weighted averages of the prices of their constituents. A typical trail of daily
prices and log-returns of the NIKKEI from 1966 to 1989 is shown in Fig. 1.

Some properties of empirical asset returns have turned out to be remarkably
similar or even identical for different assets on different markets in different
time periods. These properties, invariant under the choice of a particular asset
in a market at some point, are usually called ‘stylized facts’. Cont (2001) listed

1 The term ‘adiabatic’ is actually a misuse of the physical term. It is meant to indicate that we
consider two dynamic levels, a slow one and a fast one; see below.
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Fig. 1 The upper picture shows a price trail of daily data from the NIKKEI from 1966 to 1989,
while the lower picture displays corresponding log-returns.

a number of stylized facts, including those we consider in this paper: the non-
Gaussian distribution of asset return, and the slow decay of auto-correlations
of squared asset returns, which can be regarded as a measure of volatility
clustering.

For comparability, we consider normalized returns in the following. Let st
denote the price of an index today and st−1 its price yesterday, then the rela-
tive price change can be approximated by the log-return defined by zt = ln st

st1
,

provided that |st − st−1| is small.
The normalized return Zt is then defined as Zt = zt−〈z〉t

σ(z)
, where 〈· · · 〉t denotes

the time average and σ(·) the standard deviation of its argument. If the tails
decay sufficiently fast, the second moment is defined. P(z) = P[Z = z] denotes
the probability (relative frequency) that a return of size z occures. Recall that, in
a semi-logarithmic plot, a Gaussian distribution looks like a parabola standing
on its head (inner cure in Fig. 2), a Laplacian looks like a tent, while the outer
curve in this figure represents a Levy distribution. In our pictures, we also use
semi-logarithmic plots for better visualization.

There is empirical evidence that, from longer to shorter time-scales, respec-
tive distributions show a crossover from a concave Gaussian-like distribution
to a convex one. Typically, return distributions of high-frequency data are con-
vex shaped (see Fig. 2) while distributions of daily returns are tent-shaped
(see Fig. 3, for example). For longer time-scales, such as monthly ones, return
distributions are close to a Gaussian distribution (see Fig. 4); hence a crossover
from convex to concave, depending on the time-scale being considered.

Cont and Bouchaud (2000) suggested a model of a large number of traders
who imitate their neighbors. Each trader can be in one of three states: if he
is active, he can either buy or sell or he can be inactive and do nothing. The
time scale is defined by the probability of being active. As the probability of
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Fig. 2 Return distribution for daily data for the
NIKKEI 500 (1979 – 2004) shows that the distri-
bution is close to a Laplacian

Fig. 3 Return distribution for high-fre-
quency data for the S&P 500 (1 min from 1984
to 1989), adapted from Mantegna and Stanley
(1995)

Fig. 4 The cumulative return distribution for the S&P 500 shows a slow crossover to a Gaussian
for longer time-scales

being active increases from low (isolated traders) to high (clustered traders),
the distribution changes from a convex to a concave function. This model points
to imitative behavior (herding behavior) as a possible source of intermittency
in financial time series. For generalizations of this model, see the literature in
Stauffer (1999).

Before defining our model of a financial market as an interacting agents’
system, let us fix some notation here: A vector x = (xk) = (a, . . . , a) is denoted
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Fig. 5 The crossover from a Gaussian distribution of log-returns to a convex power law-like
distribution, from Stauffer and Penna (1998)

by a. Its norm ‖x‖ := ∑
k |xk| is simply its 1-norm. Component-wise division

is defined as x
y =

(
xk
yk

)
for vectors x = (xk) and y = (yk). Component-wise

multiplication is denoted by x � y = (xn yn), while x y = ∑
k xkyk denotes the

standard scalar product (Fig. 5).

