Arbitrarily large families of spaces of the same volume

Vincent Emery

Received: 21 August 2011 / Accepted: 24 November 2011 / Published online: 11 December 2011
© Springer Science+Business Media B.V. 2011

Abstract

In any connected non-compact semi-simple Lie group without factors locally isomorphic to $\mathrm{SL}_{2}(\mathbb{R})$, there can be only finitely many lattices (up to isomorphism) of a given covolume. We show that there exist arbitrarily large families of pairwise non-isomorphic arithmetic lattices of the same covolume. We construct these lattices with the help of Bruhat-Tits theory, using Prasad's volume formula to control their covolumes.

Keywords Locally symmetric spaces • Arithmetic lattices • Volume
Mathematics Subject Classification (1991) 22E40 • 11E57•20G30 • 51M25

1 Introduction

Let \mathscr{G} be a connected semi-simple real Lie group without compact factors. For simplicity we will suppose that \mathscr{G} is adjoint (i.e., with trivial center), though this is not a major restriction in this article. Any choice of a Haar measure μ on \mathscr{G} assigns a covolume $\mu(\Gamma \backslash \mathscr{G}) \in \mathbb{R}_{>0}$ to each lattice Γ in \mathscr{G}. Wang's theorem [1] asserts that there exist only finitely many irreducible lattices (up to conjugation) of bounded covolumes in \mathscr{G} unless \mathscr{G} is isomorphic to $\mathrm{PSL}_{2}(\mathbb{R})$ or $\mathrm{PSL}_{2}(\mathbb{C})$. In particular, there exist only finitely many irreducible lattices in \mathscr{G} of a given covolume. For \mathscr{G} isomorphic to $\mathrm{PSL}_{2}(\mathbb{C})$ this property is still true, as follows from the work of Thurston and Jørgensen [2, Ch. 6]. In this paper we prove that the number of lattices in \mathscr{G} of the same covolume can be arbitrarily large. In most cases, arbitrarily large families of lattices of equal covolume appear in the commensurability class of any arithmetic lattice of

[^0]Table 1 Simple lie groups not covered in Theorem 1

Type $A_{1}:$	$\operatorname{PSL}_{2}(\mathbb{R})$ and $\operatorname{PSL}_{2}(\mathbb{C}) ;$
Type $A_{2}:$	$\operatorname{PSL}_{3}(\mathbb{R}), \operatorname{PSL}_{3}(\mathbb{C})$ and $\operatorname{PU}(2,1) ;$
Type $A_{3}:$	$\operatorname{PSL}_{4}(\mathbb{R}), \operatorname{PSL}_{4}(\mathbb{C}), \operatorname{PSO}(5,1), \operatorname{PU}(3,1)$ and $\operatorname{PU}(2,2)$.

\mathscr{G}. This is the content of the following theorem. The symbol $\mathfrak{g}_{\mathbb{C}}$ denotes the complexification of the Lie algebra of \mathscr{G}.

Theorem 1 Let \mathscr{G} be a connected adjoint semi-simple real Lie group without compact factors. We suppose that $\mathfrak{g}_{\mathbb{C}}$ has a simple factor that is not of type $\mathrm{A}_{1}, \mathrm{~A}_{2}$ or A_{3}. Let Γ be an arithmetic lattice in \mathscr{G}. Then, for every $m \in \mathbb{N}$, there exist a family of m lattices commensurable to Γ that are pairwise non-isomorphic and have the same covolume in \mathscr{G}. These lattices can be chosen torsion-free.

Every arithmetic lattice $\Gamma \subset \mathscr{G}$ is constructed with the help of some algebraic group G defined over a number field k (see Sect. 2.1). To prove Theorem 1, we use Bruhat-Tits theory to construct families of arithmetic subgroups in $G(k)$ that are non-conjugate, and have equal covolume. By strong (Mostow) rigidity one obtains the analogous result with "pairwise non-conjugate" replaced with "pairwise non-isomorphic". To control the covolume we use some computations that appear in Prasad's volume formula [3]. To ensure that the subgroups constructed are not conjugate we need to exhibit parahoric subgroups in $\mathrm{G}\left(k_{v}\right)$ (where k_{v} is a non-archimedean completion of k) that are not conjugate but of the same volume. This can be easily achieved when G is not of type A_{n} and is split over k_{v}. When G is of type A_{n} the Bruhat-Tits building of a split $\mathrm{G}\left(k_{v}\right)$ has more symmetries, and the argument must be slightly adapted. In particular, there we need the assumption $n \geq 4$, which explains the excluded cases in the statement of Theorem 1. The simple Lie groups excluded are listed in Table 1.

