
Abstract. Vascular endothelial growth factors (VEGFs)
regulate blood and lymphatic vessel development and
homeostasis but also have profound effects on neural
cells. VEGFs are predominantly produced by endothelial,
hematopoietic and stromal cells in response to hypoxia
and upon stimulation with growth factors such as trans-
forming growth factors, interleukins or platelet-derived
growth factor. VEGFs bind to three variants of type III re-
ceptor tyrosine kinases, VEGF receptor 1, 2 and 3. Each
VEGF isoform binds to a particular subset of these re-
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ceptors giving rise to the formation of receptor homo- and
heterodimers that activate discrete signaling pathways.
Signal specificity of VEGF receptors is further modu-
lated upon recruitment of coreceptors, such as neuro-
pilins, heparan sulfate, integrins or cadherins. Here we
summarize the knowledge accumulated since the discov-
ery of these proteins more than 20 years ago with the em-
phasis on the signaling pathways activated by VEGF re-
ceptors in endothelial cells during cell migration, growth
and differentiation.
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Historical background

In higher organisms, blood and lymphatic vasculature is
formed by two distinct processes: vasculogenesis and an-
giogenesis. Vasculogenesis is the de novo formation of
vessels from hematopoietic precursor cells and predomi-
nantly takes place in the developing embryo. Angiogene-
sis, on the other hand, is the formation of vessels from
preexisting vasculature by processes such as sprouting,
pruning and intussusception [1] and is an important bio-
logical process throughout the life of an organism, both
under normal conditions and in disease. Impaired vessel
function is the cause of many illnesses such as athero-
sclerosis, diabetic retinopathy, psoriasis, arthritis, malig-
nant cell growth, neurodegenerative disease and a pla-
cental insufficiency, preeclampsia [2]. Hematopoietic

precursor cells are programmed by soluble factors, extra-
cellular matrix (ECM) components as well as cell-cell
contacts to mature to their final functional states during
vessel formation. Research in this field has been pro-
foundly stimulated by the discovery of a plethora of
growth factors that instruct primordial cells to migrate,
divide and differentiate and to give rise to endothelial
cells that ultimately form blood and lymphatic vessels.
Vascular endothelial growth factors, (VEGFs) are among
the most important players that regulate vessel formation
during embryonic development, in wound healing and in
maintaining vessel homeostasis in adult organisms. In ad-
dition, impaired vessel function resulting from defects in
VEGF ligands or receptors is the cause of many diseases.
VEGF was originally described as vascular permeability
factor (VPF), an activity released by tumor cells that pro-
motes vascular leakage [3–12]. It is now clear that VPF
represented a biological activity attributable to a family of
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polypeptide growth factors that are encoded by several
genes. VEGFs specifically interact with hematopoietic
cells, endothelial precursor cells, such as the angioblasts,
and with differentiating and mature endothelial cells. The
best studied variant is VEGF-A, which activates a plethora
of signaling pathways through VEGF receptor-2 (VEGFR-
2) and regulates vessel morphogenesis through VEGFR-1.
The importance of VEGF-A and its receptors in vascular
development has been best illustrated in knockout mice.
Both VEGF-A [13] and VEGFR-2 knockouts [14, 15] are
lethal due to a deficiency in blood vessel formation, while
VEGFR-1 knockouts show overgrowth of immature ves-
sels that blocks the development of a fully developed func-
tional vasculature and leads to embryonic death [16]. The
function of VEGFs in vessel formation is complemented
by additional factors, such as basic fibroblast growth fac-
tor (bFGF) [17], transforming growth factor β (TGFβ)
[18], platelet-derived growth factors (PDGFs) [19] and an-
giopoietins [20].
VEGF homologs also exist in arthropods, where they reg-
ulate hemocyte development upon binding to PDGF/
VEGF receptors (PVRs). Apparently, in such simpler
organisms, a single growth factor performs the tasks per-
formed by PDGF and VEGF in higher organisms [21–23].
Apart from their role in vessel development and home-
ostasis, VEGF family proteins play diverse roles in other
organs such as the neural system, bones, the hematopoi-
etic system and the reproductive organs, which have been
excellently reviewed recently [24].