3 The financial market as an interacting agent’s system

Since we consider the period [t, t+1), we omit the ‘time-index’ t for the moment.
There is a constant number of assets k = 1 . . . K on the market, where qk is
the price of asset k and q = (qk) is the vector of prices at time t. We assume
that assets are infinitely divisible. Each asset has an uncertain value Dk in the
future. We define the set of agents as the set of all investment strategies λa

on the market, where λa
k is the portion of wealth to be invested in asset k. If

short-selling is excluded, as we will assume in the following, we have λa
k ≥ 0 and

‖λa‖ = 1. The weight of agent a is the amount of wealth r a which is invested
according to λa. If � is the simplex spanned by {λa} and if {φκ } its basis,2 then
the state of each agent is characterized by a tuple (ra, �a), where �a = (�a

κ) is the
coordinate of agent a in � given by

λa =
∑

κ

�a
κ φκ (1)

2 Here we assume that the basis is fixed for all times.
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Fig. 6 The population of
agents {a} in a financial
market is a cloud of points �a

with masses r a in the simplex
spanned by the fundamental
investment styles {φκ },
κ = 0, 1, 2. The center of mass
has coordinate C

3.1 Wealth dynamics

According to its state (ra, �a), agent a builds his portfolio θ = raλa

q , where θk is

the number of units of asset k the agent purchased at their prices qk. Given that
each unit of asset k has some uncertain future value Dk tomorrow, the wealth
of agent a tomorrow reads (ra)′ = D θa. Therefore the stochastic growth rate of
his wealth is given by D

q λa. Note that today the future growth rate is uncertain
because D is uncertain. The growth rate, or wealth relative in this period, i.e.,
Ra = (r′)a

ra = D
q λa, which in the basis of the simplex � therefore reads (Fig. 6)

R a = Y � a,

where Yκ = Yκ(q) = D
q φκ is the projection of D

q on the fundamental style
φκ . Therefore, the wealth evolution of agent a is described by a multiplicative
random process

r a
t+1 = R a

t+1 r a
t , (2)

whose stochastic growth rate Ra
t+1 = Y t+1 �a

t depends on the current price qt
and his current investment strategy �a

t .
The following remark might be in place here. One could regard the above-

mentioned model as a model for short-lived assets in which, according to Blume
and Easley (1992), the random variable D is interpreted as the dividend payoff
of the assets so that Y is, up to a projection, the dividend yield. This interpre-
tation restricts the model to sufficiently long time-scales in which dividends are
paid off; that is, to say, the time-scale should be quarterly or even longer. This
limitation is due to interpretation rather than to the formal structure of the
model. Our interpretation of the factor Ra

t+1 is that it represents the expectation
agent a has at time t about the future growth rate of his wealth. In other words,
at time t, agent a decides to follow strategy �t, whose expected growth rate
yields Y t+1 �a

t , where Y t+1 is a stochastic variable with a time-varying support
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which depends on the current price qt. In this sense wealth evolution in this
model depends on the heterogeneous expectations of the agents.

3.2 Prices

In this financial market are assumed to be entirely determined by the additional
requirement that the amount of available assets is conserved over time. Note
that, because of the two requirements that assets are infinitely divisible and
that the number of available units of assets is conserved, prices are so-called
market clearing prices qt = ∑

a ra
t λ

a
t , In our formulation, there is a close relation

between an interacting agent’s system and a cloud of point-masses. What are
prices in this picture? In fact prices are related to the center of mass of the
agent’s cloud by

qt =
∑

κ

Cκ ,t φκ , (3)

where Ct = 1
rt

∑
a ra

t �
a is the center of mass of the agents’ cloud in the simplex

�. In other words, the evolution of prices can be viewed as the motion of the
center of mass of the particle system.

