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1. Introduction

In this paper, we consider the system of nonlocal continuity equations{
∂tρ

i + div
(
ρiV i(t, x, ηi∗ρ)) = 0, t ∈ R

+, x ∈ R
d,

ρi(0) = ρ̄i, i ∈ {1, . . . , k}, (1.1)

where the unknown ρ = (ρ1, . . . , ρk) is a vector of measures, ηi = (ηi,1, . . . , ηi,k)
for each i ∈ {1, . . . , k} is a vector of convolution kernels and we set ηi∗ρ =
(ηi,1 ∗ρ1, . . . , ηi,k ∗ρk). For any time t � 0, if μt ∈ M+(Rd) is a bounded mea-
sure on R

d and ηt is a bounded function on R
d, then the convolution is taken

with respect to space variables only and is defined as usually as (μt ∗ ηt)(x) =∫
Rd ηt(x− y) dμt(y).

Equations with this structure can describe sedimentation models, sup-
ply-chains, or pedestrian traffic (see later in this introduction more precise
descriptions of these models, and references to the literature). For physical
reasons, in the following we are looking for positive solutions, since we intend
to describe the time evolution of a density (for instance, of pedestrians or of
some physical quantity). Moreover, we are interested in allowing concentra-
tions (for instance, in points or along hypersurfaces) of the density. Hence, we
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will consider (vector valued) solutions such that for any time each component
belongs to the space M+(Rd) of positive measures with finite total mass.

In this paper we prove existence and uniqueness for the system (1.1),
together with stability estimates with respect to various parameters, and
further properties of the solutions. We consider the following structural hypoth-
eses:

(V) The vector field V (t, x, r) : R
+ × R

d × R
k → Md,k is uniformly bounded

and it is Lipschitz in (x, r) ∈ R
d × R

k uniformly in time:

V ∈ L∞(R+ × R
d × R

k) ∩ L∞(R+,Lip(Rd × R
k,Md,k)).

(η) The convolution kernel η(t, x) : R
+ × R

d → Mk is uniformly bounded
and it is Lipschitz in x ∈ R

d uniformly in time:

η ∈ L∞(R+ × R
d) ∩ L∞(R+,Lip(Rd,Mk)).

Our main result is the following theorem.

Theorem 1.1. Let ρ̄ ∈ M+(Rd)k. Let us assume that V satisfies (V) and η
satisfies (η). Then there exists a unique solution ρ ∈ L∞(R+,M+(Rd)k) to
(1.1) with initial condition ρ̄.

We refer to Sect. 2 for precise notations and definitions, in particular for
the notion of solution.

Remark 1.2. If V satisfies (V) and η satisfies (η), in addition to the well-
posedness provided by Theorem 1.1 we have the following further properties:

• If ρ̄ ∈ L1(Rd, (R+)k) then ρ ∈ C 0(R+,L1(Rd, (R+)k)), up to redefinition
on a negligible set of times; for all time t � 0 and for all i ∈ {1, . . . , k}
we have

∥∥ρi(t)
∥∥
L1 =

∥∥ρ̄i
∥∥
L1 .

• If ρ̄ ∈ (L1∩L∞)(Rd, (R+)k) then ρ ∈ L∞
loc(R

+,L∞(Rd, (R+)k)) and for all
time t � 0, we have ‖ρ(t)‖L∞ � ‖ρ̄‖L∞eCt, with C a constant dependent
on Lipx(V ),Lipr(V ),Lipx(η) and ‖ρ̄‖M.

• Let ρ̄, σ̄ ∈ M+(Rd)k such that for any i,
∥∥ρ̄i
∥∥

M =
∥∥σ̄i
∥∥

M. Let ρ and σ
be the solutions of (1.1) associated to the initial conditions ρ̄ and σ̄. Then
we have the estimate:

W1(ρt, σt) � eKtW1(ρ̄, σ̄),

where K = Lipx(V ) + Lipr(V )Lipx(η)‖ρ̄‖M + Lipr(V )Lipx(η)‖ρ̄‖M and
W1(ρt, σt) is the Wasserstein distance of order one between ρt and σt.

As we pointed out before, the use of measure solutions allows the treat-
ment of concentrations in the evolving density. However, the first two obser-
vations in this remark clarify that concentrations cannot be produced by the
dynamics of our problem, when starting with diffuse initial data. Measure solu-
tions are useful to describe the evolution of concentrated initial data, which
may persist to be concentrated under the time evolution.