For the Lie groups of type A_{2} and A_{3} we can use algebraic groups that are outer forms (type ${ }^{2} \mathrm{~A}_{2}$ and ${ }^{2} \mathrm{~A}_{3}$) to show the existence of arbitrarily large families of arithmetic lattices of the same covolume. In contrast with Theorem 1, now each family corresponds to a different commensurability class.

Theorem 2 Let \mathscr{G} be a connected adjoint semi-simple Lie group without compact factors. We suppose that $\mathfrak{g}_{\mathbb{C}}$ contains only factors of type A_{2} (resp. only factors of type A_{3}). Let $m \in \mathbb{N}$. Then there exists a family $\left\{\Gamma_{1}, \ldots, \Gamma_{m}\right\}$ of irreducible arithmetic lattices in \mathscr{G} such that for $i, j \in\{1, \ldots, m\}$:

1. Γ_{i} is commensurable to Γ_{j};
2. Γ_{i} and Γ_{j} have the same covolume in \mathscr{G};
3. if $i \neq j$, then Γ_{i} and Γ_{j} are not isomorphic.

The lattices $\left\{\Gamma_{i}\right\}$ can be chosen torsion-free. Moreover, they can be chosen cocompact. They can be chosen non-cocompact unless there are no such lattices in \mathscr{G}.

It follows from Margulis' arithmeticity theorem that irreducible lattices can only exist in a Lie group \mathscr{G} that is isotypic (i.e., for which all the simple factors of $\mathfrak{g}_{\mathbb{C}}$ have the same type), so that the assumptions in Theorem 2 are minimal. The existence of irreducible cocompact lattices in any isotypic \mathscr{G} was proved by Borel and Harder [4]. Non-compact irreducible quotients of \mathscr{G} do not always exist. For example there is no such quotient of $\operatorname{PU}(3,1) \times \operatorname{PSO}(5,1)$ (this example is detailed in [5, Prop. (15.31)]). A general criterion for the existence of non-cocompact arithmetic lattices appears in the work of Prasad-Rapinchuk [6], where the authors extend the results of [4]. The proof of Theorem 2 uses these existence results.

By Wang's theorem, it is clear that the covolume common to the lattices of a family grows with the size of the family. Even though in this article we focus on qualitative results, we note that the proofs of Theorems 1-2 could be used to obtain quantitative results on the growth of the covolume with the size of the family.

We now discuss the geometric significance of our results. Let X be the symmetric space associated with \mathscr{G}, that is $X=\mathscr{G} / K$ for a maximal compact subgroup $K \subset \mathscr{G}$. This class of spaces includes the hyperbolic n-space \mathscr{H}^{n}; we have that \mathscr{H}^{2} is associated with $\mathscr{G}=\operatorname{PSL}_{2}(\mathbb{R})$, and \mathscr{H}^{3} with $\mathscr{G}=\mathrm{PSL}_{2}(\mathbb{C})$. For a torsion-free irreducible lattice $\Gamma \subset \mathscr{G}$, the locally symmetric space $\Gamma \backslash X$ will be called an X-manifold (in particular it is irreducible and has finite volume). The following result follows directly from Theorems 1-2 and the existence of cocompact arithmetic lattices in \mathscr{G} (see for instance [6, Theorem 1]).

Corollary 3 Let X be a Riemannian symmetric space of non-compact type that contains no factor isometric to \mathscr{H}^{2} or \mathscr{H}^{3}, and suppose that irreducible quotients of X do exist. Then there exist arbitrarily large families of pairwise non-isometric commensurable compact X-manifolds having the same volume. The analogue statement with non-compact X-manifolds is true unless all X-manifolds are compact.

The result for compact X-manifolds associated with non-compact simple Lie groups (including $\mathrm{PSL}_{2}(\mathbb{R})$ and $\mathrm{PSL}_{2}(\mathbb{C})$) already follows from a recent paper of McReynolds [7], who constructed families of manifolds with the stronger property of being isospectral. His construction uses arithmetic lattices except for the case $X=\mathscr{H}^{n}$, where he proved the result by considering the non-arithmetic lattices constructed by Gromov and Piatetski-Shapiro.