Biological function of VEGF receptors and 
their ligands

VEGF family proteins
VEGF polypeptides belong to the PDGF family of growth
factors. They are dimeric cysteine-linked secreted glyco-
proteins with an Mr of approximately 40 kDa. In mam-
mals, VEGFs are encoded by a family of genes that in-
cludes VEGF-A, -B, -C, -D [25] and PlGF [26]. Highly
related proteins called VEGF-E are encoded by pox
viruses of the Orf family [27–29] and additional variants,
collectively called VEGF-F, have been isolated from
snake venoms [30–35]. Alternative splicing and proteo-
lytic processing of VEGFs give rise to a number of func-
tionally distinct isoforms with different signaling proper-
ties [36, 37]. For example, Bates and colleagues de-
scribed an interesting variant, VEGF-A165b, closely
related to VEGF-A165, that carries sequences encoded
by exon 9, instead of exon 8, at the carboxy terminus [38,
39]. When added together with VEGF-A165 to endothe-
lial cells, this variant inhibited VEGF signaling. The con-
cept emerging from such studies is that multiple isoforms
of VEGFs, binding their receptors with similar affinity,
yet eliciting distinct signaling properties, are responsible

for the bewildering complexity of VEGF-induced signal
output.
VEGFs are expressed in response to hypoxia and when
cells encounter specific growth and differentiation fac-
tors and are produced by many cell types, in particular by
hematopoietic, stromal and endothelial cells [40–42].
One of the most prominent examples is the stimulation of
VEGF expression by cancer cells that cannot form tu-
mors bigger than a few millimeters unless they produce
angiogenic growth factors [2, 43].

VEGF receptors
The biological functions of VEGF polypeptides are me-
diated upon binding to type III receptor tyrosine kinases
(RTKs), VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1) and
VEGFR-3 (Flt-4) [2, 44–47]. VEGF receptors are closely
related to Fms, Kit and PDGF receptors. They consist of
seven extracellular immunoglobulin (Ig)-like domains,
a transmembrane (TM) domain, a regulatory juxtamem-
brane domain, an intracellular tyrosine kinase domain
interrupted by a short peptide, the kinase insert domain,
followed by a sequence carrying several tyrosine residues
involved in recruiting downstream signaling molecules.
These receptors are expressed on the cell surface of many
bone-marrow-derived cells such as hematopoietic cells
[48], macrophages and endothelial cells [49], on some
malignant cells [50] and on vascular smooth muscle cells
(VSMCs) [51]. Mutation analysis of the extracellular do-
mains of VEGFR-1 and -2 showed that the second and
third Ig-like domains constitute the high-affinity ligand-
binding domain for VEGF with the first and fourth Ig do-
mains apparently regulating ligand binding and receptor
dimerization, respectively [52–54]. VEGFs show distinct
patterns of receptor specificity as indicated in figure 1.
VEGF-A binds to VEGFR-1 and -2 and to receptor het-
erodimers, while VEGF-C and -D bind VEGFR-2 and -3.
Receptor-specific interactions have been described for
some VEGF variants: PlGF [55, 56] and VEGF-B [57]
exclusively bind VEGFR-1 and VEGF-E interacts only
with VEGFR-2 [27, 58]. VEGF-F variants interact with
either VEGFR-1 or -2, e.g. VR-1 and Vammin bind only
to VEGFR-2 [32, 33]. VEGF-A, -B and PlGF are pre-
dominantly required for blood vessel formation, while
VEGF-C and -D are essential for the formation of lym-
phatic vessels [59, 60].

Regulation of receptor activity
RTKs are activated upon ligand-mediated receptor dimer-
ization [61–63]. Earlier published work suggested that
ligand binding is not directly responsible for receptor
dimerization but may induce conformational changes in
the extracellular Ig domain 4 which then promote recep-
tor dimerization [64–67]. Ligand-induced dimerization
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leads to structural changes transduced to the intracellular
kinase domain upon rearrangement of the transmem-
brane and the juxtamembrane domain. The molecular
mechanisms responsible for activation of the intracellular
kinase domain of these receptors are poorly understood at
present. Kit and PDGF receptors mutated in the trans- or
juxtamembrane domains are constitutively active and
often oncogenic [68, 69]. Similarly, a role of the TM
domain in receptor activation has been elegantly docu-
mented for PDGF receptors carrying artificially engi-
neered dimerization motifs [70]. These data clearly es-
tablish that the TM and the juxtamembrane domains are
involved in regulating receptor kinase activity.
All three VEGF receptors contain tyrosine phosphoryla-
tion sites that have an either regulatory or signaling func-
tion. While phosphorylation of sites in the juxtamembrane
domain and the lower lobe of the kinase domain presum-
ably modulates receptor structure and kinase activity, oth-
ers act as docking sites for SH2-domain-containing sig-
naling molecules. Four experimental approaches have
been used to study the biological function of these phos-
phorylation sites: (i) mutation analysis in which specific
tyrosine residues were mutated and receptor-associated
signaling molecules and biological output were deter-
mined, (ii) phosphopeptide mapping of receptors isolated
from resting and ligand-stimulated cells labeled with inor-
ganic phosphate in vivo, (iii) phosphopeptide mapping of
in-vitro-phosphorylated receptors, (iv) determination of
the phosphorylation state of specific residues with phos-
photyrosine-specific antibodies. Each of these methods
has its shortcomings and published data on receptor activ-
ity and binding of downstream signaling molecules are
therefore often difficult to compare. Mutational analysis,
for example, might change receptor structure and there-
fore biological activity, while results from in vivo and in
vitro phosphorylation analysis are biased by the different
turnover of tyrosine phosphates labeled under these con-
ditions.