The above properties are described in Corollary 2.9 and in Proposition
4.2. The Wasserstein distance of order one is defined in Sect. 3.
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Remark 1.3. In Theorem 1.1 as well as in the other results of this papers, it is
in fact sufficient to require that V i(t, x, r) is L∞ in t, x and L∞

loc in r. Indeed,
ρ∗ηi is uniformly bounded by ‖ρ̄‖M‖η‖L∞ = M . Consequently, denoting BM

the closed ball of center 0 and radius M in R
k, it is sufficient to require

V i ∈ L∞(R+ × R
d ×BM ).

Note also that, restricting the definition of V and η to the time interval
[0, T0], we obtain a solution defined on the same time interval. Consequently,
we can as well just require V and η to be L∞

loc in time instead of L∞.

1.4. A model of pedestrian traffic

System (1.1) stands for a variety of models. Let us present first a macroscopic
model of pedestrian traffic. In a macroscopic pedestrian crowd model, ρ is the
density of the crowd at time t and position x and V is a vector field giving the
speed of the pedestrians. According to the choice of V , various behaviors can
be observed. Several authors already studied pedestrian traffic in two space
dimensions. Some of these models are local in ρ (see [4,11,17,18,20,21]); other
models use not only the local density ρ(t, x) but the entire distribution of ρ,
typically they depend on the convolution product ρ(t) ∗ η (see [6–9,14,23])
which represents the spatial average of the density. Within the framework of
(1.1), we can study the models presented in [6,8,9]. In [8], the authors consid-
ered for V the expression

V = v(ρ ∗ η)�v(x),
where v is a scalar function giving the speed of the pedestrians; η is a convolu-
tion kernel averaging the density, and �v(x) is a bounded vector field giving the
direction the pedestrian located in x will follow. This model is more adapted
to the case of panic in which pedestrians will not deviate from their trajectory
and will adapt their velocity to the averaged density. Indeed, even if the den-
sity is maximal on a given trajectory, if the averaged density is not maximal,
the pedestrians will push, trying all the same to reach their goal. This behavior
can be associated with rush phenomena in which people can even die due to
overcompression (e.g. on Jamarat Bridge in Saudi Arabia, see [16]).

The authors of [8] study the scalar case in the framework of Kružkov
entropy solutions. They obtaine existence and uniqueness of weak entropy solu-
tions under the hypotheses v ∈ W2,∞(R+,R+), �v ∈ (W2,∞ ∩ W2,1)(Rd,Rd),
and η ∈ (W2,∞ ∩ L1)(Rd,R). This result was slightly improved in [9] where,
under the same set of hypotheses on v,�v and η, the authors consider a system
instead of a scalar equation and obtain global in time existence and unique-
ness of entropy solutions. In the present paper, we recover and improve these
results, assuming lighter hypotheses. Indeed, although we consider weak mea-
sure solutions, these in fact are unique and consequently coincide with the
entropy solutions of [8,9] when the initial condition is in L1.

A related model was studied in [12,23] where the authors, instead of an
isotropic convolution kernel, consider a nonlocal functional taking into account
the direction in which the pedestrians are looking. Results in a somehow sim-
ilar spirit to the present paper have been obtained in [22], where the authors
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restrict to the case of absolutely continuous measures, and also present various
related numerical schemes.

1.5. Coupling diffuse populations and isolated agents

Another model of crowd dynamics that we recover consists in the coupling of a
group of density ρ(t, x) with an isolated agent located in p(t). This can mode-
lize for example the interaction between groups of preys of densities ρ and an
isolated predator located in p. Such a model was introduced in [6] where the
authors obtained existence and uniqueness of weak entropy solutions under
very strong hypotheses.

We recover here partially the results concerning the coupling PDE/ODE
of [6]. Indeed, the measure framework allows us also to introduce particles/indi-
viduals through Dirac measures.

For instance, let us assume that k = k0 + k1 such that ρ1, . . . , ρk0

are in fact functions belonging to L∞(R+,L1(Rd,R+)) and that δp1 , . . . , δpk1

are Dirac measures located in p1(t), . . . , pk1(t) ∈ R
d. Let us denote ρ =

(ρ1, . . . , ρk0) ∈ R
k0 and p = (p1, . . . , pk1) ∈ Md,k1 . We also denote with

V i (resp., ηi) the vector fields (resp., kernels) associated to ρ, and with
U i (resp., λi) the vector fields (resp., kernels) associated to p. Note that
δpj ∗ λi,j(x) = λi,j(x − pj). By definition of weak measure solution (see Def-
inition 2.2), if pi ∈ C 1([0, T ],Rd), the Dirac measures are satisfying, for any
i ∈ {1, . . . , k1}
ṗi(t) = U i

[
t, pi(t), ρt∗ηi

t(pi(t)), λi,1 (pi(t) − p1(t)) , . . . , λi,k1 (pi(t) − pk1(t))
]
,

which can be rewritten

ṗi(t) = Φi
(
t, p(t), ρt∗ηi

t

(
pi(t)

))
.