The result for $X=\mathscr{H}^{3}$ was proved by Wielenberg for the case of non-compact manifolds [8], and later by Apasanov-Gutsul for compact manifolds [9]. For $X=\mathscr{H}^{4}$ the result with non-compact manifolds was proved by Ivanšić in his thesis [10]. All these results are obtained by geometric methods. In [11] Zimmerman gave a new proof for $X=\mathscr{H}^{3}$ by exhibiting examples of \mathscr{H}^{3}-manifolds M with first Betti number β_{1} at least 2 , and showing that this property implies the existence of arbitrarily large families of covering spaces of M of same degree. In [12] Lubotzky showed that there exist (many) hyperbolic manifolds with $\beta_{1} \geq 2$ in every dimension. Thus for all $X=\mathscr{H}^{n}$ we have a proof of Corollary 3 by Zimmerman's method. Since super-rigidity implies that $H^{1}(\Gamma \backslash X, \mathbb{R})=0$ for irreducible lattices Γ in \mathscr{G} with $\mathbb{R}-\operatorname{rank}(\mathscr{G}) \geq 2$, the same approach cannot be used to prove the result in this situation. Conversely, it does not seem that our method can be adapted to include the case of \mathscr{H}^{2} and \mathscr{H}^{3}.

Very recently, Aka constructed non-isomorphic arithmetic lattices that have isomorphic profinite completions [13]. In particular, his construction gives arbitrarily large families of lattices of equal covolume in the Lie group $\mathrm{SL}_{n}(\mathbb{C})$, for any $n \geq 3$.

2 Arithmetic lattices

We can obviously reduce the proof of Theorem 1 to the case of an irreducible Γ. Then, like in Theorem 2, \mathscr{G} is supposed to be isotypic.

2.1

For generalities on arithmetic groups we refer the reader to [14] and [15]. We briefly explain here how irreducible arithmetic lattices in \mathscr{G} are obtained. Let k be a number field with ring of integers \mathscr{O}. Let G be an absolutely simple simply connected algebraic group defined over k.

We denote by $\overline{\mathrm{G}}$ the adjoint group of G , i.e., the k-group defined as G modulo its center, and by $\pi: \mathrm{G} \rightarrow \overline{\mathrm{G}}$ the natural isogeny. Let \mathscr{S} be the set of archimedean places v of k such that $\mathrm{G}\left(k_{v}\right)$ is non-compact. We denote by $\mathrm{G}_{\mathscr{S}}$ the product $\prod_{v \in \mathscr{S}} \mathrm{G}\left(k_{v}\right)$, and similarly for $\overline{\mathrm{G}}_{\mathscr{S}}$. Note that $\mathrm{G}_{\mathscr{S}}$ is connected. For any matrix realization of G , the group $\mathrm{G}(\mathscr{O})$ is an irreducible lattice in $\mathrm{G}_{\mathscr{S}}$. Suppose that the connected component $\left(\overline{\mathrm{G}}_{\mathscr{S}}\right)^{\circ}$ of $\overline{\mathrm{G}}_{\mathscr{S}}$ is isomorphic to \mathscr{G}. Then π extends to a surjective map $\pi_{\mathscr{S}}: \mathrm{G}_{\mathscr{S}} \rightarrow \mathscr{G}$. An irreducible lattice in \mathscr{G} is called an arithmetic lattice if it is commensurable with a subgroup of the form $\pi_{\mathscr{S}}(\mathrm{G}(\mathscr{O}))$ for some k-group G as above.

In the following G will always be a k-group as above, which determines a commensurability class of arithmetic lattices in \mathscr{G}.

2.2

We denote by V_{f} the set of finite places of k, and by \mathbb{A}_{f} the ring of finite adèles of k. For each $v \in V_{\mathrm{f}}$ we consider k_{v} the completion of k with respect to v, and $\mathscr{O}_{v} \subset k_{v}$ its associated valuation ring. A collection $P=\left(P_{v}\right)_{v \in V_{\mathrm{f}}}$ of compact subgroups $P_{v} \subset \mathrm{G}\left(k_{v}\right)$ is called coherent if the product $\mathscr{K}_{P}=\prod_{v \in V_{\mathrm{f}}} P_{v}$ is open in the adelic group $\mathrm{G}\left(\mathbb{A}_{\mathrm{f}}\right)$ (see [15, Ch. 6] for information on adelic groups). For example, for any matrix realization of G , the collection $\left(\mathrm{G}\left(\mathscr{O}_{v}\right)\right)_{v \in V_{\mathrm{f}}}$ is coherent. For a coherent collection $P=\left(P_{v}\right)$, the group