3.3 Dynamics of investment strategies

At any time t, agent a follows his investment strategy λa
t = ∑

κ �a
κ ,tφ

κ , while
some time later he might follow another strategy λa

t+1 = ∑
κ �a

κ ,t+1φ
κ . Thus,

over time, the mixture of fundamental investment styles φκ may change. This
obviously corresponds to a ‘motion’ in �. Changes in investment strategies, i.e.,
the choice of �a

t , may depend on some ‘signal’ xa
t , which agent a observes and

uses to rebuild his investment strategy. To explicitly mention the effect of the
signal xa

t , one may also write �a
t = �a(xa

t ). Thus, if �a
t is constant in time, the

financial agent neglects this signal and stays with his initially chosen strategy
for all time. On the other hand, the signal may suggest that the agent should
give more weight to some φκ in his strategy. The nature of the signal xa

t , that
agent a receives and uses for updating his investment rule is left open. Signals
may include economic observables like prices, or entire charts of assets, perfor-
mances of other strategies, interest rates, ‘news’ about macro-economic entities,
as well as expectations about growth rates of companies acording to analysts,
rumours, and other sources. In this model, we avoid modeling the level of indi-
vidual decisions, because price evolution is essentially an average property of
the ensemble of financial agents.

Two agents can be distinguished by their susceptibility with respect to a
signal. The susceptibility of agent a may be defined as χa(xa) := ‖J�a(xa)‖,
where J�a(xa) is the Jacobian of �a in xa. Therefore, when giving the same signal
x to both agents, we say that agent a is ‘slower’ than agent b, if his susceptibility
is less than that of the other agent, χa(x) < χb(x).



Comput Ecom (2007) 29:313–331 321

Fig. 7 The agents {r, ν} in a
financial market are a couple
of points �a with masses ra,
a = r, ν in the simplex
spanned by the fundamental
investment styles {φ1,2}. The
center of mass has coordinate
Ct

4 The ‘adiabatic’ market model

Recall that we are interested in prices, which are ensemble properties of the
aggregate actions of agents on the market. To the variety of agents on the finan-
cial market corresponds a whole spectrum of time-scales, defined by the agents’
susceptibilities. As an approximation, we assume that the aggregate dynamics
of the financial market can be described by the coupling of two dynamical
components, a slow one and a fast one. Both components can be thought to be
represented by agents with different susceptibilities. There is a ‘rigid’ financial
agent r who does not change his investment strategy, while the other one ν is
‘flexible,’ in that he changes his investment strategy over time with respect to
some signal, 0 ≈ χ r < χν .

Moreover, we assume that there are only two fixed fundamental investment
styles φ1,2, such that each agent is characterized by the coordinates �a = (

�a

1−�a

)

(see Fig. 7) according to λa
t = �a

t φ
1 + (1 − �a

t )φ
2. Without loss of generality, we

take these fundamental investment styles to be the Euclidian ones, i.e., φ1 = (1
0

)

and φ2 = (0
1

)
. The two agents r, ν are then characterized by the following invest-

ment strategies

λr :=
(

r
1 − r

)

, 0 ≤ r ≤ 1, (4)

i.e., agent r follows a constant investment strategy, while agent ν is flexible in
that he builds his investment strategy on some signal xt that he receives. His
reception is modeled by a sigmoid function �(xt) = eν xt

1+eν xt parameterized by
some real ν. His investment strategy is given by

λν
t :=

(
�(xt)

1 − �(xt)

)

. (5)

For the sake of simplicity, we denote a rigid strategy λr with parameter r by [r],
while the flexible strategy λν

t is denoted by (ν), i.e.

[r] := λr, (ν) := λν
t .
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We briefly denote this aggregate financial market with the two agents r, ν by
the pair

(
[r], (ν)

)
,

where parameter ranges are 0 < r < 1, −∞ < ν < ∞.
If xt = 0, then �(0) = 1/2, so that the agent gives the same weight to both

styles. On the other hand, if |xt| = ∞, he invests in only one style. Susceptibilities
are therefore

χ r = 0, χν(0) = |ν|
2

(6)

The wealth evolution of agent a ∈ {r, ν} is given by ra
t+1 = Ya

t+1 ra
t according

to Eq. 2. In the following section, we present simulations of return trails in this
financial market for different χν(0).