Consequently, in this case, system (1.1) becomes⎧⎨
⎩
∂tρ

i + div
(
ρi V i

(
t, x, ηi

t∗ρt,
(
λi,j(x− pj(t))

)k1

j=1

))
= 0, i ∈ {1, . . . , k0},

ṗj(t) = Φj
(
t, p(t), ρt∗ηj

t (pj(t))
)
, j ∈ {1, . . . , k1},

a coupling of ODEs with conservation laws.

1.6. Further models

The system (1.1) comprises also a model of particles sedimentation, introduced
in [24] and studied in [26], where the author proves existence and uniqueness
of weak solutions with initial condition in L∞. A related nonlocal model is
the supply-chain model [2,3], in which the integral

∫ 1

0
ρ(t, x) dx replaces the

convolution product. This last model was studied for example in [10], imposing
boundary conditions in x = 0 and x = 1.

In the context of Hamiltonian systems, very general existence results,
together with approximation schemes, have been obtained in [1]: however,
uniqueness seems to be out of reach in such low regularity context. Models
of aggregation are studied in [5], using gradient flows techniques and allowing
singular kernels.
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1.7. Strategy of the proof and plan of the paper

The proof of Theorem 1.1 is divided into two main steps. First, we prove some
a priori properties of the solutions (see Sect. 2): mainly, we prove that the
weak measure solutions of (1.1) coincide with the Lagrangian solutions of this
system. Important consequences are the conservation of the regularity of the
initial condition and the strong continuity in time in the case the solution is a
function, as stated in Remark 1.2.

Second, we prove the existence and uniqueness of Lagrangian solutions
thanks to a fixed point argument (see Sect. 5). Indeed, introducing the set of
probability measures endowed with the Wasserstein distance of order one, we
are able to prove a stability estimate with respect to the nonlocal term (see
Sect. 4). The technique used there is quite similar to the one of Loeper [19],
who studied the Vlasov–Poisson equation and the Euler equation in vorticity
formulation.

This article is organized as follows: in Sect. 2 we define the two different
notions of solution and prove that they coincide. In Sect. 3 we give some useful
tools on optimal tranport. In Sect. 4 we prove an important lemma giving a
stability estimate. Finally, in Sect. 5, we give the proof of Theorem 1.1.

2. Notion of solutions

2.1. General notations

Let d ∈ N be the space dimension and k ∈ N be the size of the system. In the
following, Md,k is the set of matrices of size d× k with real values and Mk is
the set of matrices of size k × k with real values. In all computations, we will
consider the 1-norm (i.e., the sum of the absolute values of the entries) on both
vectors and matrices. When considering other norms, a constant depending on
d and/or k appears in the estimates.

We denote by M(Rd) (resp., M+(Rd)) the set of finite mass (resp., finite
mass and positive) measures on R

d and by P(Rd) the set of probability mea-
sures on R

d, that is the set of bounded positive measures with total mass
1. If ρ = (ρ1, . . . , ρk) ∈ M(Rd)k, we define the total mass of ρ as ‖ρ‖M =∥∥ρ1
∥∥

M + · · · +
∥∥ρk
∥∥

M.
In the following the Lipschitz norms with respect to x or r are taken

uniformly with respect to the other variables. That is to say, for example:

Lipx(V ) = sup
t∈R+,r∈Rk

{Lipx(V (t, ·, r))}.

The space L∞([0, T ],M+(Rd)) consists of the parametrized measures μ =
(μt)t∈[0,T ] such that, for any φ ∈ C 0

c (Rd,R), the application t �→ ∫
Rd φdμt(x)

is measurable and such that ess supt∈[0,T ] ‖μt‖M < ∞.

2.2. Weak measure solutions

We say that ρ ∈ L∞([0, T ],M+(Rd)k) is a weak measure solution of (1.1)
with initial condition ρ̄ ∈ M+(Rd)k if, for any i ∈ {1, . . . , k} and for any
test-function φ ∈ C ∞

c (] − ∞, T [×R
d,R) we have
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∫ T

0

∫
Rd

[
∂tφ+ V i(t, x, ρ∗ηi) · ∇φ]dρi

t(x) dt+
∫

Rd

φ(0, x) dρ̄i(x) = 0.

Remark 2.3. A priori for weak measure solutions of the continuity equation
∂tρ + div (ρb) = 0, with a given vector field b, we have only continuity in
time for the weak topology (see [13]), that is to say, for all i ∈ {1, . . . , k}, for
all φ ∈ C 0

c (Rd,R), the application t �→ ∫
Rd φ(x) dρi

t(x) is continuous, up to
redefinition of ρt on a negligible set of times.