$$
\begin{equation*}
\Lambda_{P}=\mathrm{G}(k) \cap \prod_{v \in V_{\mathrm{f}}} P_{v}, \tag{1}
\end{equation*}
$$

where $\mathrm{G}(k)$ is seen diagonally embedded into $\mathrm{G}\left(\mathbb{A}_{\mathrm{f}}\right)$, is an arithmetic subgroup of $\mathrm{G}(k)$ (and thus an arithmetic lattice in $\left.\mathrm{G}_{\mathscr{S}}\right)$. This follows from the equality $\mathrm{G}(\mathscr{O})=\mathrm{G}(k) \cap \prod_{v} \mathrm{G}\left(\mathscr{O}_{v}\right)$ together with the inequality

$$
\begin{equation*}
\left[\Lambda_{P}: \Lambda_{P^{\prime}}\right] \leq\left[\mathscr{K}_{P}: \mathscr{K}_{P^{\prime}}\right], \tag{2}
\end{equation*}
$$

valid for any two coherent collections P and P^{\prime} with $P_{v}^{\prime} \subset P_{v}$ for each $v \in V_{\mathrm{f}}$. Since G is simply connected, strong approximation holds [15, Theorem 7.12] and it follows that (2) is in fact an equality. We put this (known) result in the following lemma.

Lemma 4 Let $P=\left(P_{v}\right)_{v \in V_{\mathrm{f}}}$ and $P^{\prime}=\left(P_{v}^{\prime}\right)_{v \in V_{\mathrm{f}}}$ be two coherent collections of compact subgroups such that $P_{v}^{\prime} \subset P_{v} \subset \mathrm{G}\left(k_{v}\right)$ for all $v \in V_{\mathrm{f}}$. Then

$$
\left[\Lambda_{P}: \Lambda_{P^{\prime}}\right]=\prod_{v \in V_{\mathrm{f}}}\left[P_{v}: P_{v}^{\prime}\right] .
$$

2.3

For every field extension $L \mid k$ with algebraic closure \bar{L}, the group of L-points given by $\overline{\mathrm{G}}(L)$ is identified with the inner automorphisms of G that are defined over L. Note that in general $\overline{\mathrm{G}}(L)$ is larger than the image of $\mathrm{G}(L)$ in $\overline{\mathrm{G}}(\bar{L})$.

Lemma 5 Let P and P^{\prime} be two coherent collections of compact subgroups $P_{v}, P_{v}^{\prime} \subset \mathrm{G}\left(k_{v}\right)$. Suppose that there exist a place $w \in V_{\mathrm{f}}$ such that P_{w} and P_{w}^{\prime} are not conjugate by the action of $\overline{\mathrm{G}}\left(k_{w}\right)$. Moreover, we suppose that P_{w} and P_{w}^{\prime} contain the center of $\mathrm{G}\left(k_{w}\right)$. Then $\pi_{\mathscr{S}}\left(\Lambda_{P}\right)$ and $\pi_{\mathscr{S}}\left(\Lambda_{P^{\prime}}\right)$ are not conjugate in \mathscr{G}.

Proof Let C be the center of G . We may assume that each P_{v} (resp. P_{v}^{\prime}) contains the center $\mathrm{C}\left(k_{v}\right)$. If not replace P_{v} by $\mathrm{C}\left(k_{v}\right) \cdot P_{v}$; the image $\pi_{\mathscr{S}}\left(\Lambda_{P}\right)$ does not change with this modification, and the hypothesis at w is kept.

Suppose that $\pi_{\mathscr{S}}\left(\Lambda_{P}\right)$ and $\pi_{\mathscr{S}}\left(\Lambda_{P^{\prime}}\right)$ are conjugate in \mathscr{G}. Then Λ_{P} and $\Lambda_{P^{\prime}}$ are conjugate under the action of $\mathscr{G} \cong\left(\overline{\mathrm{G}}_{\mathscr{S}}\right)^{\circ}$. Since arithmetic subgroups of G are Zariski-dense, we have more precisely that Λ_{P} and $\Lambda_{P^{\prime}}$ are conjugate by an element $g \in \overline{\mathrm{G}}(k)$. By strong approximation the closure of Λ_{P} (resp. $\Lambda_{P^{\prime}}$) in $\mathrm{G}\left(k_{w}\right)$ is P_{w} (resp. P_{w}^{\prime}), and it follows that g conjugates P_{w} and P_{w}^{\prime}.