4.1 Excess performance as the signal

Many different signals can serve as ‘news’, according to which an agent can
update his investment strategy. In the following, we consider the situation in
which the agent weights the styles φ1,2 in his investment strategy according to
their mutual performance, i.e., the signal he receives is the excess performance
of the two styles in the previous period [t − 1, t), i.e.,

xt = R1
t − R2

t .

Thus, if ν > 0 and xt > 0, then the agent prefers style φ1 over φ2. That is to
say, he prefers the style that performed better in the previous period. On the
other hand, if his parameter ν < 0, he prefers the worse one. Therefore, an
agent with positive parameter ν might be called a trend follower, whereas if
his parameter is negative, he might be called a mean reverter. In any case the
update is a deterministic function of the signal.

5 Results

Parameter values of the market ([r], (ν)) considered in the following are listed
in the table below. Results were obtained from numerical simulations of the
stylized market. The length of each trail is 4.000 to keep the results comparable
with our data, comprising daily returns over a period of 15 years from January 1,
1990 to December 31, 2004 of 3914 data points. The total amount of data points
used for the histograms is thus 4 × 106. Another important reason for taking a
trail length of 4.000 is that, in the case of ([r], (0)), 0 < r < 1, the convergence of
the return trails to zero is so fast that, for longer trails numerical results for the
distribution would collapse into a numerical Dirac function, which is a single
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Fig. 8 Distribution on the market ([r] (0)), trail length 20.000, 1.000 trails

Fig. 9 Distribution on the market ([1/2] (ν)), trail length 20.000, 1.000 trails

point. In Figs. 8–10, the length of each trail is 20.000, while the number of runs
is 1.000. The total amount of data points used for the histograms thus is 107.

([r](0)) ([1/2] (ν)) ([0.45] (ν))

Fig. 8 Fig. 9 Fig. 10

We consider the case:

([r], (0)
) = ([r], [1/2]). (7)

First, notice the symmetry of the problem. Two parameters, r and r′ with
|1/2 − r| = |1/2 − r′| leads to the same distributions. Therefore, we can
restrict our simulation to some interval r ∈ [0, 1/2].
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Fig. 10 Distribution on the market ( [0.45](ν)), trail length 20.000, 1.000 trails

The distribution of the log returns is essentially determined by the fact that
the return sequence rapidly converges to 0.3 In fact, for infinitely long trails,
the distribution would be a Dirac function, with all its mass on 0. As seen in
Fig. 8, for all ν the distributions are convex functions, whith the highest one
being ν = 0.05, for which the flexible strategy is close to [1/2].

Next, we consider the case

([1/2], (ν)) , ν = 0.05, 0.25, 0.45. (8)

For ν = 0.05, the distribution is almost exponential, i.e., a tent in the semi-log
plot. With a larger ν the convergence generated by the strategy [1/2] forces the
distribution to become more and more convex, i.e., it becomes more peaked
with a larger ν. This behavior follows essentially from the dominating conver-
gence of prices due to the existence of λ∗ = [1/2].

Finally, we consider the empirically interesting case

([0.45], (ν)) , ν = 0.05, 0.25, 0.45, (9)

[r], r �= 1/2.
None of the agents is clearly dominating. In Fig. 10, we see a clear crossover

from a concave Gaussian-like distribution of small χν to a convex distribution
for large χν . Particularly in case 8, with ν = 0.05, the distribution of log returns
is exponential (see Fig. 9); it is Gaussian-like in case 9 (see Fig. 10).

3 Convergence for the strategies [1/2] and (0): Random value factors D1, D2 are assumed to be
independently and uniformly distributed in some interval. In this case, there is a strategy λ∗ = 1

2
which will overtake the market asymptotically. Since r∗t → rt asymptotically, prices become asymp-
totically constant q∞, as shown in Amir, Evstigneev, Schenk, Hens & Schenk-Hopp (2005). Thus,
there are two exceptional parameter settings. One is the rigid strategy 1

2 , while the other is the
‘flexible’ strategy (0).
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Fig. 11 A 4-component aggregates model ([r1] [r2](ν)(−ν)), where [r1], [r2] �= λ∗.