In the case of the system (1.1), we have a gain of regularity in time when
the initial condition is a function in L1(Rd, (R+)k) (see Corollary 2.9).

2.4. Push-forward and change of variable

When μ is a measure on Ω and T : Ω → Ω′ a measurable map, we denote
T�μ the push-forward of μ, that is the measure on Ω′ such that, for every
φ ∈ C 0

c (Ω′,R), ∫
Ω′
φ(y) dT�μ(y) =

∫
Ω

φ (T (x)) dμ(x).

If we assume that μ and ν = T�μ are absolutely continuous with respect to
the Lebesgue measure, so that there exist f, g ∈ L1 such that dμ (x) = f(x) dx
and dν (y) = g(y) dy, and that T is a Lip-diffeomorphism, then we have the
change of variable formula

f(x) = g(T (x))|det(∇T (x))|. (2.1)

Besides, we denote by Px : R
d × R

d → R
d the projection on the first

coordinate; that is, for any (u, v) ∈ R
d × R

d, Px(u, v) = u. In a similar way,
Py : R

d × R
d → R

d is the projection on the second coordinate; that is, for any
(u, v) ∈ R

d × R
d, Py(u, v) = v.

2.5. Lagrangian solutions

We say that ρ ∈ L∞([0, T ],M+(Rd)k) is a Lagrangian solution of (1.1) with
initial condition ρ̄ ∈ M+(Rd)k if, for any i ∈ {1, . . . , k}, there exists an ODE
flow Xi : [0, T ] × R

d → R
d, that is a solution of⎧⎪⎨

⎪⎩
dXi

dt
(t, x) = V i

(
t,Xi(t, x), ρt∗ηi

t(X
i(t, x))

)
,

Xi(0, x) = x,

such that ρi
t = Xi

t �ρ̄
i where Xi

t : R
d → R

d is the map defined as Xi
t(x) =

Xi(t, x) for any (t, x) ∈ [0, T ] × R
d.

Remark 2.6. Assume V satisfies (V) and η satisfies (η). Then, for any ρ ∈
L∞([0, T ],M+(Rd)k), the vector fields b = V (t, x, ρt∗ηt) are Lipschitz in x
and

Lipx(b) � Lipx(V ) + Lipr(V )Lipx(η)‖ρt‖M.

Consequently, if ‖ρt‖M is uniformly bounded, the ODE flow Xi above is
always well-defined, for a fixed ρ.
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If ρ̄ ∈ L1(Rd,R+), then the push-forward formula (2.1) becomes, for a.e.
(t, x) ∈ R

+ × R
d,

ρi(t,Xi(t, x)) = ρ̄i(x) exp
(

−
∫ t

0

div V i
(
τ,Xi(τ, x), ρτ ∗ ητ (Xi(τ, x))

)
dτ
)
.

(2.2)

We now show that the two notions of solution in fact coincide.

Theorem 2.7. If ρ is a Lagrangian solution of (1.1), then ρ is also a weak
measure solution of (1.1). Conversely, if ρ is a weak measure solution of (1.1),
then ρ is also a Lagrangian solution of (1.1).

Proof. Step 1. Let ρ be a Lagrangian solution of (1.1). Let us denote bi =
V i(t, x, ρ∗ηi) and let Xi be the ODE flow associated to bi. Then, for any
φ ∈ C ∞

c (] − ∞, T [×R
d,R), we have

∫ T

0

∫
Rd

(
∂tφ(t, x) + bi(t, x) · ∇φ(t, x)

)
dρt(x) dt

=
∫ T

0

∫
Rd

(
∂tφ(t,Xi

t(x)) + bi(t,Xi
t(x)) · ∇φ(t,Xi

t(x))
)
dρ̄(x) dt

=
∫ T

0

∫
Rd

d
dt
(
φ(t,Xi

t(x))
)
dρ̄(x) dt

=
∫

Rd

φ(T,Xi(T, x)) dρ̄(x) −
∫

Rd

φ(0, x) dρ̄(x) = −
∫

Rd

φ(0, x) dρ̄(x),

which proves that ρ is also a weak measure solution.

Step 2. Let ρ be a weak measure solution of (1.1). For any i ∈ {1, . . . , k}, let
us denote bi(t, x) = V i(t, x, ρ∗ηi). Let σ be the Lagrangian solution of the
equation

∂tσ
i + div (σibi) = 0, σi(0, ·) = ρ̄i, (2.3)

which exists and is unique since bi is Lipschitz as noted in Remark 2.6. Then,
arguing similarly as in point 1, σ is also a weak measure solution to (2.3).
Denoting ui = ρi − σi, we obtain that ui is a weak measure solution of the
equation ∂tu

i +div (ui bi) = 0 with initial condition ui(0, ·) = 0. Consequently,
for any φ ∈ C ∞

c (] − ∞, T [×R
d,R),

∫ T

0

∫
Rd

(
∂tφ+ bi(t, x) · ∇φ) dut dt = 0.