3 Parahoric subgroups and volume

In the following we assume that the reader has some knowledge of Bruhat-Tits theory. All the facts we need can be found in Tits' survey [16]. See [15, §3.4] for a more elementary introduction.

3.1

Let $v \in V_{\mathrm{f}}$. A parahoric subgroup of $\mathrm{G}\left(k_{v}\right)$, a certain kind of compact open subgroup of $\mathrm{G}\left(k_{v}\right)$, is by definition the stabilizer of a simplex in the Bruhat-Tits building attached to $\mathrm{G}\left(k_{v}\right)$. There are a finite number of conjugacy classes of parahoric subgroups in $\mathrm{G}\left(k_{v}\right)$; these conjugacy classes in $\mathrm{G}\left(k_{v}\right)$ correspond canonically to proper subsets of the local Dynkin diagram Δ_{v} of $\mathrm{G}\left(k_{v}\right)$. If $P_{v} \subset \mathrm{G}\left(k_{v}\right)$ is a parahoric subgroup, we denote by $\tau\left(P_{v}\right) \subset \Delta_{v}$ its associated subset, and we call it the type of P_{v}. Two parahoric subgroups P_{v} and P_{v}^{\prime} can be conjugate by an element of $\overline{\mathrm{G}}\left(k_{v}\right)$ only if there is an automorphism of Δ_{v} that sends $\tau\left(P_{v}\right)$ to $\tau\left(P_{v}^{\prime}\right)$.

3.2

Let us denote by \mathfrak{f}_{v} the residual field of k_{v}. To each parahoric subgroup $P_{v} \subset \mathrm{G}\left(k_{v}\right)$, a smooth affine group scheme over \mathscr{O}_{v} is associated in a canonical way [16, §3.4.1]. By reduction modulo v, this determines in turn an algebraic group over \mathfrak{f}_{v}. Its maximal reductive quotient is a \mathfrak{f}_{v}-group that will be denoted by the symbol \bar{M}_{v}. The structure of \bar{M}_{v} can be determined from $\tau\left(P_{v}\right)$ and the local index of $\mathrm{G}\left(k_{v}\right)$ by the procedure described in [16, §3.5].

3.3

Let $\left(\bar{M}_{v}, \bar{M}_{v}\right)$ be the commutator group of \bar{M}_{v}, and let $R\left(\bar{M}_{v}\right)$ be the radical of \bar{M}_{v}. Both are defined over \mathfrak{f}_{v}, and we have (see [17, 8.1.6])

$$
\bar{M}_{v}=\left(\bar{M}_{v}, \bar{M}_{v}\right) \cdot R\left(\bar{M}_{v}\right) .
$$

The radical $R\left(\bar{M}_{v}\right)$ is a central torus in \bar{M}_{v}, whose intersection with $\left(\bar{M}_{v}, \bar{M}_{v}\right)$ is finite [17, 7.3.1]. It follows that the product map

$$
\left(\bar{M}_{v}, \bar{M}_{v}\right) \times R\left(\bar{M}_{v}\right) \rightarrow \bar{M}_{v}
$$

is an isogeny. By applying Lang's isogeny theorem [15, Prop. 6.3], we obtain that the order of $\bar{M}_{v}\left(\mathfrak{f}_{v}\right)$ is given by the following:

$$
\begin{equation*}
\left|\bar{M}_{v}\left(\mathfrak{f}_{v}\right)\right|=\left|\left(\bar{M}_{v}, \bar{M}_{v}\right)\left(\mathfrak{f}_{v}\right)\right| \cdot\left|R\left(\bar{M}_{v}\right)\left(\mathfrak{f}_{v}\right)\right| . \tag{3}
\end{equation*}
$$

Theorem 6 (Prasad) Let μ be a Haar measure on $\mathrm{G}_{\mathscr{S}}$. Then there exists a constant c_{G} (depending on the algebraic group G) such that for any coherent collection P of parahoric
subgroups $P_{v} \subset \mathrm{G}\left(k_{v}\right)$, we have

$$
\mu\left(\Lambda_{P} \backslash \mathbf{G}_{\mathscr{S}}\right)=c_{\mathrm{G}} \prod_{v \in V_{\mathrm{f}}} \frac{\left.\left.\left|\mathfrak{f}_{v}\right|\right|_{v}+\operatorname{dim} \bar{M}_{v}\right) / 2}{\left|\bar{M}_{v}\left(\mathfrak{f}_{v}\right)\right|},
$$

where for each $v \in V_{\mathrm{f}}$ the integer t_{v} depends only on the k_{v}-structure of G .