The stylized market considered so far consisted of two components, a rigid
one and a flexible one. We denoted this market by

([r], (ν)
)
. By varying the

time-scale parameter and the susceptibility of the agent (ν), we obtained quan-
titatively different system behaviors. One might suspect that this approximation
of a financial market is artificial and exhibits singular features. In the following,
we show a more complex model (see Fig. 11). We divided the market into four
components, two rigid components and two flexible components

([r1] [r2] (ν) (−ν)
)
.

We chose r1, r2, symmetric in the sense that r1 = 1/2 − ε while r2 = 1/2 + ε.
In the simulation, ε = 0.05 so that [r1] = [0.45] prefers style φ2 over φ1,
while [r2] = [0.55] prefers φ1 over φ2. While both flexible agents have the same
susceptibility with respect to the signal, one can be regarded as a trend-follower,
while the other might be called a mean reverter. The choice of the parameters
was essentially arbitrary, except that above symmetries had to respected. There-
fore, in fact, only two parameters in this model are free. Extended simulations
showed that the space of the resulting distribution is qualitatively insensitive
to changes in the parameters in a wide range. In this sense, the result is quite
representative. The following simulation used a trail length of 20.000; while 500
trails were considered. The simulated return distribution should be compared
with the one in Fig. 3 for high-frequency returns of the S&P 500.

Although even the lowest-order approximation, with only two time-scales, al-
ready creates important system behavior, higher-order approximations with the
inclusion of more agents do not lead to qualitatively new results.
Comparison with empirical data suggest that his model is capable of repro-
ducing important dynamical patterns of real financial markets.

5.1 Volatility clustering

The phenomenon of high-volatility events, tending to cluster together in time,
is denoted by the term ‘volatility clustering.’ It is a model-free property of
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Fig. 12 The slow decay of the auto correlation of squared returns for the model ([0.4], (0.32))

(above) and ([0.4], (0.36)) (below)

empirical returns which does not rely on some GARCH hypothesis. Our model
generates volatility clustering, while its extent is directly related to the degree
of decoupling of the two components (Fig. 12). In other words, the greater the
susceptibility of χν , the more pronounced the clustering of high-volatility
events. This is easily seen in the following sequence of typical return trails,
obtained from simulations on the market ([0.45] (ν)) (see the Figs. 13–18).

The auto correlation C(τ ) of squared returns Zt is often taken as a measure
for volatility clustering

C2(τ ) = corr
(

Z2
t , Z2

t+τ

)
, τ ≥ 0.

Figure 12 contrasts C2(τ ) with the corresponding trails. The inscribed line indi-
cates that C2(τ ) is strictly polynomial in τ , i.e., C2(τ ) ∝ τ−γ .

6 Concluding remarks

Prices are macro-observables of a financial market because they are the result of
the aggregate trading action of a huge number of individual investors. Research
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Fig. 13 [0.45], (0.05) Fig. 14 [0.45], (0.2)

Fig. 15 [0.45], (0.25) Fig. 16 [0.45], (0.3)

Fig. 17 [0.45], (0.4) Fig. 18 [0.45], (0.45)
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on price fluctuations has revealed that different markets show qualitatively sim-
ilar or even almost identical stochastic properties, called stylized facts. These
stylized facts may serve as fingerprints for a more basic mechanism driving the
dynamics on financial markets. Considering seriously that prices are macro-
observables, we proposed an elementary model for the dynamics of ‘a finan-
cial market’ on the aggregate level. For modeling a financial market, we chose
to represent it as a network of interacting boundedly rational agents.4 Agents
are non-rational in that their decision rules are not micro-founded and derived
from some optimization principles, while decisions are based on signals or news.
Agents may differ in the extent to which they react to incoming signals. Some
may ignore signals, while others respond more or less strongly to a signal by
updating their investment strategies. In other words, agents show different reac-
tivity with respect to incoming signals. A financial market thus can be seen as
being constituted by a number of agents with different ‘time-scales’ due to their
respective reactivity.