Let ψ ∈ C 0
c (] − ∞, T [×R

d,R). Since bi ∈ L∞([0, T ] × R
d,Rd) is Lips-

chitz in x, by computation along the characteristics, we can find φ ∈ C 1
c (] −

∞, T [×R
d,R) so that ψ = ∂tφ + bi(t, x) · ∇φ. Hence, for any ψ ∈ C 0

c (] −
∞, T [×R

d,R), we have
∫ T

0

∫
Rd ψ dut dt = 0, which implies u ≡ 0 a.e., and so

ρ ≡ σ a.e. Consequently, we have also bi(t, x) = V i(t, x, σ∗ηi), and σ = ρ is
finally a Lagrangian solution of (1.1). �
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Definition 2.8. As a consequence of the previous theorem, in the following we
simply call solution of (1.1) a weak measure solution or a Lagrangian solution
of (1.1), since these two notions in fact coincide.

It is now possible to prove some of the properties given in Remark 1.2.

Corollary 2.9. Assume that V satisfies (V) and η satisfies (η). Let ρ ∈
L∞([0, T ],M+(Rd)k) be a solution to (1.1) with initial condition ρ̄ ∈
M+(Rd)k.

• If ρ̄ ∈ L1(Rd, (R+)k). Then we have ρ ∈ C 0([0, T ],L1(Rd, (R+)k)) and
for all time t ∈ [0, T ], all i ∈ {1, . . . , k}, ∥∥ρi(t)

∥∥
L1 =

∥∥ρ̄i
∥∥
L1 .

• If furthermore ρ̄ ∈ (L1 ∩ L∞)(Rd, (R+)k), then for all t ∈ [0, T ] we have
ρ(t) ∈ L∞(Rd, (R+)k) and we have the estimate

‖ρ(t)‖L∞ � ‖ρ̄‖L∞e
Ct,

where C depends on ‖ρ̄‖M, V and η.

Proof. Let ρ be a solution of (1.1) with initial condition ρ̄ ∈ L1(Rd, (R+)k).
According to Definition 2.8, ρ is a Lagrangian solution associated to a flow X
and we have immediately that ‖ρ̄‖L1 = ‖ρ(t)‖L1 .

Besides, as bi(t, x) = V i(t, x, ρ∗ηi) ∈ L∞([0, T ] × R
d,Rd) is bounded in

t and Lipschitz in x, then Xi
t ∈ Lip(Rd,Rd) and we can use the change of

variable formula (2.2). If ρ̄ ∈ L∞(Rd,Rk), with

C = Lipx(V ) + Lipr(V )Lipx(η)‖ρ̄‖M,

we obtain the desired L∞ bound and ρ(t) ∈ L∞ for all t ∈ [0, T ].
The continuity in time can be proved directly by estimating ‖ρt − ρs‖L1

using Egorov Theorem. This computation is straightforward although a bit
long so we prefer to omit the details. Alternatively, note that the continuity
in time is also ensured by the results of DiPerna and Lions [15, Sect. 2.II] and
the notion of renormalized solutions. �

3. Some tools from optimal mass transportation

Let us remind the definition of the Wasserstein distance of order 1.

Definition 3.1. Let μ, ν be two Borel probability measures on R
d. We denote

Ξ (μ, ν) the set of plans, that is the set of probability measures γ ∈ M+(Rd ×
R

d) such that Px�γ = μ and Py�γ = ν. We define the Wasserstein distance of
order one between μ and ν by

W1(μ, ν) = inf
γ∈ Ξ (μ,ν)

∫
Rd×Rd

|x− y|dγ(x, y). (3.1)

Let ρ = (ρ1, . . . , ρk), σ = (σ1, . . . , σk) be two vectors such that ρ1, . . . , ρk

and σ1, . . . , σk are Borel probability measures on R
d. We define the Wasser-

stein distance of order one between ρ and σ, denoted W1(ρ, σ), as

W1(ρ, σ) =
k∑

i=1

W1(ρi, σi). (3.2)
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Remark 3.2. By [25, Theorem 1.3] for any μ, ν ∈ P(Rd), there exist a plan
γ0 ∈ Ξ(μ, ν) realizing the minimum in the Wasserstein distance, that is

W1(μ, ν) =
∫

Rd

|x− y|dγ0(x, y).