VEGFR-1 regulates blood vessel morphogenesis
VEGFR-1 is an 180-kDa glycoprotein expressed in many
hematopoietic cells. The receptor is required for normal
blood vessel development during embryogenesis, since
homozygous deletion of VEGFR-1 is lethal in mice at
embryonic day E8.5 due to severe malformation of the
vasculature [16]. A VEGFR-1 splice variant lacking the
intracellular tyrosine kinase and the transmembrane do-
main, sVEGFR-1 or sFlt-1, has been shown to be defi-
cient in signaling, yet is expressed in many tissues during
normal embryonic development. This molecule appar-
ently acts as a decoy for VEGF ligands [71–73] and is
clinically associated with a placental insufficiency, called
preeclampsia, observed in some patients late in preg-
nancy [74]. The view that VEGFR-1 kinase activity is dis-

pensable for vessel development at particular develop-
mental stages is further supported by the finding that a ki-
nase-inactive VEGFR-1 mutant rescues VEGFR-1 null
mutant mice [75]. More recent data indicate that the ki-
nase activity of VEGFR-1 plays an essential role during
pathological angiogenesis and in wound healing, by po-
tentiating VEGFR-2 signaling [76–78], however, the
molecular details for this receptor cross-talk have not yet
been elucidated. Undisputed is the role of kinase-active
VEGFR-1 in recruiting hematopoietic cells from bone
marrow precursors [79, 80].
VEGFR-1 has poor kinase activity compared with
VEGFR-2 due to the presence of a repressor motif in the
juxtamembrane domain, making studies on receptor
phosphorylation difficult [81]. A wide variety of signal-
ing molecules has been shown to be activated by VEGFR-
1 upon recruitment to specific phosphorylation sites [82–
86]. Tyr1213 and 1333 serve as binding sites for adaptor
molecules such as Nck, Crk, Grb-2 [84, 87], Sck [88], the
regulatory p85 subunit of phosphatidylinositol (PI) 3-ki-
nase [85] and the phosphatase SHP-2 [87]. Phospholipase
Cγ-1 (PLCγ-1) has been shown to associate with VEGFR-
1 via Tyr794 and 1169 [86, 89]. Tyr1242 and 1327 are mi-
nor phosphorylation sites with no interacting intermedi-
ates described to date. The downstream signaling path-
ways activated by VEGFR-1 are not well characterized
and only weak proliferative or migratory effects are me-
diated by this receptor in endothelial cells. Conflicting re-
ports indicate that VEGFR-1 has mitogenic potential in a
PLCγ-1- and phosphokinase C (PKC)-dependent or inde-
pendent manner [89–91]. Taking into account more re-
cent results from P. Carmeliet’s group, these data may
arise from receptor cross-talk with VEGFR-2 [76]. A sin-
gle study shows activation of Fyn and Yes, two members
of Src family kinases [92], but no biological function has
been attributed to these interactions. The function of
VEGFR-1 is best established in monocyte migration and
differentiation [79, 93], in the recruitment of endothelial
cell progenitors from bone marrow [80, 94, 95], the mi-
gration and invasion of carcinoma cells [96], the produc-
tion of growth factors by liver sinusoidal endothelial cells
[97] and the adhesion of natural killer cells to endothelial
cells [98].

