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Abstract With the evolution of today’s semiconductor technology, chip temperature
increases rapidly mainly due to the growth in power density. Therefore, for modern
embedded real-time systems it is crucial to estimate maximal temperatures early in
the design in order to avoid burnout and to guarantee that the system can meet its
real-time constraints. This paper provides answers to a fundamental question: What
is the worst-case peak temperature of a real-time embedded system under all feasi-
ble scenarios of task arrivals? A novel thermal-aware analytic framework is proposed
that combines a general event/resource model based on network and real-time cal-
culus with system thermal equations. This analysis framework has the capability to
handle a broad range of uncertainties in terms of task execution times, task invoca-
tion periods, jitter in task arrivals, and resource availability. The considered model
takes both dynamic and leakage power as well as thermal dependent conductivity
into consideration. Thorough simulation experiments validate the theoretical results.

Keywords Real-time systems - Real-time analysis - Formal worst-cast temperature
analysis - Temperature-dependent leakage power - Resource availability
1 Introduction

Power density has been continuously increasing in modern embedded processors,
leading to high on-chip temperatures. A system could simply fail if the operating
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temperature exceeds a certain threshold, leading to an overall low reliability and even
chip burnout. Therefore, at design time, temperature reduction has been achieved
through appropriate packaging and active heat dissipation mechanisms. On the other
hand, at run time, dynamic thermal management can be adopted to enhance the sys-
tem reliability and reduce the packaging cost.

For modern CMOS processors, switching activity (contributing to dynamic power
mostly) and the leakage current (contributing to static power mostly) are the two ma-
jor sources of power consumption. There are many research results available that re-
late to mechanisms for Dynamic Thermal Management (DTM) (Skadron et al. 2004;
Brooks and Martonosi 2001; Huang et al. 2000) based on dynamic voltage/frequency
scaling (DVES), to reduce the power consumption in the system. In particular, dy-
namic voltage scaling (DVS) (Bansal et al. 2004) varies supply voltages leading to
different execution speeds and thus different power consumption. On the other hand,
chip temperatures are not only related to energy, but also to the time pattern of the
power consumption, i.e. when the system consumes power. As a result, there is a large
body of work available in the area of temperature-aware scheduling mechanisms, e.g.,
Kumar et al. (2006), Gomaa et al. (2004).

However, most of the above approaches implicitly assume that thermal manage-
ment is essential, without checking whether it is indeed necessary. The drawback
of such mechanisms is that either they are too expensive (i.e., packaging), they
may cause a degradation of performance (i.e., DVES) or substantial run-time over-
head, which is unacceptable in today’s embedded real-time applications. In situa-
tions where the operating system needs to be light-weight, implementing thermal-
aware routines in scheduling comes with additional high cost. Therefore, system-level
mechanisms at design-time become more and more interesting for future embedded
systems. These methods can be simple such as appropriate mapping of tasks or using
particular resource sharing mechanisms, e.g. servers or shapers (Kumar and Thiele
2011).

In all of these cases, the fundamental question is:

“What is the worst-case peak temperature of a real-time embedded system,
under all feasible scenarios of task arrivals?”

Unfortunately, for non-trivial systems, we could not find any research results that
can answer this question. For example, traditional real-time schedulability analysis
is based on the critical instant of task releases to offer timing guarantees. However,
for thermal investigations, even for simple arrival patterns such as periodic with jitter
there is a lack of results about the critical instant which leads to the maximum peak
temperature.

We illustrate the complexity of the above fundamental question by means of a
simple example. Let us assume that we have a work-conserving component which
processes just a single event stream which is periodic with jitter: period 120 ms, jitter
240 ms, computing time 30 ms, minimal inter-arrival time 30 ms. The thermal model
of the processing component is equivalent to that used in Sect. 5. In order to explain
the problem we are going to solve, let us compare five simple methods for computing
the temperature:

@ Springer



732 Real-Time Syst (2013) 49:730-762
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1. We use the average workload of the tasks, i.e. utilization U = 0.25, and compute
the corresponding average power of utilization 0.25 according to (6). The resulting
steady state temperature 7 is 335.08 K.

2. We use a set of traces with random jitter that comply to the specification. For 100
independent runs with 1.2 s trace length we find an average, standard deviation
and maximum temperature of 350.98 K, 1.75 K and 354.46 K, respectively.

3. We use the well known critical instant, i.e. starting from an arbitrary but fixed time
all task instances are released as early as possible. The peak temperature observed
in this method is 351.63 K with a trace length of 1.2 s.

4. We try to construct a reasonable critical instance as follows: We suppose that for
an unlimited time, the task is periodic. At some time, the task shows its maximal
jitter, i.e. a maximally dense workload pattern. In this case, the simulation shows
a maximal temperature of 355.62 K.

5. We use the method developed in this paper and get a tight bound on the maximal
temperature of 359.22 K with a trace length of 1.2 s.

It appears that none of the obvious methods is able to determine the maximal tem-
perature even for such a very simple workload. The following Fig. 1 illustrates the
workload traces corresponding to options (4) and (5) as well as the corresponding
temperature traces with an initial temperature of 319.31 K.

In this paper, we propose an accurate system-level analytic technique which offers
temperature-guarantees for real-time systems. When no information of the workload
is given, the worst-case temperature can only be predicted assuming a fully stressed
case, which results in the worst-case estimate of 402.33 K. This is clearly too pes-
simistic and far from tight estimation. Information on the workload enables a tight
peak temperature estimation as will be shown in what follows. We consider general
event arrivals modeled by arrival curves in Real-Time Calculus (Thiele et al. 2000)
and Network Calculus (Le Boudec and Thiran 2001). An arrival curve provides an
upper bound (and a lower bound) on the workload that might arrive to the system
in any interval lengths. Usually, these curves can be derived by profiling sufficiently
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representative traces or by analyzing the specification of an application. Even though
arrival curves constrain the possible workload injected to the system, there are in-
finitely many traces that comply to the provided bound on the workload, in terms of
initial phase, jitter, or burstiness.

Another uncertainty we have in the system is the availability of the computing
resource. A processor is not always completely available for computation in modern
embedded systems due to dynamic resource management like dynamic frequency
modulation. The same is true if active-idle schemes are used in order to reduce its
peak temperature, i.e. switching the processor on and off using a predefined pattern.
Thus, the computing resource provided by a processor within a given time interval
can also be constrained by an upper and lower bound, denoted as service curve. An
exhaustive search to check all possible combinations of workload traces and compu-
tation availabilities to determine the peak temperature of the system is infeasible.

As in most studies related to temperature analysis and simulation, cooling and
heating of the system is modeled by means of Fourier’s law, i.e. the law of heat
conduction modeled by a linear differential equation.

The thermal behavior of processing architectures is usually modeled by consider-
ing heat conductances and capacitances of micro-architectural elements. But it has
been shown recently that leakage power and thermal conductances are temperature
dependent. In contrast to Fourier’s law on cooling and heating, the resulting differ-
ential equation is no longer linear. Based on this generalized and more accurate ther-
mal model, we use the technique proposed in this paper to analyze the maximum
peak temperature for given characterizations of the workload and the available com-
puting resource under workload-conserving real-time scheduling algorithms, such as
earliest-deadline-first (EDF), rate-monotonic (RM), deadline-monotonic (DM). The
schedulability of a system can also be analyzed in the proposed technique in com-
bination with existing Real-Time Calculus based schedulability analysis techniques
(Thiele et al. 2000).

The contributions of this paper can be summarized as follows:

— Based on a characterization of the task arrival variability as well as the availabil-
ity of the computation resource, an upper bound on the peak temperature for any
workload-conserving scheduling discipline is determined.

— The peak temperature analysis is applied to three commonly used power and tem-
perature models that consider temperature dependent leakage and conductances
into account.

— Extensive experimental studies validate the proposed analysis framework and show
its applicability.