Remark 3.3. Let ρ̄ ∈ M+(Rd)k be a probability measure and let X,Y : R
d →

R
d be mappings such that f = X� dρ̄ and g = Y� dρ̄. Then, the probability

measure γ = (X,Y )� dρ̄ satisfies Px�γ = f and Py�γ = g; hence

W1(f, g) �
∫

Rd×Rd

|x− y| dγ(x, y) =
∫

Rd

|X − Y | dρ̄(x).

Proposition 3.4 (cf. Villani [25, p. 207]). Let μ, ν be two probability measures.
The Wasserstein distance of order one between μ and ν satisfies

W1(μ, ν) = sup
Lip(φ)�1

∫
Rd

φ(x) (dμ(x) − dν(x)).

4. The main stability estimate

In the following we consider probability measures instead of bounded positive
measures. This is not a real restriction since we pass from one case to the other
just by a rescaling.

Before giving a stability estimate in Proposition 4.2, we prove a technical
lemma, in which we derive an estimate on the difference between two vector
fields generated by different solutions.

Lemma 4.1. Let V satisfy (V) and η satisfy (η). Let r, s ∈ P(Rd)k. For any
i ∈ {1, . . . , k}, we have the following estimate∥∥V i(t, x, r∗ηi

t) − V i(t, x, s∗ηi
t)
∥∥
L∞ � Lipr(V

i) Lipx(ηi)W1(r, s).

In the previous lemma, the quantity W1(r, s) on the right hand side could
be infinite. If we restrict ourselves to bounded positive measures with first
moment finite, then the quantity above is always finite.

Proof. The proof follows from Proposition 3.4 on the Wasserstein distance.
Note first that in the case Lip(ηi,j) = 0 then ηi,j is constant and we have
(rj − sj) ∗ ηi,j(x) = 0 � Lip(ηi,j)W1(rj , sj). Now, in the case Lip(ηi,j) �= 0,
thanks to Proposition 3.4, we have

(rj − sj) ∗ ηi,j(x) =
∫

Rd

ηi,j(x− y)(drj(y) − dsj(y))

= Lip(ηi,j)
∫

Rd

ηi,j(x− y)
Lip(ηi,j)

(drj(y) − dsj(y))

� Lip(ηi,j) sup
Lip(φ)�1

∫
Rd

φ(y)(drj(y) − dsj(y))

= Lip(ηi,j)W1(rj , sj).
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As we obtain the same estimate for −(rj − sj) ∗ ηi,j(x), we can conclude
that ∥∥V i(t, x, r∗ηi) − V i(t, x, s∗ηi)

∥∥
L∞ � Lipr(V

i)
∥∥(r − s)∗ηi

∥∥
L∞

� Lipr(V
i) Lip(ηi)W1(r, s).

�

Let r, s ∈ L∞([0, T ],P(Rd)k). We want to compare the following equa-
tions, in which the nonlocal vector fields has been replaced by fixed vector
fields. In this way, the system is made of the two decoupled equations:

for all i ∈ {1, . . . , k} ∂tρ
i + div

(
ρiV i(t, x, ηi∗r)) = 0, ρi(0, ·) = ρ̄i,

for all i ∈ {1, . . . , k} ∂tσ
i + div

(
σiU i(t, x, νi∗s)) = 0, σi(0, ·) = σ̄i.

(4.1)

Proposition 4.2. Assume V,U satisfy (V) and η, ν satisfy (η). Let ρ̄, σ̄ be
two probability measures such that for any i,

∥∥ρ̄i
∥∥

M =
∥∥σ̄i
∥∥

M. Let r, s ∈
L∞([0, T ],P(Rd)k). If ρ and σ are Lagrangian solutions of (4.1) associated to
the initial conditions ρ̄ and σ̄, then we have the estimate:

W1(ρt, σt) � eCtW1(ρ̄, σ̄)

+CteCt

[
sup

t∈[0,T ]

W1(rt, st) + ‖η − ν‖L∞ + ‖V − U‖L∞

]
(4.2)

where C is a constant depending on Lipx(V ), Lipr(V ), Lipx(η) and ‖ρ̄‖M.
Furthermore, in the special case r = ρ and s = σ, we get:

W1(ρt, σt) � eKtW1(ρ̄, σ̄) +KteKt [‖η − ν‖L∞ + ‖V − U‖L∞ ], (4.3)

where Kis a constant depending on Lipx(V ), Lipr(V ), Lipx(η) and ‖ρ̄‖M.

Note that the estimate above comprises the case W1(ρ̄, σ̄) = ∞.