VEGFR-2 is the predominant receptor in 
angiogenic signaling
VEGFR-2 is a 200-kDa glycoprotein expressed in hema-
topoietic [48, 99, 100], neural [101–103] and retinal cells
[104]. VEGFR-2 regulates endothelial cell migration, pro-
liferation, differentiation and survival as well as vessel
permeability and dilation. Among the 19 tyrosine residues
present in the intracellular domain of VEGFR-2, seven pu-
tative phosphorylation sites have been described in some
detail to date: Tyr801, 951, 996, 1054, 1059, 1175 and
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1214. A comprehensive study of receptor activity based on
in vitro phosphorylation of immunoprecipitated VEGFR-
2, on receptor mutagenesis and on in vivo mapping
with phosphorylation site-specific antibodies identified
Tyr951, 1054, 1059, 1175 and 1214 as the most prominent
phosphorylation sites and Tyr1305, 1309 and 1319 as mi-
nor sites, while Tyr801 and 996 phosphorylation was not
detected in this study [105]. Tyr1175 is clearly the most
important site implicated in activation of many pathways
via PLCγ-1 [106]. A role for Tyr1175 in endothelial and
hematopoietic cell signaling was also shown in knockin
mice expressing a Tyr1175 mutant. In this study, animals
expressing the mutant receptor died in utero from vascu-
lar defects similar to those observed in VEGFR-2 null
mice [107]. A mutagenesis study led to the identification
of Tyr1008 as an additional site involved in activation of
PLCγ-1, promoting endothelial cell tubulogenesis and dif-
ferentiation but not cell proliferation [108].
The mechanism of receptor activation is not understood
in molecular detail. Tyr1054 and 1059 in the kinase do-
main, which are homologous to regulatory residues pre-
sent in all protein kinases, were tentatively identified as
autophosphorylation sites [109, 110]. Similar to other
RTKs, the putative phosphorylation sites Tyr801 and 822
located in the juxtamembrane domain may be phospho-
rylated following dimerization of VEGFR-2 and maintain
the receptor in an active conformation [111]. Mutation
analysis also showed that Tyr996 and 1214 in the kinase
and the carboxy-terminal domain are essential for recep-
tor activation; however, one should bear in mind that such
results may derive from structural changes in these mu-
tant receptors [109, 112].

VEGFR-2 is downregulated and dephosphorylated upon
internalization into endocytic vesicles [109, 113]. Both
inactivation by directly associated phosphatases as well
as dephosphorylation upon association with other mem-
brane receptors carrying associated phosphatases such as
SHP-1 and -2 have been described [114, 115]. A particu-
larly interesting case is the downregulation of VEGFR-2
by tumor necrosis factor α (TNFα), which recruits SHP-
1 to the plasma membrane [116, 117]. Finally, a variety of
less well characterized signaling molecules have been
shown to associate with the activated receptor and to
transmit downstream signals. These include the Ras GT-
Pase-activating protein GAP [118], the adaptor proteins
Nck [118], Grb-2, Grb-10 and Sck [88, 114, 119, 120]
and the human cellular protein tyrosine phosphatase A
(HCTPA) [121].

VEGFR-2 promotes mitogenesis
VEGF-mediated endothelial cell proliferation depends
on the activation of multiple pathways downstream from
VEGFR-2. Similar to other members of the RTK family,
VEGFR-2 activates the classical Ras-dependent signal-
ing cascade impinging on MAP kinases such as ERK1
and 2 [122]. In this pathway, VEGFR-2 recruits Grb-2,
either by a direct interaction involving the putative dock-
ing site at Tyr1214 [123], or via association with the adap-
tor protein Shc [114]. Phosphorylation of Grb-2 leads to
activation of the nucleotide exchange factor Sos followed
by activation of Ras and stimulation of the Raf1/MEK/
ERK signaling cascade. Cross-talk between ERK1 and 2
and another MAP kinase family member, c-Jun N-termi-
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nal protein kinase (JNK), has also been described, ren-
dering difficult the assignment of specific biological
roles to the individual MAP kinase family members
[124]. Activated MAP kinases translocate to the nucleus
where they phosphorylate transcription factors and regu-
late gene expression.
Most studies on VEGF signaling agree that receptor re-
cruitment of PLCγ-1 upon phosphorylation of Tyr1175 is
essential for stimulation of mitogenesis. Activation of
PLCγ-1 promotes phosphatidylinositol 4,5-bisphosphate
(PIP2) hydrolysis giving rise to 1,2-diacylglycerol (DAG)
and inositol 1,4,5-trisphosphate (IP3). Production of DAG
activates PKC resulting in Ras-independent Raf activa-
tion which leads to stimulation of ERK activity [106,
125–128]. Treating cells with PKC inhibitors blocked mi-
togenic signaling by VEGF supporting a role for PKC in
this pathway [129]. Receptor association of PLCγ-1 via
Tyr801 has been reported using receptor mutants [86] and
mutation analysis of VEGFR-2 showed that Tyr801 and
1175 are putative docking sites for the p85 subunit of PI
3-kinase [130]. PI 3-kinase has also been implicated in
mitogenic signaling by VEGFR-2, based on treatment of
cells with specific inhibitors [131]. This lipid kinase reg-
ulates the S6 kinase/Akt pathway which has been shown
in many cell types to stimulate cell growth. Conflicting
results suggest, however, that PI 3-kinase is not required
for VEGFR-2-mediated mitogenesis [122, 126]. Taken
together, these data, mostly based on mutagenesis stud-
ies, should be interpreted with some care since changes in
receptor structure that alter association with signaling
molecules may affect receptor readout.
Finally, c-Src and nitric oxide (NO) [132] have been iden-
tified as intracellular mediators of VEGF signaling, and
heparan sulfate and components of the ECM act as extra-
cellular modulators in mitogenic signaling [133, 134],
while the classical mechanism of ‘contact inhibition of
growth’, described for epithelial cells or fibroblasts and
mediated by VE-cadherin in endothelial cells, is reponsi-
ble for regulation of cell proliferation in a density-depen-
dent manner [135].