This paper is structured as follows. Section 2 summarizes the related work in ther-
mal management and system-level thermal analysis. While Sect. 3 presents our basic
thermal and computational system model, Sect. 4 introduces the thermal analysis
method and mathematically proves its validity for any work conservative system.
Finally, Sect. 5 illustrates our model with some basic experiments and shows the
validity of our method.
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2 Related work

There have been many results in recent years about thermal management, includ-
ing directions for (1) thermal-constrained scheduling to maximize the performance
(Hung et al. 2005; Murali et al. 2007; Bansal et al. 2004; Zhang and Chatha 2007;
Wang and Bettati 2006a, 2006b, 2008; Chantem et al. 2008, 2009; Quan et al. 2008;
Chen et al. 2009) or determine the schedulability of real-time systems under given
temperature constraints, (2) peak temperature reduction to meet performance con-
straints (Bansal and Pruhs 2005; Chen et al. 2007; Fisher et al. 2009), and (3) thermal
control by applying control theory for system adaption (Fu et al. 2009, 2010; Wang
et al. 2009).

Specifically, for thermal-constrained scheduling, in Bansal et al. (2004), an algo-
rithm was developed to maximize the workload that can complete in a specified time
window without violating imposed thermal constraints, in which the analysis is later
adopted in Chen et al. (2009) to analyze the schedulability of frame-based real-time
tasks, in which tasks have the same period. In Wang and Bettati (2006b, 2008), a
reactive speed control scheme was proposed and schedulability tests were presented
for frame-based real-time tasks. In Wang and Bettati (2006a), delay analysis is per-
formed under reactive speed control for general task arrivals. In Zhang and Chatha
(2007), approximation algorithms were developed to minimize the completion time,
while each task is restricted to execute at one speed. Chantem et al. (2009) explore
the maximization of workload for systems with discrete DVS speeds, under thermal
constraints.

Moreover, for reducing the peak temperature, Bansal and Pruhs (2005) explore the
peak temperature reduction by adopting the on-line algorithm for energy efficiency
proposed by Yao et al. (1995). Fisher et al. (2009) design an algorithm for decid-
ing the execution speeds on multicore systems to reduce the peak temperature while
still guaranteeing the real-time property for global multiprocessor scheduling. Chen
et al. (2007) analyze the peak temperature reduction by applying the optimal en-
ergy scheduling for periodic tasks. To model uncertainties of task execution, ambient
temperature changes, or power variations, control theoretical approaches have been
adopted in Fu et al. (2009, 2010), Wang et al. (2009). However, most of the above
approaches implicitly assume that thermal management is essential without checking
whether it is indeed necessary.

On the other hand, estimating system temperature is typically based on two
main classes of tools. The first class is the thermal simulation of the system.
HotSpot (Skadron 2004; Huang et al. 2009) is a popular thermal simulator that con-
siders single core systems at micro-architecture level. The instantaneous power/per-
formance profile is extracted via a power/performance simulator coupled with the
thermal simulator, like for instance the system coupling Wattch (Brooks et al. 2000)
with HotSpot (Huang et al. 2009). The computational efficiency of the thermal simu-
lation is improved by allowing dynamic adaption of temporal and spatial granularity
in ISAC (Yang et al. 2007). However, still these simulation methods have the cover-
age limitation, i.e., it is infeasible to simulate all possible cases to find out the worst-
case peak temperature. The second class of tools is based on steady-state analysis,
see e.g. Yang et al. (2010), where the system thermal equation is approximated by its
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steady state behavior. While these methods work well for estimates of average power
consumption, they fail to capture dynamic variations in power and temperature. In
summary, these methods can either offer only information about average tempera-
ture in the system, or due to the incomplete coverage problem and nondeterministic
workload behavior, they are not able to capture the worst case temperature.

As a thermal model of integrated circuits, first-order linear differential equation
of RC electronic circuit have been used traditionally (Murali et al. 2007; Wang and
Bettati 2006a, 2006b, 2008; Zhang and Chatha 2007), as shown in Sect. 3.3. This tra-
ditional model, however, turned out to be inaccurate (Liu et al. 2007) as some param-
eters are not constant to temperature changes and these affect the accuracy more sig-
nificantly in deep sub-micron technology. Two parameters are temperature-varying
in the model: leakage power and thermal conductance. It has been demonstrated a
quadratic dependency (Liao et al. 2005; Liu et al. 2007). However, according to Liu
et al. (2007), within the operating temperature ranges of current circuits, the leak-
age power can be accurately estimated by a linear model, approximation also used
in this paper. On the other hand, the variable thermal conductance makes thermal
differential equation more complicated. To best our knowledge, none of previous re-
searches have considered temperature dependent leakage as well as conductances in
system-level temperature analysis.

In contrast to the results described in Rai et al. (2011), this paper takes both tem-
perature dependent parameters (leakage and conductance) into account in the thermal
model. This results in a modified non-linear differential equation which substantially
changes the analysis. Furthermore, we extend the resource availability to general
service curve. Moreover, general properties are derived under which the main re-
sults hold. As a result of this generalization, results are shown for the most widely
used power and temperature models. From an architectural point of view, the analy-
sis technique is now applicable to resource varying architectures such as frequency
modulated processors or on-off schemes. Finally, extensive experimental results are
available that validate the proposed approach.

3 System model

This section introduces the models and methods that allow for the worst-case tem-
perature analysis of a single computing component. The models take into account
variability in the task arrivals, workloads, and computing resources, as well as tem-
perature dependent leakage power and thermal conductance.

3.1 Computational model

The computational model of a processing component follows the ideas of network
and real-time calculus. We suppose that the component receives in time interval [s, t)
a cumulative workload of W (s, t) time units, e.g. in [s, ¢) tasks with a total workload
of W(s,t) arrive. W(s, t) is a stair case function for any fixed s, i.e. it has slope 0
almost everywhere and when a task arrives it jumps by its computation time. Sim-
ilarly, the component is characterized by the availability of its computing resource,
i.e. R(s,t) time units are available for task processing in time interval [s, 7).
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Incoming task workloads are stored in a queue until they are processed by the
computing resource. If there are no waiting or arriving tasks in [s, 7), then the avail-
able resource R(s, t) is wasted. Otherwise, it is used to process incoming and waiting
tasks. For example, a component can process for R(s, t) time units in time interval
[s,1).

According to the above explanation, the processing semantics is work conserving,
i.e. the processing component has to process on available tasks if it has resources
available. There are no further assumptions on the scheduling (queuing) discipline,
i.e. it may be preemptive, non-preemptive, EDF, fixed priority, or any combination
thereof. It can easily be verified, that the above requirement of work conservation
leads to the following accumulated processing time Q(s, ¢) in interval [s, 7), i.e. the
accumulated time a component is spending to operate on incoming (and queued)
workload

Q(s,t)=Y<irulf<t{R(s,t)—R(s,u)+W(s,u)} (1)

where we suppose that at time s there are no buffered tasks, see also Le Boudec and
Thiran (2001), Thiele et al. (2000).

We are interested in determining the upper bound on the temperature under any
possible workload that is bounded by some event stream characteristics, e.g. periodic
with arbitrary initial phase, periodic with jitter, sporadic, or bursty. To this end, we
suppose that the cumulative workload W is upper bounded using the concept of an
arrival curve

Wis,t) <a(t—s) Vs<t 2)

where «(0) = 0, see for example Le Boudec and Thiran (2001). A tight upper arrival
curve is a monotonically increasing staircase function, i.e. it has slope 0 almost ev-
erywhere. Furthermore, it is sub-additive, i.e. it satisfies a(a) + «(b) > «(a + b) for
all a, b > 0. Note that in case of several independent workload functions W; that are
bounded individually by arrival curves ¢; and that need to be concurrently processed
in a single component, the accumulated workload can be bounded by

W(s. ) <> ai(t—s)
)

As a consequence, the results in this paper will hold for components with several
event inputs as well.