Proof. Let ρ, σ be two Lagrangian solutions to the Cauchy problem for (1.1)
with initial conditions ρ̄ and σ̄ respectively. Let X, Y be the associated ODE
flows. For any t ∈ [0, T ], we define the map Xi

t �� Y i
t : R

d × R
d → R

d × R
d by

Xi
t �� Y i

t (x, y) = (Xi
t(x), Y

i
t (y)), for any (x, y) ∈ R

d × R
d.

Let γi
0 ∈ Ξ (ρ̄i, σ̄i) so that Px�γ

i
0 = ρ̄i and Py�γ

i
0 = σ̄i. Let us define the prob-

ability measure γi
t = (Xi

t �� Y i
t )�γ

i
0. Then, Px�γ

i
t = ρi

t and Py�γ
i
t = σi

t so that
γi

t ∈ Ξ (ρi
t, σ

i
t).

We fix R > 0 and we define, for t � 0

QR(t) =
k∑

i=1

∫
Xi

t(BR)×Y i
t (BR)

|x− y| dγi
t(x, y)

=
k∑

i=1

∫
BR×BR

∣∣Xi
t(x) − Y i

t (y)
∣∣ dγi

0(x, y) .
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Note first that QR is Lipschitz. Indeed, for t, s � 0 we have

|QR(t)−QR(s)| �
∣∣∣∣∣

k∑
i=1

∫
BR×BR

(∣∣Xi
t(x)−Y i

t (y)
∣∣−∣∣Xi

s(x) − Y i
s (y)

∣∣) dγi
0(x, y)

∣∣∣∣∣
�

k∑
i=1

∫
BR×BR

∣∣Xi
t(x) − Y i

t (y) −Xi
s(x) + Y i

s (y)
∣∣ dγi

0(x, y)

�
k∑

i=1

∫
BR×BR

(∣∣Xi
t(x) −Xi

s(x)
∣∣+ ∣∣Y i

t (y) − Y i
s (y)

∣∣) dγi
0(x, y)

�
k∑

i=1

∫
BR×BR

(∥∥V i
∥∥
L∞ +

∥∥U i
∥∥
L∞
) |t− s| dγi

0(x, y)

� (‖V ‖L∞ + ‖U‖L∞) ‖γ0‖M|t− s|. (4.4)

Let us assume that W1(ρ̄, σ̄) < ∞, otherwise the thesis is trivial. Then,
by Remark 3.2, for all i ∈ {1, . . . , k}, we can find a bounded positive measure
γi
0 ∈ Ξ (ρ̄i, σ̄i) so that

W1(ρ̄i, σ̄i) =
∫

Rd×Rd

|x− y|dγi
0(x, y).

Consequently we have, for any R � 0, QR(0) � W1(ρ̄, σ̄). Hence, using (4.4),
for any t � 0, we have

QR(t) � QR(0) + (‖U‖L∞ + ‖V ‖L∞)‖γ0‖Mt

� W1(ρ̄, σ̄) + (‖U‖L∞ + ‖V ‖L∞)‖γ0‖Mt.

Thus, for any t � 0, QR(t) remains finite when R → ∞ and since R �→ QR(t)
is increasing with respect to R, we can define Q(t) = limR→∞QR(t).

Let us now consider Q. The same computation as in (4.4) ensures that
Q is Lipschitz so we can differentiate for almost every t and obtain

Q′(t) �
k∑

i=1

∫
Rd×Rd

∣∣V i
(
t,Xi

t(x), rt∗ηi
t(X

i
t(x))

)

− U i
(
t, Y i

t (y), st∗νi
t(Y

i
t (y))

)∣∣ dγi
0(x, y)

�
k∑

i=1

∫
Rd×Rd

(∣∣V i
(
t,Xi

t(x), rt∗ηi
t(X

i
t(x))

)− V i
(
t, Y i

t (y), rt∗ηi
t(X

i
t(x))

)∣∣
+
∣∣V i

(
t, Y i

t (y), rt∗ηi
t(X

i
t(x))

)− V i
(
t, Y i

t (y), rt∗ηi
t(Y

i
t (y))

)∣∣
+
∣∣V i

(
t, Y i

t (y), rt∗ηi
t(Y

i
t (y))

)− V i
(
t, Y i

t (y), st∗ηi
t(Y

i
t (y))

)∣∣
+
∣∣V i

(
t, Y i

t (y), st∗ηi
t(Y

i
t (y))

)− V i
(
t, Y i

t (y), st∗νi
t(Y

i
t (y))

)∣∣
+
∣∣V i

(
t, Y i

t (y), st∗νi
t(Y

i
t (y))

)−U i
(
t, Y i

t (y), st∗νi
t(Y

i
t (y))

)∣∣) dγi
0(x, y).