VEGFR-2 regulates cytoskeleton organization 
and cell migration
The motogenic signals transduced by VEGFR-2 impinge
on focal adhesion kinase (FAK), which regulates focal
adhesion assembly and disassembly and actin organiza-
tion. VEGF regulates FAK phosphorylation and activity
and leads, together with paxillin and actin-anchoring pro-
teins such as talin or vinculin, to recruitment of this ki-
nase to focal adhesions [136, 137]. FAK activation has
been shown to require signaling by PKC [136]. In addi-
tion, Nck/PAK (p21-activated kinase) was shown to pro-
mote FAK phosphorylation and cell migration [138–
141]. Src-dependent FAK phosphorylation was reported

to regulate cell migration and survival [142] and, consis-
tent with these data, the Src kinase inhibitor M475271
blocked VEGF-induced endothelial cell migration [143].
Besides its role in cellular proliferation, Tyr1175 phos-
phorylation has been shown to regulate stress fiber for-
mation, focal adhesion assembly and cell migration upon
recruitment of the adaptor protein Shb and subsequent
activation of PI 3-kinase and FAK [144]. More recently,
Tyr951 located in the kinase insert domain and pre-
sumably phosphorylated by an associated kinase when
VEGFR-2 is activated, was shown to recruit the adaptor
molecule VRAP/TSAd (VEGF-receptor-associated pro-
tein/T-cell-specific adaptor molecule) in a subfraction of
endothelial cells [105]. This adapter molecule associates
with Src, PI 3-kinase and PLCγ-1 and regulates actin or-
ganization and cell migration, but it also plays a crucial
role in tumor angiogenesis [105, 145].
VEGF-induced endothelial cell migration is also medi-
ated by stress activated protein kinase 2, SAPK/p38 [139,
146]. SAPK/p38 activity is regulated by Src and related
focal adhesion protein kinase/proline-rich tyrosine kinase
2 (RAFTK/Pyk2) [147]. Ca2+ mobilization and activation
of Cdc42 have been shown to lead to SAPK/p38 phos-
phorylation [147, 148] and to induce phosphorylation
of MAPKAP kinases 2 and 3 and the small heat shock
protein HSP27 [146, 149]. This leads to the release of
phosphorylated HSP27 from capped actin filaments,
actin reorganization and the formation of stress fibers and
lamellipodia which promote cell migration [150]. Fur-
thermore, a role for the small GTPases Rho and Rac,
which modulate actin dynamics and cell contraction in
endothelial cell migration and which are regulated by G
proteins such as Gq/11 and Gbg and by PLC, is well doc-
umented [151].