In a similar way, the resource availability R can be upper and lower bounded using
a pair of upper and lower service curves

Bl(t—s)<R(s,) < B"(t—s) Vs <t 3)
where 8!(0) = *(0) =0.
We can now determine an upper bound on the accumulated computing time ac-

cording to Le Boudec and Thiran (2001), Wandeler et al. (2006) by using (2) and (3)

Ot — A, 1) < y(A) =min{(« ® p*) 0 B', B} 4)
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where (f ® g)(A) =info<u<a{f(A—21)+g()} and (f @ g)(A) =sup;-o{f(A+
1) — g}

Narratively speaking, the maximum amount of the workload processed during the
time interval A is bounded by y(A). When there is more workload available than
the provided resource during the interval, it is bounded by the maximum available
resource (min{..., 8}). If not, ¥ (A) is determined by considering the combination
of workload and resource ((a ® %) @ ﬂl). The accumulated workload (that is not
processed previously) does affect ¢ and this is bounded by the minimum resource
availability (@8%).! In case of full resource availability, this y is known to be o ® g*
according to the Real-Time and Network Calculus (Le Boudec and Thiran 2001;
Wandeler et al. 2006).

Because of (1) and (4), the accumulated computing time Q(s, ¢) for any fixed s
as well as its upper bound y (f — s) are monotonically increasing. We now can define
the rate function S(#) which represents the rate (in workload per time unit) by which
the computing resource is processing:

S@t) = &)

dQ(s,t)

dt

If the computing resource is always fully available, then we find R(s, ) = B“(r —
s) = pl(t —s) =t — s as in any time interval of length r — s the computing resource
can fully operate on available tasks. In this case, Q(s, ) always has either slope 1
or 0. In other words, the rate function satisfies S(¢) € {0, 1},1.e. S(r) =1 and S(t) =0
denote that the processing component is in ‘active’ and ‘idle’ mode at time 7, respec-
tively.” However, such a simplified ‘active/idle’ mode classification is no longer valid
if we allow for general resource availabilities. In this case, the rate function can take
any value 0 < S(r) < 1.

Now, we need to characterize the mapping of the operation modes to the corre-
sponding power consumption.

3.2 Power models

A well accepted model for the frequency and voltage dependency of the dynamic
power consumption P is P o v>f where v and f denote the supply voltage and
operating frequency in CMOS circuits, respectively. That is, the dynamic power con-
sumption of a single operation mode is determined by the combination of v and f
which may be chosen reactively at run-time in modern processor architectures. The
processor frequency f is proportional to the execution rate S(t).

For the sake of simplicity, the supply voltage v is assumed to be constant in the
following discussions and therefore, the dynamic power P depends linearly on f
which is proportional to the rate function S(¢).

IThis is exactly where the work-conserving assumption is effective. That is, without this work-conserving
assumption, arbitrarily many workload can be delayed and accumulated regardless of resource availability
making y unbounded.

ZAs S() implies an operating mode at moment ¢, it is not a continuous function.
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In addition, we may model the temperature dependence of leakage power by
means of a linear approximation (Yang et al. 2010; Liu et al. 2007), which finally
yields

P(t)=¢T +pSt) + 4, (6)

where ¢T + i and p are the leakage and dynamic power, respectively. That is, ¢ is
a temperature-dependent coefficient for the leakage, while the dynamic power in the
active status is p.

We also will consider a different, well accepted model which applies to the case
where S(¢) € {0, 1}. If S(z) = 0, then the processor is in ‘idle’ mode with power Pi,
if S(¢) = 1, then the processor is in the ‘active’ mode with power P¢:

[P ifS(t)=0 i i pa_ ga a
P(t)_{Pa i S =1 with P' =¢'T + ', P =¢“T + @)
3.3 Thermal models

In order to show the versatility of our approach, we will consider three well accepted
power-temperature models based on various forms of linear and quadratic differential
equations, see also Murali et al. (2007), Wang and Bettati (2006a, 2006b, 2008),
Zhang and Chatha (2007).

The first two models we consider are based on the following differential equation

dT
C_:P_G'(T_Tamb) (8)
dt
where C, P, G and T, denote the thermal capacity, the generated power, the ther-
mal conductance, and the ambient temperature, respectively.

Active/idle model In this case, the system is either in active or idle mode based on
the rate S(¢), i.e. P(¢) € {P", P%}, see (7).

The steady-state temperatures with rates S(¢) = 0 and S(¢) = 1 can be determined
as

T — GTamb + W 0o _ GTamb + wa
0 G—¢ ’ 1 G — ¢
A closed-form solution of (8) yields
T(t) =T + (T(tg) — T®) - e~ (=0 )

as long as the system is in a constant mode (active or idle) for ¢ > g and T°° is the
corresponding steady-state temperature.

Continuous mode model Considering the continuous power model (6), we derive
from (8) the differential equation

dT
c— = (¢T + pS(t) + ¥) — G(T — Tamp) (10)
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In addition, we consider an additional temperature-dependent parameter, namely the
thermal conductance of silicon. It is reported that the thermal resistance (recipro-
cal of conductance) can be linearly approximated (Walkey et al. 2001), thus the
temperature-dependent conductance can be modeled as follows:

1
C= T RT (1

Combining (10) and (11), we derive the following differential equation

AT Tuwp—T

= - L MT+N 12
di Lo+Lr T (12)

where Lo=CRy, L1 =CR;,M=¢/C,and N = (pS(t)+ ¢)/C.

Linear model Often, the physical computing device contains several interacting
thermal layers such as silicon and copper. In this case, linear models based on ma-
trix linear differential equations are well established, see e.g. Skadron et al. (2004),
Skadron (2004), Huang et al. (2009). Based on the physical structure of the device,
one can derive the corresponding impulse response function /() which leads to the
closed-form solution

t

T(t)=T0°°~|—/ Su) - h(t —u)du (13)
0

where 77 denotes the steady-state temperature at constant rate S = 0. Note again,
that S(#) could be replaced in some monotonic power function P (S(z)).

3.4 Soundness of models

An active/idle model is called proper if it satisfies the following two properties:

— In order to guarantee a stable thermal model, we require that G > ¢ and G > ¢“.
— We also require that the steady-state temperature in the active mode is larger than
GTamb"F_‘/fi < GTamp+y*

G—¢' G—¢* -

We call a continuous mode model proper, if the temperature converges to a cer-
tain value for constant execution rate S(¢). We can determine potential steady-state
temperatures under constant rate S(¢) by setting ’fj—f =01in (12) as

that in the idle mode, i.e.

1
2L M

(1—LoM — LN + V(LoM + LN — )2 —4L M (LoN + Tamb))

As a consequence, the following condition needs to hold for a proper continuous
mode model:

(LoM + LN — 1) = 4L M(LoN + Tomp) (14)
More precise insight on the proper continuous mode model is given in Fig. 2.

From the two real potential steady-state temperatures only the lower one is stable.
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Fig. 2 Illustration of % in (12) ar A
for a constant operation mode dt

P(T,,)

—
]\_/ T

:
I

amb

Therefore, we can conclude that the steady-state temperature for a constant rate S(z)
is

T = : l—LM—LN—\/LM LiN —1)2—4L{M(LoN +T,
_2L1M( 0 1 (LoM + Ly ) I M(LoN + Tump)).
(15)

Finally, we call a linear model proper, if the corresponding impulse response func-
tion h(t) is strictly monotonically decreasing, i.e. i(s) > h(t) for all s > ¢.

3.5 Problem definition

Now, we can formulate the worst-case peak temperature analysis problem:

Given is a work-conserving component characterized by a proper thermal
model. The objective is to determine the peak temperature T* for any cumula-
tive workload W that complies to a given sub-additive arrival curve a and any
resource availability R bounded by the service curves p* and B'.

The most naive solution to this problem is to state that 7* is upper-bounded by
T7° in a fully-utilized mode with S(¢) = 1, which simply ignores the arrival/service
curve by assuming the component is always fully utilized and there is always the
full computing resource available. However, this is far beyond acceptable when the
utilization is low. Therefore, we would like to determine a tight upper bound on 7%,
and if possible, even determine a workload trace W and a resource availability R that
leads to the peak temperature 7.