Note that∣∣V i(t, y, rt ∗ ηi
t(x)) − V i(t, y, rt ∗ ηi

t(y))
∣∣ � Lipr(V

i)Lip(rt∗ηi
t)|x− y|

� Lipr(V
i)‖rt‖MLip(ηi)|x− y|.
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Using Lemma 4.1 we obtain

Q′(t)�
k∑

i=1

∫
Rd×Rd

(
Lipx(V i)+Lipr(V

i)‖rt‖MLip(ηi)
) ∣∣Xi

t(x)−Y i
t (y)

∣∣ dγi
0(x, y)

+
k∑

i=1

∫
Rd×Rd

Lipr(V
i) Lip(ηi)W1(rt, st) dγi

0(x, y)

+
k∑

i=1

∫
Rd×Rd

Lipr(V
i)
∣∣st∗(ηi

t − νi
t)
∣∣ dγi

0(x, y)

+
k∑

i=1

∫
Rd×Rd

∥∥V i − U i
∥∥
L∞ dγi

0(x, y)

� C [Q(t) + W1(rt, st) + ‖η − ν‖L∞ + ‖U − V ‖L∞ ] . (4.5)

Taking the sup in time of W1(rt, st) on the right-hand side and applying
Gronwall Lemma, we get

Q(t) � eCtQ(0) + CteCt

(
sup

τ∈[0,t]

W1(rτ , sτ ) + ‖η − ν‖L∞ + ‖U − V ‖L∞

)
.

Note now that, thanks to Remark 3.3, for any t � 0

W1(ρt, σt) � Q(t). (4.6)

Furthermore, we have chosen γ0 in an optimal way thanks to Remark 3.2, and
so Q(0) = W1(ρ̄, σ̄). Hence we obtain, for any t ∈ [0, T ]:

W1(ρt, σt) � eCtW1(ρ̄, σ̄)

+CteCt

(
sup

τ∈[0,t]

W1(rτ , sτ ) + ‖η − ν‖L∞ + ‖U − V ‖L∞

)
,

which is the expected result (4.2).
In the particular case r = ρ and s = σ, applying (4.6) to (4.5) we obtain

Q′(t) � 2CQ(t) + C (‖η − ν‖L∞ + ‖U − V ‖L∞).

Applying Gronwall Lemma, we finally obtain Q(t) � e2CtQ(0) + Cte2Ct

(‖η − ν‖L∞ + ‖U − V ‖L∞), which is (4.3). �

5. Proof of the main theorem

The proof of Theorem 1.1 is based on the following idea: let us fix the nonlocal
term and, instead of (1.1), we study the Cauchy problem

∂tρ+ div (ρ V (t, x, r ∗ η)) = 0, ρ(0) = ρ̄, (5.1)

where r is a given application. We want to use a fixed point argument. We con-
sider here probability measures. In the more general case of positive measures
with the same total mass, by rescaling we are back to the case of probability
measures.
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Let us introduce the application

Q :
{

r �→ ρ
X → X

}
, (5.2)

where we consider the space X = L∞([0, T ],P(Rd)k) for T chosen in such a
way that:

(a) The space X is equipped with a distance d that makes X complete: for
μ, ν ∈ X , we define

d(μ, ν) = sup
t∈[0,T ]

W1(μt, νt).

(b) The application Q is well-defined: the Lagrangian solution ρ ∈ X to
(5.1) exists and is unique (for a fixed r). Indeed, let Xt be the ODE flow
associated to V (t, x, rt∗ηt), then we can define ρt = Xt�ρ̄. Since ρ̄ is a
positive measure, then so is ρt.

(c) The application Q is a contraction: this is given by Proposition 4.2.
Indeed, let r, s in L∞([0, T ],M+(Rd)k) and denote ρ = Q(r), σ = Q(s)
the associated solutions to (5.1). Note that ρ and σ have the same initial
condition. Thanks to Proposition 4.2, we obtain the contraction estimates

sup
[0,T ]

W1(ρt, σt) � CTeCT sup
[0,T ]

W1(rt, st), (5.3)

where C depends only on Lipx(V ), Lipr(V ), Lipx(η) and ‖ρ̄‖M.

Hence, for T small enough, by the Banach fixed point Theorem we obtain
existence and uniqueness in X of a Lagrangian solution to (1.1) for t ∈ [0, T ].
As ‖ρT ‖M = ‖ρ̄‖M the coefficient C in (5.3) does not depend on time and
we can iterate the procedure. Thus we have existence and uniqueness for all
positive times.

This concludes the proof of Theorem 1.1. Observe that uniqueness can
be also obtained directly by the stability estimate (4.3) in the particular case
V i = U i, ηi = νi, ρ̄ = σ̄.
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