Signaling by VEGFR-2 is essential for cell survival
VEGF also protects endothelial cells against apoptosis in
vitro and in vivo. In vivo, the role of VEGF in preventing
apoptosis is restricted to immature vessels that lack peri-
cytes, as indicated by experiments showing that VEGF is
essential for endothelial cell survival and blood vessel de-
velopment in early postnatal life, but not in adult mice
[152–154]. Activation of the PI 3-kinase/Akt pathway by
VEGF protects cultured cells against apoptosis induced by
serum starvation [155, 156]. Signal output from VEGFR-
2 maintains adequate levels of active PI 3-kinase and
thereby regulates the production of the second messenger
phosphoinositide(3,4,5)trisphosphate (PIP3) which is re-
quired for activation of the serine/threonine kinase Akt
[157]. VEGF was also shown to induce the expression of
anti-apoptotic molecules including the caspase inhibitors
Bcl-2 and A1 [158] and IAP (inhibitors of apoptosis) fam-
ily proteins [159]. Finally, survival signaling by VEGFR-
2, PI 3-kinase and Akt depends on the integrity of ad-
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herens junctions that contain a transient tetrameric com-
plex composed of VEGFR-2, PI 3-kinase, VE-cadherin
and β-catenin [160, 161]. Disruption of this multimeric
complex by loss or truncation of VE-cadherin induced en-
dothelial cell apoptosis and blocked the transmission of PI
3-kinase-dependent survival signals.

VEGFR-2 regulates vessel permeability
VEGF also regulates vascular permeability, and indeed
was initially described as a vascular permeability factor
[3]. Increased vascular permeability is observed shortly
after VEGF administration concomitant with the forma-
tion of so-called vesicular-vacuolar organelles, VVOs,
[162] and fenestrae [163–165]. These specialized regions
in the plasma membrane of endothelial cells are highly
permeable for macromolecules. How these membrane
structures are formed is still unclear, but based on data
from mutant mice lacking both c-Src and c-Yes, which
showed reduced vascular permeability after VEGF ad-
ministration, a role for Src family kinases has been sug-
gested [166]. Addition of VEGF to endothelial cells in-
duces expression of the plasmalemmal vesicule-asso-
ciated protein (PLVAP), a component of diaphragmed
endothelial fenestrations. PLVAP expression is regulated
by PI 3-kinase and SAPK/p38 [167]. In mature vessels,
VEGF also regulates vascular permeability by loosening
the junctions between endothelial cells, giving rise to the
formation of transcellular gaps. Phosphorylation of ma-
jor components of tight, adherens and gap junctions, such
as VE-cadherin [168–170], β-catenin [168, 171], occlu-
din and zonula occluden 1 [172, 173] and of connexin 43
[174] have been reported in response to VEGF. Vessel di-
lation and permeability are also regulated by NO which is
upregulated by Akt upon induction of endothelial NO
synthase (eNOS) expression [175, 176]. Blocking eNOS
and cyclooxygenase with specific inhibitors prevents the
release of NO and prostacyclin (PGI2) and blocks VEGF-
induced vessel hyperpermeability [177].

VEGFR-3 regulates lymphangiogenesis
VEGFR-3 is synthesized as a 195-kDa precursor protein
consisting of seven extracellular Ig-like domains, a TM
and an intracellular kinase domain. The protein is proteo-
lytically processed in the fifth Ig domain giving rise to a
125- and a 75-kDa chain held together by a disulfide
bond [178, 179]. Expression of this receptor starts at E8.5
of mouse development in all embryonic endothelial cells.
After E8.5, VEGFR-3 expression is only seen on devel-
oping veins and lymphatics but not on arteries [59, 180].
Later in development, the expression gradually becomes
restricted to lymphatic vessels. In VEGFR-3 null mice,
vascular remodeling and maturation are abnormal in
larger vessels with a defective lumens causing fluid accu-

mulation in the pericardial cavity and embryonic death at
E9.5 [181]. Recent reports also showed expression of the
receptor on blood vessels in the vicinity of tumors as well
as on several benign and malignant tumor cells [182,
183]. A role for VEGFR-3 in cell-to-cell signaling in
adult blood vessel angiogenesis, where the expression of
this receptor and its ligands seems to be induced by
VEGF-A, has also been suggested [184]. VEGFR-3 is
activated by VEGF-C and -D, and proteolytic processing
of these ligands gives rise to variants also interacting
with VEGFR-2, although with lower affinity than with
VEGFR-3. VEGFR-3 apparently also heterodimerizes
with VEGFR-2 in lymphatic endothelial cells, expanding
the repertoire of signaling pathways activated by this re-
ceptor [185]. Paracrine expression of VEGF-C at sites of
lymphatic sprouting further supports a role for VEGFR-3
in the development of lymphatic vessels [186]. VEGFR-
3 promotes cell migration and survival in lymphatic en-
dothelia by inducing PKC-dependent MAP kinase activa-
tion and via a wortmannin-sensitive pathway requiring PI
3-kinase and Akt [187, 188]. In addition, a splice variant
of this receptor has been shown to bind SHC [189]. That
signaling via VEGFR-3 is a prerequisite for lymphangio-
genesis is further supported by data showing that a solu-
ble, kinase-deficient receptor variant blocks lymphatic
vessel formation [190, 191].