4 Thermal analysis

In order to determine such an upper bound on the peak temperature 7*, we will at first
show how to construct a worst case computing time sequence. This result will then
be used to determine the desired upper bound. Finally, we will discuss the tightness
of this bound and computational aspects.

4.1 Worst-case computing time

As a main prerequisite for constructing the peak temperature, we need two properties
of the underlying power and thermal models, namely monotonicity and shift. These
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two properties will be shown based on the generic form of the thermal differential
equation
dT

o =H(S.T) (16)

where the dependence of H (S, T) on the execution rate S reflects the time-varying
power consumption. In other words, H already incorporates the power generation
sequence.

We will now show that the generic thermal models as defined above satisfy the
thermal monotonicity property.

Lemma 1 (Monotonicity) Suppose we consider two solutions of (16) with differ-
ent initial temperatures Ty at time s. Then the solution T (t) with the higher initial
temperature will at no time t > s be smaller than the solution with lower initial tem-
perature.

Proof Let us suppose that the above theorem is false. Then the temperature trace
with the higher initial temperature at s has the lower temperature at some time .
As a consequence, the two temperature traces cross in between, i.e. there exists a
time s <ty <t where the temperatures of the two sequences are equal. As the two
sequences have equal derivative H (S, T') for equal temperatures, their temperature at
t will be equal, which contradicts the assumption. g

In terms of the various thermal models that have been described in the previous
section, one can interpret the above lemma as follows: If the power traces are the
same, then a higher initial temperature does not lead to a smaller final temperature.

As the next prerequisite in constructing an upper bound on the temperature, we
will show in Lemma 2 under what conditions a time shift of the rate function S leads
to temperature increase.

Lemma 2 (Shifting) Given is a differential equation of the form (16). We consider
two different execution rate traces in the time interval [0, 28), namely

) S1if0<t<s
S(’)—{Sz ifs <t <28

< |S1—0 if0<t<$
S(’)_{Sz+a ifs <t <28
for some rate shift ¢ > 0. Then the corresponding temperature traces T (t) and T (t)
satisfy
T(28) > T(25)
for T(0) =T (0) =Ty and 8§ — 0 if either

H(S1 —o0,To) + H(S2 + 0, To) > H(S1, To) + H(S2, To) a7)
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or

H(S1 —o,Tp) + H(S2 + 0, Ty) = H(S1, To) + H(S2, Tp)

IH (S T 0H(S,, T
AN H(S1—0,T)- %(To) > H (81, Top) - %(To) (18)

Proof Neglecting higher order terms in §, we can write
T(28)=To+ S[H(Sl, To) + H(S2, To+ 8 H(S1, To))]
T(28) =To+8[H(S) —0,To) + H(S2 4+ 0, To + §H(S1 — 0, T))]

The condition T (28) > T(28) is satisfied if

H(S1 —o0,To) + H(S2+0,To+ 8H (S| — 0, Tp))
> H(S1, To) + H(S2, To + 8H (S, To))

This condition directly leads to (17,18) if we use the following relations

IH(Sy, T)
H(S2, To+8H (51, To)) = H(S2, To) + H(S1, To) —=—(To)
H(S,+0,To+6H(S1 —0,Ty) = H(S2 + 0, To) + 6H (S| — o, Tp)
dH(S»+0,T)
ot o 1)
oT

which hold for § — 0. 4

(To)

Based on this lemma, we will show later that the temperature at some measuring
time gets larger if we ‘shift’ some ‘execution rate’ o towards it. The lemma itself
uses two execution rate traces S(¢) and S(¢). These two cases correspond to the above
mentioned ‘shift’ towards larger time instances. If (17) and (18) are satisfied, then we
have a higher temperature at some measuring time after we shift the execution rate o
closer to it. We now show that the shift lemma holds for the simple active/idle mode.

Lemma 3 Suppose that we consider the active/idle model according to (7), (8) with
HO,T)=P' =G (T = Tump), H(Q1,T)=P*—G (T — Tamp)

Then with S1 =1, S» =0 and o = 1, the condition (18) in lemma 2 is satisfied if the
model is proper.

Proof Condition (18) is equivalent to

HO, Ty) +H,Ty) = H(, Tp) + H(O, Ty)
HO. T, oH(1,T) T HAT 0H(,T) T
A (O, O)T( 0) > H(, O)T( 0)

which is equivalent to
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(' To+ ¥ — G - (To — Tump)) (G — ¢*)
<(¢°To+ ¥ — G - (To — Tump)) (G — ¢)

W + GTamp < Wa + GTump
G— ¢ G—¢°

if the model is proper. The last relation is true as the active/idle model is proper. [J

From the above lemma, we can conclude that the shift lemma holds for the ac-
tive/idle model if it is proper. In other words, exchanging active and idle modes such
that the active mode gets closer to the measurement time increases the temperature.

Now, we will show a similar condition for the more complex continuous mode
model.

Lemma 4 Suppose that we consider the continuous model according to (12) with

HS Ty =2 =T 4 Ns)
’ Lo+ LT

Then the condition (18) in Lemma 2 is satisfied if

c0>0 A Ty<T™®

Proof Due to the linearity of N(S), we have H(S; — o, Ty) + H(S2 + 0, Tp) =
H(S1, To) + H(S2, Tp). Then we find that (18) is equivalent to

T, -T —Lo— LT,
<7“’"” +MT+N(S1—0)>-—0 Land
Lo+ LT (Lo+L1T)
T. —-T —Lo— LT,
> < amb +MT +N(Sl)> . 0 1 an21b
Lo+ LT (Lo+ L1T)

If To < T)nin = M /2L then this condition is equivalent to

Tomp — T Tomp —T
———— +MT + N(S1 — ——— +MT +N(S
L0+L1T+ + N (S 0)<L0+L1T+ + N(S1)

< N(S1—o0)<N(@S1) © o3>0 O

In summary, the above lemma states that one gets a higher temperature if we shift
the rate o towards the measuring time in case of the continuous model.

Finally, we show that the shift-property as defined in Lemma 2 also holds for the
linear model.

Lemma 5 (Shift) Given is a linear temperature model of the form (13). We consider
two different execution rate traces in the time interval [0, 25), namely

S(t) = S1 ifs<t<s+$
TS ifs+é<t<s+268
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Si—o ifs<t<s+$

S(t):{Sz—i—a ifs+8<t<s+26

Jfor some rate shift o > 0. It the model is proper, then the corresponding temperature
traces T (t) and T (t) satisfy

T(s+28)>T(s+28)

for T(s) = T(s) and § — 0.

Proof From (13) we can derive by simple algebraic transformations

B s+8 s+28
T(s+25)—T(s+28):a</ h(t—u)du—/ h(t—u)du>

s+36

Therefore, T (s + 28) > T'(s + 28) is equivalent to

8 b
/ h((t —5) — u)du > f h((t —5)—06— u)du
0 0
which is satisfied if 4(¢) > k(¢ — §) for all §, i.e. if the model is proper. O

The next lemma shows for all considered power and temperature models, that we
obtain a higher temperature at some time 7 if in any interval ending at t the compo-
nent has larger accumulated computing time. This lemma provides the foundation for
the main theorem of this section.

Lemma 6 (Worst-case computing time) Given is a proper thermal model, i.e. a
model that satisfies the shift condition as defined in Lemmata 2 and 5, as well as some
time instance t. In addition, we consider two accumulated computing time functions
Q and Q which satisfy

0T —A,1)=20(t—A,7)
forall 0 < A < t. Then, if T (0) = T (0) we have T (t) > T (1), i.e. the temperature

at time t is not higher if we use the accumulated computing time function Q instead

of 0.