This theorem is a much weaker form of Prasad's volume formula, given in [3, Theorem 3.7]. In fact, Prasad's result explicitly gives the value of c_{G} for a natural normalization of the Haar measure μ. Moreover, the integers t_{v} are explicitly known. Since we want to prove qualitative results, we will not need more than the statement of Theorem 6.

4 Proof of Theorem 1

We now prove Theorem 1, assuming that the group \mathscr{G} is isotypic. Let $\Gamma \subset \mathscr{G}$ be an irreducible arithmetic lattice, with G and $\overline{\mathrm{G}}$ the associated k-groups as in Sect. 2.1. We retain all notation introduced above.

4.1

The group G is quasi-split over k_{v} for almost all places v [15, Theorem 6.7]. Let us denote by T the set of the places $v \in V_{\mathrm{f}}$ such G is not quasi-split over k_{v}. Let $\ell \mid k$ be the smallest Galois extension such that G is an inner form over ℓ (see for instance [17, Ch. 17], where this field is denoted by E_{τ}). If $v \notin T$ is totally split in $\ell \mid k$, i.e., if $\ell \subset k_{v}$, then G is split over k_{v}. It follows from the Chebotarev density theorem that the set of places $v \notin T$ that are totally split in $\ell \mid k$ is infinite. Let us denote this infinite subset of V_{f} by S.

4.2

Let $v \in S$. The local Dynkin diagram Δ_{v} of $\mathrm{G}\left(k_{v}\right)$ can be found in [16, $\left.\S 4.2\right]$. Let n be the absolute rank of \mathscr{G} (and of G). We suppose first that \mathscr{G} (and consequently G as well) is not of absolute type A_{n}. Then there exist two vertices $\alpha_{1}, \alpha_{2} \in \Delta_{v}$ such that α_{1} is hyperspecial and α_{2} is not. Let $P_{v}^{(1)}$ (resp. $P_{v}^{(2)}$) be a parahoric subgroup in $\mathrm{G}\left(k_{v}\right)$ of type $\tau\left(P_{v}^{(1)}\right)=\left\{\alpha_{1}\right\}$ (resp. $\tau\left(P_{v}^{(2)}\right)=\left\{\alpha_{2}\right\}$). Then $P_{v}^{(1)}$ and $P_{v}^{(2)}$ are not conjugate by the action of $\overline{\mathrm{G}}\left(k_{v}\right)$ (see Sect. 3.1). Note also that these two groups, being parahoric subgroups, contain the center of $\mathrm{G}\left(k_{v}\right)$. We consider the subgroup \bar{M}_{v} associated with $P_{v}^{(1)}$ (resp. associated with $P_{v}^{(2)}$). In both cases $i=1$, 2 the radical $R\left(\bar{M}_{v}\right)$ is a split torus of rank $n-1$ and the semi-simple part $\left(\bar{M}_{v}, \bar{M}_{v}\right)$ is of type A_{1}. From (3) we see that the order of $\bar{M}_{v}\left(\mathfrak{f}_{v}\right)$ is the same for $P_{v}^{(1)}$ and $P_{v}^{(2)}$.

If G is of type A_{n} then Δ_{v} is a cycle of $n+1$ vertices, all hyperspecial. The group $\overline{\mathrm{G}}\left(k_{v}\right)$ acts simply transitively by rotations on Δ_{v}. Let us choose a labelling $\alpha_{0}, \ldots, \alpha_{n}$ of the vertices that follows an orientation of Δ_{v}. We now consider $P_{v}^{(1)}$ with $\tau\left(P_{v}^{(1)}\right)=\left\{\alpha_{0}, \alpha_{2}\right\}$, and $P_{v}^{(2)}$ with $\tau\left(P_{v}^{(2)}\right)=\left\{\alpha_{0}, \alpha_{3}\right\}$. If $n \geq 4$ then no rotation of Δ_{v} sends $\tau\left(P_{v}^{(1)}\right)$ to $\tau\left(P_{v}^{(2)}\right)$, so that $P_{v}^{(1)}$ and $P_{v}^{(2)}$ are not conjugate by $\overline{\mathrm{G}}\left(k_{v}\right)$. Moreover, we can check as above that the order of \bar{M}_{v} is the same for $P_{v}^{(1)}$ and $P_{v}^{(2)}$.