VEGF receptors form multiprotein complexes with
various coreceptors

VEGF signaling is complicated by the fact that the lig-
ands and their receptors interact with additional cellular
proteins such as neuropilins, heparan sulfate, integrins
and cadherins. These interactions allow coordination of
signal strength, timing and specificity with extracellular
cues arising from soluble ligands, cell-cell and cell-sub-
stratum interactions.

Association with heparan sulfate and neuropilins
The short form of VEGF-A, VEGF-A121, encoded by ex-
ons 2–5 and 8, consists of a receptor-binding domain spe-
cific for VEGFR-1 and -2 and is a poor mitogen. The
longer VEGF-A165 isoform, that also contains sequences
encoded by exon 7, binds the receptors with similar affin-
ity as VEGF-A121 but displays increased signaling po-
tential [192–194]; the underlying mechanism remains un-
clear at present. All isoforms carrying exon 7, or 6 plus 7,
such as VEGF-A165, VEGF-A183, VEGF-A189 and
VEGF-A203, interact with proteins of the neuropilin
family and with heparan sulfate [193–202]. Neuropilin-1
and -2 interact with VEGFR-2 and -1, respectively,
stimulating signaling by these receptors. Interaction of
VEGF-A165 with neuropilin-1 is particularly important
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for endothelial tip cell guidance where regulation of cell
migration is the predominant signal output [203, 204].
VEGF-A165 has also been shown to interact with neu-
ropilin-1 and VEGFR-2 expressed separately on adjacent
cells. This may be particularly important during endothe-
lial cell guidance when vessels are formed along tracks
predetermined by neural cells [205–207].

Association with integrins
Integrins play an important role in cell signaling linking
intracellular signaling pathways activated by soluble fac-
tors to output elicited by cellular interactions with the
ECM and with neighboring cells. Specific integrins bind
to the extracellular domain of VEGFR-2 and augment re-
ceptor signaling [208]. Integrins of the β3 subfamily
specifically bind to the extracellular domain of VEGFR-
2 resulting in increased receptor activation upon VEGF
stimulation [209–211]. Direct interaction between β3 in-
tegrin and VEGFR-2 is restricted to αvβ3 and was shown
to be either ligand independent [210] or dependent [211].
VEGFR-2 signaling in the context of α1β1 and α2β1 inte-
grins has been shown to regulate lymphangiogenesis dur-
ing tissue repair, further demonstrating how output from
VEGF receptors is modulated by cellular interactions
with the ECM [212]. VEGFR-2-mediated angiogenesis is
also directly regulated by integrins as proposed by work
performed in knockout mice lacking β3 or β5 integrin
[213, 214]. Animals that did not express these integrins
showed increased VEGFR-2 activity and tumor vascular-
ization. Taken together these studies suggest that inte-
grins act as ‘gatekeepers’, preventing aberrant stimula-
tion of resting endothelial cells under non-pathological
conditions, or as ‘caretakers’, which facilitate angiogene-
sis during vessel repair in disease [215].
VEGF bound to the ECM promotes integrin-dependent
cell spreading, migration and survival that do not require
signaling by VEGF receptors [216]. Similarly, sVEGFR-
1 interacts with α5β1 integrin thus becoming part of the
ECM and promoting cell migration and spreading [217].
In addition, interaction of VEGF-A with fibronectin, an
ECM component interacting predominantly with α5β1

and, to a minor extent, with the vitronectin receptor αvβ3,
has been reported recently [218]. Finally, in cells grown
on fibronectin instead of vitronectin or collagen, in-
creased biological activity of VEGF and augmented en-
dothelial cell migration and MAP kinase activity were re-
ported [219–221].

Association with cadherins
Cadherins are involved in the formation of adherens junc-
tions in endothelial and epithelial cells and play an essen-
tial role in VEGF signaling [160, 222–225]. Interaction of
VEGFR-2 with VE-cadherin is regulated by β-catenin. At

high cell density, the phosphatase PTP1/Dep1/CD148 as-
sociates with VE-cadherin and attenuates tyrosine phos-
phorylation of VEGFR-2 thereby suppressing signaling
via PI 3-kinase, MAP kinases and PLCγ-1 [135]. At low
cell density, such as at the tip of developing blood vessels,
VEGFR-2 associates with integrin αvβ3 instead of cad-
herin and signal output is directed toward stimulation of
cell migration and mitogenesis [215]. Reduced turnover
of VEGFR-2 at high cell density has also been demon-
strated to depend on cadherin and to enhance VEGF-me-
diated activation of MAP kinases [226]. To a large extent,
vessel homeostasis is determined by cell-to-cell junctions
that play an essential role during formation of a mecha-
nosensory complex that regulates the response of endo-
thelial cells to fluid shear stress [227].