Proof First note that because of (5), the condition of the lemma translates equiva-
lently to the following condition on the corresponding rate functions S and S:

/r E(r)drz/r S(@t)dt
T—A T—A

The following algorithm performs a stepwise transformation of S(z) into S(t) us-
ing the elementary rate shift operations in Lemmata 2 and 5. As a result, we can
show that in each step the temperature will increase. In order to simplify the proof
technicalities, we suppose discrete time, i.e. S(z) and S(f) may change values only at
multiples of 8. In other words, S(7) and S(¢) are constant for t € [k8, (k + 1)8) for all
k > 0. Let us define T = kpaxd. We now execute the following algorithm:
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1. Determine the smallest 1 < k| < kmax such that S(z — k18) < S(t — k18). If there
is no such kq, then S(r) = S(¢) for all 0 < ¢ < t and therefore, T () = T'(r) and
the algorithm stops.

2. Determine the smallest kp with k1 < k2 < kmax such that S(r — k28) # 0. In case
such a ky does not exist, then 7 (r) > T'(t) holds and the algorithm stops. Other-
wise, execute the following steps:

(a) Set o =min{S(t — k28), S(t — k18) — S(t — k18)}.

(b) For all i starting from k> down to k; + 1 change S(#) as follows: S(¢) :=
S@)—oforte[t—id,t—({—1)8) and S#):=S¢) +o fort e[t — (i —
)8, T — (@G —2)d).

3. If S(t — k18) < S(z — k18) is still true, continue with step 2. Otherwise, go to
step 1.

Note that o is always positive in step 2(a) as required in Lemmata 3, 4 and 5. Now, we
can simply prove using Lemma 2 that after each execution of step 2, 7'(7) decreases
until it reaches T (7). Therefore, the initial 7 (t) was not larger than 7' (7). O

Based on the above Lemma 6 we will show the first main result of this section.
The following Theorem 1 provides a constructive method to determine the worst-case
accumulated computing time Q* for a work-conserving component.

Theorem 1 (Worst-case temperature) Given is a work-conserving processing compo-
nent with the computational model (1), one of the power models defined in Sect. 3.2,
and a thermal model as described in Sect. 3.3. The thermal model is supposed to be
proper according to Sect. 3.4. Then the following holds:

— Suppose that the accumulated computing time function Q*(0, A) =y (1) — y(t —
A) for all 0 < A < 1 leads to temperature T*(t) at time T, where y is defined
in (4). Then T*(t) is an upper bound on the highest temperature T (t) for all
feasible workload traces that are bounded by the arrival curve o and service curve
B according to (2) and (3) respectively.

— If in addition T (0) < T5° holds, where T° is a steady-state temperature for
the constant rate function S(t) = 0, then for any feasible workload trace we find
T*(t) >T(t) forall0<t<T.

Proof At first, we show that Q*(0, A) = y (1) — y(t — A) satisfies (4). We have
0*t—-A,0=0%0,0—-0*0, 1 - =y(@)—yE—-D—y@O+yE—1+4)=
y(t —t+ A) — y(t —t). Therefore, we have to show that y (t —t + A) —y(t —1) <
y(A) for all 0 <t < t which is satisfied if y(a + b) <y (a) + y(b) forall a, b > 0.

It is well known from network and real-time calculus that tight upper ar-
rival/service curves are sub-additive and tight lower service curves are superad-
ditive, i.e. they satisfy a(a) + ¢ (b) > a(a + b), p*(a) + B*(b) > “(a + b) and
B! (a) + BL(b) < B'(a +b), see also Thiele et al. (2000). Using these properties in (4)
results in y (a) + y (b)) < y(a +b).

Now, we will show the first item of the theorem by contradiction. Suppose that
there is an accumulated computing time Q which leads to a higher temperature 7' (t)
at time 7. Then according to Lemma 6 there exists some A < t such that Q*(t —

@ Springer



746 Real-Time Syst (2013) 49:730-762

A, 1) < Q(t — A, 1). As we know that Q*(t — A, 1) = y(A) — y(0) = y(A) we
can conclude that Q(t — A, t) > y(A). Such a computing time function Q would
violate (4).

Now, let us prove the second item of the theorem by contradiction. To this end,
we denote as T'(¢) the temperature caused by some accumulated computing time Q.
Suppose now that there exists some time o < t where we have T (¢) > T*(t). For
an upper bound on T (o), e.g. T*(c) > T (0), we also would find T*(c) > T*(7).
Suppose that we construct such an upper bound using the first item in the theorem,
i.e. we choose as a worst case accumulated computing time Q(oc — A, o) =y (A) for
0<A<o.

As O*(t — A, ) = y(A), we can now conclude that Q* shifted by T — o and Q
are equal, i.e. we have Q(0 — A,0) = Q*(t — A, 1) for 0 < A < ¢. Because of the
monotonicity of the thermal model (see Lemma 1), the assumption 7*(c) > T*(1)
would require that the initial temperature 7 (0) (as used for the worst case computing
time Q) is larger then the temperature at time T — o when using computing time Q*.

As the thermal models are supposed to be proper, temperatures in all scenarios, i.e.
with all computing time functions, are always larger or equal than the minimum of the
initial temperature and 7;;°. As we have T (0) < 7;7°, temperatures are always larger
or equal 7'(0). This contradicts the above requirement that the initial temperature
T (0) is larger than some temperature that occurs using Q*. d

As a result of the above theorem, we can now describe a method to determine an
upper bound on the component temperature 7*(t) at some time ¢ = 7:

— We start with a given bound on the cumulative workload, i.e. the arrival curve «,
and with given upper and lower bounds on the resource availability 8% and A/, see
(2) and (3).

— We determine the upper bound on the accumulated computing time y based on (4).
Using y, we can determine the worst case computing time function Q* according
to Theorem 1 and the corresponding rate function $* in (5).

— Corresponding to the chosen power and temperature model, we solve the temper-
ature equation (8), (10), or (13). The model has to satisfy the conditions of the
corresponding Lemma 3, 4 or 5, i.e. the models should be proper according to
Sect. 3.4. The solution may be done analytically or numerically with an appropri-
ate initial temperature 7 (0) according to Theorem 1. The temperature at t = 7 is
T*(7).

There are still two questions that need to be answered: Under what conditions is the
above bound tight? What is a reasonable time 7 such that the upper bound 7*(t)
holds for arbitrary long runs of the system, i.e. T(t) < T*(t) for all t > 0? The next
two sections will answer these questions.

4.2 Tightness
Note that Theorem 1 only provides an upper bound 7*(t) on the actual worst-case
temperature. In other words, there may be no single trace that leads to the critical

accumulated computing time Q*(0, A) = y(t) — y(t — A). Now, we will show that
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in the case of maximal resource availability there exists a single trace W*(0, A) for
0 < A < t which (a) is compatible to the given arrival curve « and (b) results in
the worst case accumulated computing time Q* (0, A). Maximal resource availability
results in R(s,t) =t — s, i.e. in any time interval of length #+ — s the computing
resource is fully available. As a result we find 8“(A) = ,31 (A) = A.

We first determine a continuous accumulated workload function W*(0, A), i.e.
which has slopes 1 and 0. It can be interpreted as the limit case of task arrivals with
infinitesimally small inter-arrival times and infinitesimally small computation times.

Theorem 2 (Tightness) Suppose that the assumptions from Theorem 1 hold and the
resource availability satisfies R(s,t) =t —s for all t > s. Then, the continuous work-
load function W*(0, A) = Q*(0, A) forO< A<t

— leads to the accumulated computing time Q*(0, A) according to the computational
model (1),

— complies to the arrival curve o according to (2), and

— leads to the highest possible temperature T*(t) > T (t) for any feasible workload
trace.

Proof With the condition (A) = B*(A) = A, the computational model in (1), (4)
can be simplified to

O(s, 1) =si‘;f<t{(’ —u)+a(s,u)} (19)

Q(t—A,t)SV(A)=O<iL€1£A{(A—M)+a(u)} (20)

Thus, for the first item, we actually need to prove that 0*(0, A) = info<,<a{(A —
u) + O*(0,u)} as W*(0, A) = 0*(0, A). At first, we find that there exists a u’ such
that (A — u’) + Q*(0,u’) = Q*(0, A), namely u’ = A. Therefore, we only have to
show that (A —u) + Q*(0,u) > 0*(0, A) forall 0 < u < A. This condition is equiv-
alentto (A —u) > 0*(0, A) — 0*(0,u) = Q*(u, A). As the accumulated processing
time in interval [u, A) can not exceed the available service A — u, the first item is
proven.