4.3

We consider a coherent collection P of parahoric subgroups $P_{v} \subset \mathrm{G}\left(k_{v}\right)$. Let $m \in \mathbb{N}$ and choose a finite subset $S_{m} \subset S$ of length m. For each $v \in S_{m}$ we replace P_{v} by either $P_{v}^{(1)}$ or $P_{v}^{(2)}$, and consider the arithmetic subgroup in $\mathrm{G}(k)$ associated with this modified coherent collection. Thus we obtain 2^{m} different arithmetic subgroups in $\mathrm{G}(k)$, and by Lemma 5 their images in \mathscr{G} are pairwise non-conjugate. But by Theorem 6 they all have the same covolume.

To obtain families of torsion-free lattices we make the following change. Let us choose two distinct places $v_{1}, v_{2} \in S \backslash S_{m}$, and for $i=1$, 2 replace $P_{v_{i}}$ by its subgroup K_{i} defined as the kernel of the reduction modulo v_{i}. We denote this modified coherent collection by P^{\prime}. Let p_{i} be the characteristic of $\mathfrak{f}_{v_{i}}$. Then K_{i} is a pro- p_{i}-group [15, Lemma 3.8], and since $p_{1} \neq p_{2}$ we have that $K_{1} \cap K_{2}$ is torsion-free. Thus $\Lambda_{P^{\prime}}$ is torsion-free. The above construction with the coherent collection P^{\prime} instead of P now gives non-conjugate lattices in \mathscr{G} that are torsion-free. Using Lemma 4 we see that these sublattices also share the same covolume.

4.4

Let $\operatorname{Aut}(\mathscr{G})$ be the automorphism group of \mathscr{G}. Then $\operatorname{Aut}(\mathscr{G}) / \mathscr{G}$ (where \mathscr{G} acts on itself as inner automorphisms) is a group whose order is bounded by the symmetries of the Dynkin diagram of \mathscr{G}. In particular, it is a finite group. By letting m tends to infinity, we have constructed arbitrarily large families of non-conjugate lattices in \mathscr{G} of the same covolume. By considering each family modulo the equivalence induced by the action of Aut $(\mathscr{G}) / \mathscr{G}$, we see that there exist arbitrarily large families of lattices that are not conjugate by Aut($\mathscr{G})$. Since strong rigidity holds for all the lattices under consideration (see [14, §5.1] and the references given there), we get that these families consist of non-isomorphic lattices.

5 Proof of Theorem 2

We now give the proof of Theorem 2 . Thus we suppose that $\mathfrak{g}_{\mathbb{C}}$ has only factors of type A_{n} (with $n=2$ or $n=3$). Let $m \in \mathbb{N}$.

5.1

Let k be a number field that has as many complex places as there are simple factor of \mathscr{G} isomorphic to $\mathrm{PSL}_{n+1}(\mathbb{C})$. Let $\ell \mid k$ be a quadratic extension having one complex place for each factor of \mathscr{G} that is projective unitary (i.e., of the form $\operatorname{PU}(p, q)$) or isomorphic to $\mathrm{PSL}_{n+1}(\mathbb{C})$. Using approximation for k (see [18, Theorem (3.4)]) it is possible to choose $\alpha \in k$ such that $\ell=k(\sqrt{\alpha})$ is as above with the additional property that for the set $R \subset V_{\mathrm{f}}$ of ramified places in $\ell \mid k$ we have $2^{\# R} \geq m$.

5.2

Let G_{0} be the quasi-split simply connected k-group of type A_{n} with splitting field ℓ. By [6, Theorem 1], there exists an inner form G of G_{0} such that $\mathrm{G} \mid k_{v}$ is quasi-split for all $v \in R$ and such that $\left(\overline{\mathrm{G}}_{\mathscr{S}}\right)^{\circ} \cong \mathscr{G}$. The group G can be chosen to be k-isotropic unless the condition (1) in [6] is not satisfied at infinite places, in which case there is no isotropic k-group G with $\left(\overline{\mathrm{G}}_{\mathscr{S}}\right)^{\circ} \cong \mathscr{G}$. We can always choose G to be anisotropic, by specifying in [6, Theorem 1] that G is k_{v}-anisotropic at some $v \in V_{\mathrm{f}} \backslash R$.