The aim is to describe the dynamics of the market, not to model individual
agents’ dynamics. Our approach to this problem is inspired by what is known
as ‘mean field approximation’ in complex systems, where dynamics are divided
into a constant part representing the mean of the dynamics, and a second part
representing fluctuations around this mean. The idea is thus to approximate
the market’s dynamics by a ‘slow’ and a ‘fast’ dynamical component, where
the ’fast’ component can be seen as a perturbation of the ‘slow’ one. A ‘slow’
component has lesser reactivity to a signal than a fast one. The corresponding
model exhibits two components, one describing the slow component [r], and
the other describing the ‘fast’ one (ν), i.e., representing the effect of incoming
signals. The ‘market’ was represented by the pair

([r], (ν)
)
.

We simulated the market for various parameter settings. Unless otherwise
stated, we did 1.000 trails, each of length 4.000. Therefore, the histograms use
samples of size 5 × 106 points. The most important parameter in this model
turned out to be the susceptibility of the fast agent, which in some sense also
determines the degree of dynamic decoupling between these two levels. Varying
the dynamic decoupling between the two levels by increasing the susceptibility
from 0 changes dynamics, and changes the return distribution significantly. In
particular, the shape of the return distribution crosses over from a concave
Gaussian-like shape to a convex one for increasing susceptibility. This relates

4 Here, a financial agent here is an investment strategy which is equipped with some wealth and
whose state therefore is described by his wealth and his investment strategy. This naturally leads to
representing the set of agents as a system of point-masses characterized by their masses and coordi-
nates. We stayed with traditional assumptions: agents interact only via prices, which, moreover, are
market-clearing prices. Under the assumption that short-selling is excluded, dynamics are such that,
at any time, the market is in equilibrium. Since prices are macro-variables, price evolution has to
be described on the aggregate level. In this picture, a market-clearing price is the center-of-gravity
of the mass-point cloud.
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to an increase in volatility clustering. Since our model has essentially only
two free parameters, the question concerning fitting real data to the model is
natural. Fitting would be of explanatory value if the fitted parameters had a
clear economic meaning and are measurable.

Comparing simulated return trails with empirical ones, one sees that the
model generates return trials whose statistical properties are qualitatively
similar to those seen in empirical data in a wide range of parameters. There-
fore, this behavior is generic rather than restricted to some special parameter
settings. One can narrow the range of empirically reasonable parameters in our
model as follows. We analyzed nine major indices, such as the american indices
DJIA, the NASDAQ, and the S&P 500; european indices, including the english
FTSE, the french CAC, the german DAX and the swiss SPI; and also the asian
indices NIKKEI and the Hang Seng. Their distribution of daily asset returns is
close to a Laplacian. From inspection of Fig. 19, it is therefore evident that, for
a given parameter r = 0.4, parameter values ν therefore should be around 0.25,
since this is the value where the crossover from the concave to the convex shape
in the distribution is observed. For the same reason, ν > 0.25 if high-frequency
data are considered, since their distribution is more convex.

As an example, we stay with the NIKKEI. Figure 19 summarizes considered
stylized facts of the NIKKEI, using daily data from January 1, 1990 to December

Fig. 19 Summary of stylized facts of an index showing NIKKEI daily data from 1990 to 2004. The
lower row displays the auto-correlations of returns (left) and of absolute returns (right)
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Fig. 20 Summary of stylized fact obtained from our model ([0.4], (0.25)). The lower row displays
the auto-correlations of returns (left) and of absolute returns (right)

31, 2004. For comparison, Figure 20 displays the same stylized properties for
our model

([0.4], (0.25)
)
.

The model is not about economic agents and their behavior, nor does it
represent sophisticated economic structures and interdependencies. What then
does this model tell us? Stylized facts can be obtained by a large class of models.
One may conclude that stylized facts do not provide a sufficiently rich funda-
mental basis for sound economic modeling. Another conclusion may be that
stylized facts are typical properties of a far more general system, while financial
markets are only special realizations of it.
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