With W*(0, A) = 0*(0, 4), 0*(0,4) = y(r) — y(t — A) and y(A) =
info<a<a{(A —A) +a(1)} we find

W*(a,b)=y(t —a) — y(t —b)

= inf {t—a—-1+a)} —0<7171g7b{(t —a—n+am}

0<A<t—a

< (@ —a)—u) ta@w]<ab-a)

where we use the fact that a < b < 7, n < y as well as the subadditivity of «.

The third item is a simple consequence of Theorem 1 as (a) W* leads to the ac-
cumulated computing time function Q* and (b) Q* leads to the highest temperature
T*(t) > T (7). O
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As has been mentioned above, W*(0, A) has slope 1 or 0 and corresponds to a
continuous arrival of tasks. There are many possibilities to convert such a workload
trace into one that has discrete task arrivals, which is compliant to the provided ar-
rival curve o and which leads to the worst-case temperature. In the following, let us
describe one of these possibilities.

Lemma 7 (Worst-case workload) Let us suppose that the conditions of Theorem 2
hold. Furthermore, let us suppose that for some constant c the given arrival curve
o satisfies a(A) =c - f%a(A)] for all A >0, i.e. the step size of a(A) is an inte-
ger multiple of c. Suppose that the observation time t is chosen such that y () ac-
cording to (4) is a multiple of ¢ as well. Then the worst-case accumulated workload

W*(0, 4) =c- [1W*(0, A)]

— is piecewise constant with a step size which is an integer multiple of c,

— complies to the arrival curve o according to (2) and

— leads to the highest possible temperature T*(t) > T(t) for all 0 <t < t for any
feasible workload trace.

Proof Let us first suppose without restricting the generality that ¢ = 1. The first item
is obvious from W*(0, A) = [W*(0, A)].

The second item can be shown as ﬁ*(a, b) = [R*(0,b)] — [R*(0,a)] <
[R*(0,b) — R*(0,a)] =[R*(a,b)] < [a(b—a)] =a(b —a) fora < b.

In order to show the third item, we start from Q*(0, A) = y (1) — y(t — A) in
Theorem 1 and y(A) = info<p<a{(A — A) + a(1)} from (20). From the last equa-
tion one can observe that y(A) has slope 1 or 0 and it has an integer value if it
has slope 0. Therefore, if y(t) is integer as well, then we also find that 0*(0, A)
has slope 1 or 0 and it has an integer value if it has slope 0. If we can show that
the accumulated workload function W*(0, A) = [W*(0, A)] =[0*(0, A)] leads to
the same worst-case accumulated processing time Q*(0, A) as W*(0, A), the the-
orem would hold. Note that Q*(0, A) = info<y,<a{(A — u) + Q*(0, u)} from (20)
in Theorem 2. Because of the property of C*(0, u) mentioned before, one can eas-
ily deduct that info<, <A {(A —u) + O*(0, u)} = info<y<a{(A —u) + [Q*(0,u)]} =
info<, <A {(A — u) + W*(0, u)}. O

Note that W*(0, A) does not necessarily represent the conventional critical instant
scenario that is often used in real-time analysis in order to determine the worst-case
timing behavior.

As a result of Theorem 2 and Lemma 7, the upper bound 7*(r) determined
through Theorem 1 is proven to be tight under the conditions mentioned in Theo-
rem 2, i.e. there exists a worst case workload trace W* that actually leads to 7*(t)
when a system resource is fully available all the time.

4.3 Computational aspects
As has been mentioned already, Theorem 1 implies a constructive method to deter-

mine the upper bound 7*(t) for some time 7: Starting from a given arrival curve
o (A) for 0 < A <t one can determine the function y (A) for 0 < A < t using (4).
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With 0*(0, A) =y (t) — y(r — A) forall 0 < A < 7 and (5) one can determine the
critical mode function S*(7), 0 < < t. It determines the critical distribution of op-
erating modes (6) which is used to solve the thermal model, i.e. at time t = 7 we find
T*(7).

There is one question remaining: How to choose an appropriate observation time
T such that a bound with an appropriate precision is determined? For simplicity and
without restricting the generality, we suppose for the remainder of this section, that
the initial temperature satisfies 7'(0) = 7;°, i.e. it equals the steady state temperature
of an idle system with constant rate S = 0.

As a simple approach, it is possible to determine an upper bound on the precision,
given an observation time 7. This does not solve the original question but can be used
as a basis for some heuristics, e.g. double the observation time 7 until the desired
precision is guaranteed. Given 7, we first determine the upper bound 7;(t) for ini-
tial temperature 77 and the bound 77*(t) for initial temperature 77°°, i.e. the steady
state temperature of an active system with constant rate S = 1. Due to the mono-
tonicity of the power/temperature mode according to Lemma 1, we can conclude that
lim, 00 T*(r) € [T (2). T (D).

For the active/idle model and the continuous mode model, it is possible to deter-
mine the observation time t explicitly, given a desired precision.

Lemma 8 We are given computational, temperature and power models according to
Theorem 1 and T (0) = T;°, i.e. the steady state temperature for constant rate S = 0.
Then

lim 7*() € [T*(2), T*(7) + AT”]

where T*(t) denotes the upper bound determined using Theorem 1 and observa-
tion time t and where AT* denotes a bound on the corresponding precision. Given
AT*, the following expressions provide a lower bound on the observation time T that
achieves this precision:

> ¢ 1n(Tl _E)> 1)
G — max{¢’, ¢?} ATH*

holds for the active/idle model and

1 T>° — TS —Lo—L1T®° + L1(Tgmp — T
<g> withg: 0 14 1 (Tamb 1 )+M (22)

>—1
=g\ ar (Lo+ LiT)
holds for the continuous mode model where N is computed for S = 1.

Proof At first note, that due to the monotonicity of the power/temperature mode ac-
cording to Lemma 1, we find lim; , oo T*(¢) € [T} (t), T}*(7)]. In order to be indepen-
dent of the actual rate function S(z), we first determine the worst case rate function,
i.e. which leads to the worst precision.
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Suppose that we integrate (16) for a small time step § and two different initial
temperatures 77 and 7>. With the resulting temperatures 7| and T, we obtain

LT gHS.T) - H(S.T)

n—T a n—T
For the active/idle model, we simply find that this term is 1 —6/C - (G — ¢) where
¢ € {¢', ¢?}. This term is maximal for ¢ = max{¢’, ¢}, i.e. the constant rate as-
sociated to ¢. For the continuous mode model we obtain the term 1 + §(M —

Lo+LTsmp . .
TorLi T (Lot L1T1))' As larger rates lead to a higher temperature gradient H(S, T),

the term is maximal for constant rate S = 1.
Now, let us prove (21). Using (9), we find

-G

AT* = (T = T®)e T

which directly leads to (21).

The proof for the continuous mode model follows. Let T (T, t) be the resulting
temperature at T with starting temperature 7 for S = 1. When the starting tempera-
ture is 7/7°, the temperature stays at 7,>°. Thus,

AT*=T(T°, 1) = T(T5°, ) =T° — T(T5°. ©)

As it is hard to get the closed form solution for (12), we approximate T (7,°, t) with
a’r

an asymptotic line on dT/dt as shown in Fig. 3. With F = TR

the approximated
temperature T holds following:

dT

dr F(Tloo)(f - Tloo)

Since % > % for T,T < T, T(Ty°, 1) = T(Too, 7), T converges to 7, slower

than 7. Using the solution for T in form of (9), we have
AT* > T = T(Tg°, 1) = T7° — (T° + (I5° — T{°)es™)
where g is F(T°). Some algebraic transformations with g= “Lohify Ly g“'z”b_Tl )
1 (Lo+L1T7°)
+ M lead to (22). O

Following the above lemma, we can determine a suitable observation time t before
the worst-case temperature simulation while guaranteeing a precision on the worst
case temperature bound.