5.3

The local Dynkin diagram Δ_{v} of $\mathrm{G}\left(k_{v}\right)$ for $v \in R$ is shown in [16, §4.2]; it is named $\mathrm{C}-\mathrm{BC}_{1}$ for the type A_{2}, and $\mathrm{C}-\mathrm{B}_{2}$ for $\mathrm{A}_{3}\left(=\mathrm{D}_{3}\right)$. With this diagram at hand we can easily construct (similarly to Sect. 4.2) a pair of non-conjugate parahoric subgroups of $\mathrm{G}\left(k_{v}\right)$ $(v \in R)$ that have equal volume. Taking them as part of coherent collection we produce m pairwise non-conjugate arithmetic subgroups that, by Theorem 6, are of the same covolume in \mathscr{G}. By Godement's compactness criterion, these lattices are cocompact exactly when G is anisotropic. The last steps of the proof are verified exactly as in Sects. 4.3-4.4.

Acknowledgments I would like to thank Misha Belolipetsky, Pierre de la Harpe, Gopal Prasad and Matthew Stover for helpful comments on an early version of this paper. I also thank Menny Aka for a helpful correspondence on his preprint.

References

1. Wang, H.-C.: Topics on totally discontinuous groups. Symmetric spaces (W. Boothby and G. Weiss eds.). Pure Appl. Math. 8, 459-487 (1972)
2. Thurston, W.P.: The geometry and topology of 3-manifolds. Lecture Notes from Princeton University (1980)
3. Prasad, G.: Volumes of S-arithmetic quotients of semi-simple groups. Inst. Hautes Études Sci. Publ. Math. 69, 91-117 (1989)
4. Borel, A., Harder, G.: Existence of discrete cocompact subgroups of reductive groups over local fields. J. Reine Angew. Math. 298, 53-64 (1978)
5. Morris, D.W.: Introduction to arithmetic groups. Preliminary version 0.5, arXiv:math/0106063, (2008)
6. Prasad, G., Rapinchuk, A.S.: On the existence of isotropic forms of semi-simple algebraic groups over number fields with prescribed local behavior. Adv. Math. 207, 646-660 (2006)
7. McReynolds D.B.: Isospectral locally symmetric manifolds. Preprint arXiv:math/060650, (2009)
8. Wielenberg, N.J.: Hyperbolic 3-manifolds which share a fundamental polyhedron, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference, Ann. of Math. Stud., vol. 97, pp. 505-513. Princeton University Press (1981)
9. Apasanov, B.N., Gutsul, I.S.: Greatly symmetric totally geodesic surfaces and closed hyperbolic 3-manifolds which share a fundamental polyhedron, Topology '90. Ohio State Univ. Math. Res. Inst. Publ., vol. 1, de Gruyter (1992)
10. Ivanšić, D.: Finite-volume hyperbolic 4-manifolds that share a fundamental polyhedron. Differ. Geom. Appl. 10, 205-223 (1999)
11. Zimmermann, B.: A note on hyperbolic 3-manifolds of same volume. Monatsh. Math. 117, 139-143 (1994)
12. Lubotzky, A.: Free quotients and the first betti number of some hyperbolic manifolds. Transform. Groups 1(1-2), 71-82 (1996)
13. Menny, Aka.: Arithmetic groups with isomorphic finite quotients. J. Algebra (in press)
14. Zimmer, R.J.: Semisimple Groups and Ergodic Theory, Monographs in Mathematics vol. 81. Birkhäuser, Basel (1984)
15. Platonov, V., Rapinchuck, A.S.: Algebraic Groups and Number Theory (engl. transl.), Pure and Applied Mathematics, vol. 139. Academic Press, Boston (1994)
16. Tits, J.: Reductive groups over local fields. Proc. Sympos. Pure Math. 33, 29-69 (1979)
17. Springer, T.A.: Linear Algebraic Groups (2nd edn.), Progr. Math., vol. 9. Birkhäuser, Basel (1998)
18. J. Neukirch: Algebraic Number Theory, Grundlehren Math. Wiss., vol. 322. Springer, Berlin (1999)

[^0]: Supported by Swiss National Science Foundation, Project number PP00P2-128309/1.
 V. Emery ($\boxtimes)$

 Section de mathématiques, Université de Genève, 2-4 rue du Lièvre, Case postale 64, 1211 Geneva 4, Switzerland
 e-mail: vincent.emery@gmail.com