Structure of VEGF receptors and their ligands

The structures of VEGF-A [228, 229], PlGF [230] and
the snake venom components Vammin and VR-1 [31]
have been solved. These molecules form homodimers
and fold into a cysteine-knot structure also described for
other growth factors [231]. The structure of Ig domain 2,
which is part of the ligand-binding domain of VEGFR-1,
has also been determined [232] and there are structural
data available for complexes formed between VEGF-A
and PlGF with domain 2 of VEGFR-1 [233–235]. These
structural studies were complemented with biochemical
investigation of receptor-blocking peptides [236, 237].
Biochemical analysis also led to the identification of spe-
cific residues determining receptor selectivity [56, 229,
238, 239].
The extracellular Ig-like domain 2 is sufficient for high-
affinity binding of VEGF-A to VEGFR-1, while domains
2 and 3 are required for binding to VEGFR-2 [54]. VEGF
mutants with altered loops L1 and L3 were used to deter-
mine the molecular basis for receptor selectivity of VEGF
polypeptides [239, 240]. We created similar chimeric
molecules based on our recently solved structure of the
VEGFR-2-specific VEGF-E NZ2 variant. Loops L1 and
L3 are tightly associated at their base and apparently
function as a structural entity determining receptor selec-
tivity, while L2 is required for interaction with both re-
ceptors [unpublished data].
The structure of the heparan-sulfate- and neuropilin-1-
binding domain of VEGF-A, encoded by exons 7 and 8,
has been solved by nuclear magnetic resonance spectro-
scopy [241]. Analysis of the electrostatic surface poten-
tial shows an extended patch of positively charged res-
idues on one side of the molecule that is a candidate bind-
ing site for negatively charged heparan sulfate side
chains. All VEGFs carrying sequences encoded by exon
7 bind to heparan sulfate both in vitro and in vivo [242].
However, high-affinity interaction with heparan sulfate,
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and particularly with neuropilin-1, also requires the short
carboxy-terminal peptide encoded by exon 8 as shown by
our laboratory [unpublished data].
Clearly, additional in-depth structural information is re-
quired for a comprehensive understanding of VEGF in-
teraction with VEGFR-1 and -2, neuropilin-1 and he-
paran sulfate. Similarly challenging is the task to un-
ravel the structural changes in the intracellular kinase
domain following ligand binding to the extracellular do-
main. A first step in this direction is the resolution of a
partial structure of the kinase domain of VEGFR-2
[243]. Such information will be useful to dissect the ac-
tivation mechanism of VEGF receptor kinases and to
engineer more specific reagents interfering with recep-
tor activation, with the goal to block or stimulate VEGF
signaling in disease.

Conclusions

Endothelial cells integrate signals elicited by cell-cell
contacts, cell-extracellular matrix interactions and angio-
genic growth factors. The final signal output results from
the formation of context-specific signaling modules in
distinct membrane compartments where receptor activity
is tuned to the specific needs of a particular cell and aber-
rant signaling is suppressed [244]. Signal specificity of
VEGF receptors arises from combinatorial activation of
multiple cellular pathways. Each receptor subtype assem-
bles a distinct set of signaling molecules in a spatially and
temporally controlled manner giving rise to the formation
of specific signal transduction modules or ‘signalo-
somes’ at the plasma membrane. In vivo, cells release
VEGFs into their neighborhood in a temporally and spa-
tially well-defined manner that allows gradual formation
of receptor-ligand complexes. This significantly differs
from tissue culture models where growth factors are usu-
ally administered as a single bolus, and great caution is
required when extrapolating such in vitro data to the in
vivo situation. Signal output is also determined by com-
petition among the various VEGF receptors for VEGFs
that interact with more than one receptor isoform and is
influenced by the kinetics with which receptors are acti-
vated by different ligands. Finally, the exact three-dimen-
sional structure of each ligand-receptor-coreceptor com-
plex determines the efficacy with which intracellular ty-
rosine residues are phosphorylated and subsequently
exposed to downstream signaling molecules. This has an
impact on the strength and the kinetics with which indi-
vidual signaling pathways are activated and execute their
tasks.
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