5 Experimental analysis

In this section, we will compare our worst-case analysis results with a random simula-
tion of a basic real-time system. For simplicity, we illustrate our techniques assuming
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Fig. 3 Approximated dT
temperature 7' which has the —
same stable temperature Tloo but
converges slower

a set of processes that are periodic with jitter. Furthermore, we investigate the impact
of different task invocation periods and jitter in task arrivals, and observe their rela-
tionship to the maximal temperature. Impact of variable resource availability on the
temperature is also studied by allowing different service curves.

To ensure repeatability of our experiments and further investigations, our code has
been integrated into the MPA-RTC toolbox and is available on-line at http://www.
mpa.ethz.ch/rtctoolbox.

5.1 Benchmarks and basic configuration

In addition to the simple example from Sect. 1, a multi-processing video-conferencing
system is considered, where three processes are executing on an ARM embedded pro-
cessor. The system includes a video codec, an audio codec, and a network process
which manages the communication, and for illustration it has been configured with
a period-jitter-delay model, see Wandeler et al. (2006), Wandeler and Thiele (2008),
with parameters summarized in Table 1.

In the example, the video codec operates in a range varying from 12 frames per
second (fps) to 50 fps, being able to provide different output video qualities. This
offers us the possibility to investigate a large range of invocation periods between
20 ms and 90 ms. For illustration purposes we set the audio codec to operate at a sim-
ilar sampling rate, with an invocation period of 20 ms, which in the real system means
just pre-processing (buffering) audio samples. Finally, the network process will be in-
voked as well with a period of 20 ms. We assumed the deadline of each task identical
to its invocation period. For the exact meaning of all parameters in Table 1, please
refer to Wandeler and Thiele (2008). System parameters are summarized in Table 2.
Coefficients for the temperature dependent thermal resistance (Rp and Rp) are taken
from Walkey et al. (2001) and properly scaled to have the same thermal conduc-
tance as Yang et al. (2010) at 300 K. Power parameters are borrowed from (Rai et al.
2011) and scaled down to be proper according to (14). In all our experiments we start
simulations with the initial temperature 7 (0) = T0°° =319.31 K, calculated from pa-
rameters given in Table 2 and the observation time interval T = 1.2 s, see Lemma 8.
For the power mode in Eq. (6) and the continuous thermal model in Eq. (12) have
been used for the simulation.
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Table 1 Parameters of the video conferencing application

Video Audio Network
period [20, 90] ms 30 ms 30 ms
jitter [20, 90] ms 10 ms 10 ms
min. interarrival 1 ms 1 ms 1 ms
execution demand 6 ms 3 ms 2 ms
deadline [20, 90] ms 30 ms 30 ms
Table 2 Thermal and power parameters of the considered embedded system architecture
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5.2 Peak temperature analysis

At first, let us look again at the simple example from Sect. 1, i.e. a single task stream
with period 120 ms, jitter 240 ms, computation time 30 ms and minimal inter-arrival
time 30 ms on the fully serviced processor. The following Fig. 4 shows all relevant
quantities, i.e. ®(A) according to (2), y (4) according to (4), the worst-case accumu-
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Fig. 5 Comparison between worst-case temperature estimate and other traces: (a) time critical instance,
(b) thermal critical instance with temperature dependent thermal conductivity, (¢) thermal critical instance
with constant conductivity, (d) thermal critical instance with infinitesimally small period/jitter (varying
conductivity), and (e) 100 random simulations

lated computing time Q*(0, A) from Theorem 1 and the observation interval length
T = 0.6 s. It is intuitively shown that the workload is placed as late as possible upto
T causing the bursty shot at the end. A part of the corresponding temperature trace
and workload according to Lemma 7 has already been shown in Fig. 1, but using the
observation interval T = 1.2 s.

The video conferencing example described in Table 1 is also analyzed in terms
of peak temperature. The invocation period of video task is fixed to 50 ms in this
experiment. For the comparison to a temperature simulation of random traces, we
use 100 randomly generated task arrivals that conform to the workload specification.
Figure 5 shows the correctness of the computed upper bound according to Theorem 1
and the limited coverage of random simulations.

Five different transient temperatures in the interval [0 s, 1.2 s) are drawn in Fig. 5:
(a) the time critical instance (the workload trace that fits to the critical instant for tim-
ing analysis by releasing the workload as early as possible at the beginning), (b) the
thermal critical instance with constant G, (c) the thermal critical instance (generated
by Theorem 1) with variable G of (11), (d) the thermal critical instance with varying
G and infinitesimally small period/jitter, and (e) 100 randomly generated workload
traces. All traces start from the stead-state idle temperature T0°° =319.49 K. For (d),

@ Springer



754 Real-Time Syst (2013) 49:730-762

Table 3 Bounds on worst-case peak temperature analysis for different t values

T 0.3s 0.6s 09s 1.2s 2.0s
Ti—o(7) 350.794 K 354.853 K 355.535 K 355.652 K 355.681 K
Ti—1 (1) 366.318 K 357.573 K 356.004 K 355.732 K 355.681 K

we change the period and jitter infinitesimally small while keeping the utilization the
same.

The time critical instance has higher transient temperature before its first idle time
than other traces. However, its temperature starts to decrease after that moment, and
does not lead to the worst-case peak temperature. The highest temperature observed is
350.721 K. In contrast, the 100 random simulations might keep the system at higher
temperature later on, but still does not capture the worst-case peak temperature. The
highest peak temperature is 354.4 K for random simulations. As shown in Fig. 4, the
thermal critical trace first warms up the system with periodic arrivals and then heats
up the system with burst arrivals and jitters at the end around t and the resultant
worst-case transient temperature 355.652 K in Fig. 5.

How the bursty shot affect the worst-case peak temperature is well illustrated in
Fig. 5(d). We make the period and jitter value infinitesimally small in (d), while keep-
ing the total utilization of workload as the same as others. This eventually makes the
trace equivalent to the average workload removing the bursty shot at the end. This
is well shown on the temperature trajectory in Fig. 5(d) resulting in the worst-case
temperature of 353.862 K.

The effect of temperature variant thermal conductivity is presented in the differ-
ence between (b) and (c). Note that we take the mean value of varying G as a con-
stant value using G op5r = w and (10) is used to calculate the transient
temperature. In case of constant conductivity, the worst-case temperature is far un-
derestimated as 354.03 K.

The worst-case temperature 7*(7), however, only gives the peak temperature of a
feasible trace. As shown in Lemma 8, for estimating the worst-case peak temperature
T*, we also need the peak temperature at time 7, by starting at the possible highest
temperature 7,2°, for the same trace. Table 3 demonstrates the temperature bound
[T (T), T*(r)] by varying t from 0.3 s to 2.0 s when task video task period and
jitter are both 20 ms. Note that, for different values of 7, the worst-case traces are
also different. When t is small, the bound is not precise. For instance, the bound is
[354.853 K, 357.573 K] in case of = 0.6 s. However, when 7 is getting larger, the
bound tends to converge, with the precision of the 4th digit of decimal point, i.e.,
355.6810 K. As a result, we can conclude that the worst-case peak temperature is
355.6810 K for the invocation period of the video task of 20 ms and when the initial
temperature is not more than 7;;°.

5.3 Worst-case temperature analysis under scheduling nondeterminism

In this subsection, we analyze the effect of changes in invocation periods and jitter
on the maximal temperature. In addition, we provide hints on how to design a system
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Fig. 6 Worst-case temperature
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which is schedulable and meets temperature constraints at the same time. As the
maximal temperature depends on task arrivals but not on the scheduling policy, e.g.
earliest deadline first (EDF), fixed priority, preemptive or non-preemptive, we restrict
ourselves to EDF in the reminder of this section. Note that T = 1.2 s is carefully
chosen to make precision loss less than 0.1 K according to Lemma 8.

5.3.1 Temperature-aware QoS optimization

The proposed analytic framework can be used to study the influence of critical design
parameters at early design stages. As an example, for the video codec in Table 1, a
shorter task period provides a higher quality of service (more frames per second). But,
in general, shorter periods also lead to higher peak temperature as shown in the results
in Fig. 6. Designers can quickly investigate the effect of such parameter changes
by the proposed analysis framework and check if the current system configuration
violates temperature constraints. In Fig. 6, an invocation period of 20 ms for instance
would imply a high temperature of 360.18 K when the maximum jitter is 60 ms. For
an invocation period of 40 ms, for instance, the video quality will be lower, but also
the peak temperature will be as low as 346.09 K with the same jitter bound.

5.3.2 Changing task jitter

Besides varying the invocation period, we vary the maximal jitter in task arrivals. As
shown in Fig. 6, we observe that a large jitter will increase the worst-case temperature.
This is an expected qualitative behavior, since a large jitter increases the size of a burst
of active modes in the power profile, thus inducing a higher temperature. If such a
jitter leads to an unacceptable temperature, designers can redesign the system such at
it reduces the jitter by introducing traffic shapers or other resource servers, see e.g.
Wandeler et al. (2006).

5.4 Schedulability analysis

In addition, we run an EDF schedulability test by means of the RTC toolbox (Wan-
deler and Thiele 2008). It verifies that all output arrival curves satisfy the deadline,
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Fig. 7 Two examples of system
traces and schedulability tests.
Thin solid line represents a
non-schedulable sequence that
crosses the availability line at
the location indicated by the
circle. The thick solid line
corresponds to a system which
is schedulable
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1.e. Zi a(A —d;) < B(A),VA, with d; the relative deadline, see e.g. Wandeler and
Thiele (2006).

Figure 6 includes the results of such a schedulability test. For instance, for periods
of more than 30 ms, independent of jitter, the system is schedulable. When the video
task has the period of 30 ms, it is only schedulable when the maximum jitter is less
than or equal to 50 ms, but only for very small jitter. Note that with a maximum
acceptable temperature of 350 K, temperature constraints are met for all schedulable
systems. All other configurations are not schedulable and they violate the temperature
bound of 350 K.

For illustration, Fig. 7 provides an example of a demand bound function for the
case where the system is schedulable, i.e. the sum of arrival curves shifted by the
corresponding deadlines is smaller that the unit function A. Therefore, our analysis
can be used as a tool to design systems which are at the same time schedulable and
in a temperature-safe region.

5.5 General resource availability

The proposed technique can be also applied to more general system where the
resource may not be always completely available for computation. Most modern
embedded processors, for instance, support several operation frequencies and deep
power down modes for power efficiency. In this subsection, we analyze the effect of
different resource availabilities on the worst-case temperature.

Resource availability can be described using service curves as explained already in
Sect. 3.1. Figure 8 shows several service curves as used in the experiments. The full
service model (8%(A) = B(A) = A) as well as two lower resource availability curves
(B(A) =0.67 or 0.33 - A) are shown on the left-hand side. These service curves may
correspond to operation frequencies of 100 %, 67 %, and 33 %, respectively. They
may also be interpreted as the result of a general processor sharing (GPS) scheme
where the processing resource is multiplexed between several consumers. The right
hand side of Fig. 8 represents the service curve of a TDMA (time division multiple
access) scheduling discipline. A TDMA resource is characterized by two variables:
Cycle length C and Slot length S. For the service curve in the figure, for instance, we
chose C =100 ms and S = 80 ms, i.e. the processor is available for consecutive time
units of 80 ms during every cycle of 100 ms.
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Fig. 8 Various resource availabilities: Frequency modulated processors (left) and TDMA (right)

For this set of computational models, we use the video conferencing example
again, but with a different configuration. The period and maximum jitter of the video
task are 60 ms and 20 ms, respectively. The observation time t is set to 1.2 s. It is
worth noting that the same supplied voltage is assumed for all resource availability
configurations.

The first graph of Fig. 9 provides the comparison of the full service model to the
partially utilized ones (67 % and 33 %). The steady-state temperatures in case of ar-
bitrarily high workload are as follows: T7°° =402.37 K for S =1, T* =367.76 K
for $ =0.67, and T° = 340.63 K for S = 0.33. On the other hand, the peak tem-
peratures for the corresponding three service curves are 341.05 K, 339.54 K, and
338.15 K, respectively. The differences in the peak temperatures are not significant
compared to that of the steady-state temperatures. When the resource is not sufficient
to process the injected workload, the remaining workload is buffered in the waiting
queue for further service. This buffering, in turn, causes a pervasive distribution of
workload. In contrast, we have some idle intervals to cool down the system in case of
a high processing rate. Moreover, the schedulability test fails in case of 33 % maximal
frequency.

Supposing we need to keep the critical temperature 340 K unviolated for this sys-
tem, the naive pessimistic analysis drives us to have a dynamic thermal management
technique enabled without guaranteeing the real-timeliness. It has also been shown
that none of the frequency modulation downto 33 % and 67 % guarantees the safe
peak temperature. On the other hand, the estimates out of the proposed technique
confirm that 66 % resource availability is a good compromise between the real-time
and the peak temperature guarantees. In case of the critical temperature of 350 K, no
thermal management technique is needed.

The bottom part of Fig. 9 shows the transient temperature changes when the
TDMA scheduling discipline is adopted. We test two configurations: TDMA1 with
C =100 ms S = 80 ms and TDMA2 with C = 50 ms, S =40 ms, i.e. half the cycle
length but the same utilization. In both cases, only 80 % of the processing resource
is consumed for processing the workload. Intuitively, the TDMA schemes may lead
to a lower peak temperature in comparison to a full resource availability. However,
TDMALI not only shows a higher peak temperature (346.32 K) than the full service
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Fig. 9 Transient temperature changes of the video conferencing example. Period and maximum jitter are
set to 60 ms and 20 ms, respectively

model but also fails to pass the schedulability test. Again, this is due to the previously
mentioned buffering effect. During the idle service interval, the arrived workload is
buffered in the queue causing a bursty resource utilization later on. If we reduce the
idle service interval as in TDMAZ2, the peak temperature is reduced to 342.45 K and
the system becomes schedulable.

In summary, two resource variations are analyzed in terms of peak temperature:
reduce the rate of the resource and place idle service intervals properly (TDMA).
The analysis framework presented in the paper can be used as a tool to choose proper
resource parameters while guaranteeing schedulability and temperature bounds.

6 Conclusion

We have presented an analytical approach to determine the worst case temperature
for any given work-conserving real-time system with general resource availability.
We consider several power-temperature models that consider temperature dependent
power consumption, leakage and thermal conductivity. They lead to non-linear differ-
ential equations that describe the relation between power consumption and tempera-
ture. The analysis method is able to deal with static and dynamic power consumption
and takes into account its temperature dependence. The accumulated workload ar-
riving from all task invocations is characterized by an arrival curve, i.e. by an upper
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bound on the sum of task execution times arriving in any time interval. Analogously
to the workload, we model the resource availability by service curves.

The complexity of the analysis comes from the fact that task arrivals and resource
availability may be non-deterministic, i.e. due to unknown initial phases, jitter, burst,
and provided computation. It is shown, that the method (a) gives tight upper bounds
on the maximal temperature, (b) is constructive in the sense that the worst case arrival
of tasks can be determined and (c) provides bounds on the length of the observation
interval for a given precision.

As shown in the experimental results, the analysis method is a cornerstone to de-
sign real-time systems that give guarantees on (a) the schedulability and (b) on the
maximal temperature. A direct impact of such a capability could be to avoid trig-
gering reactive control mechanisms for hardware cooling, that are known to have
high performance penalties, especially for high performance systems. Instead, one
can formally analyze the influence of servers and traffic shapers in real-time systems,
in terms of timing as well as maximal temperature.
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Tera.ch.
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