Geom Dedicata (2012) 160:313–320 DOI 10.1007/s10711-011-9684-y

ORIGINAL PAPER

Arbitrarily large families of spaces of the same volume

Vincent Emery

Received: 21 August 2011 / Accepted: 24 November 2011 / Published online: 11 December 2011 © Springer Science+Business Media B.V. 2011

Abstract In any connected non-compact semi-simple Lie group without factors locally isomorphic to $SL_2(\mathbb{R})$, there can be only finitely many lattices (up to isomorphism) of a given covolume. We show that there exist arbitrarily large families of pairwise non-isomorphic arithmetic lattices of the same covolume. We construct these lattices with the help of Bruhat-Tits theory, using Prasad's volume formula to control their covolumes.

Keywords Locally symmetric spaces · Arithmetic lattices · Volume

Mathematics Subject Classification (1991) 22E40 · 11E57 · 20G30 · 51M25

1 Introduction

Let \mathscr{G} be a connected semi-simple real Lie group without compact factors. For simplicity we will suppose that \mathscr{G} is adjoint (i.e., with trivial center), though this is not a major restriction in this article. Any choice of a Haar measure μ on \mathscr{G} assigns a covolume $\mu(\Gamma \setminus \mathscr{G}) \in \mathbb{R}_{>0}$ to each lattice Γ in \mathscr{G} . Wang's theorem [1] asserts that there exist only finitely many irreducible lattices (up to conjugation) of bounded covolumes in \mathscr{G} unless \mathscr{G} is isomorphic to $PSL_2(\mathbb{R})$ or $PSL_2(\mathbb{C})$. In particular, there exist only finitely many irreducible lattices in \mathscr{G} of a given covolume. For \mathscr{G} isomorphic to $PSL_2(\mathbb{C})$ this property is still true, as follows from the work of Thurston and Jørgensen [2, Ch. 6]. In this paper we prove that the number of lattices in \mathscr{G} of the same covolume can be arbitrarily large. In most cases, arbitrarily large families of lattices of equal covolume appear in the commensurability class of any arithmetic lattice of

V. Emery (🖂)

Supported by Swiss National Science Foundation, Project number PP00P2-128309/1.

Section de mathématiques, Université de Genève, 2–4 rue du Lièvre, Case postale 64, 1211 Geneva 4, Switzerland

e-mail: vincent.emery@gmail.com

Table 1 Simple lie groups not covered in Theorem 1	Туре А ₁ : Туре А ₂ : Туре А ₃ :	$\begin{array}{l} PSL_2(\mathbb{R}) \text{ and } PSL_2(\mathbb{C});\\ PSL_3(\mathbb{R}), PSL_3(\mathbb{C}) \text{ and } PU(2,1);\\ PSL_4(\mathbb{R}), PSL_4(\mathbb{C}), PSO(5,1), PU(3,1) \text{ and } PU(2,2). \end{array}$

 \mathscr{G} . This is the content of the following theorem. The symbol $\mathfrak{g}_{\mathbb{C}}$ denotes the complexification of the Lie algebra of \mathscr{G} .

Theorem 1 Let \mathscr{G} be a connected adjoint semi-simple real Lie group without compact factors. We suppose that $\mathfrak{g}_{\mathbb{C}}$ has a simple factor that is not of type A_1, A_2 or A_3 . Let Γ be an arithmetic lattice in \mathscr{G} . Then, for every $m \in \mathbb{N}$, there exist a family of m lattices commensurable to Γ that are pairwise non-isomorphic and have the same covolume in \mathscr{G} . These lattices can be chosen torsion-free.

Every arithmetic lattice $\Gamma \subset \mathscr{G}$ is constructed with the help of some algebraic group G defined over a number field k (see Sect. 2.1). To prove Theorem 1, we use Bruhat-Tits theory to construct families of arithmetic subgroups in G(k) that are non-conjugate, and have equal covolume. By strong (Mostow) rigidity one obtains the analogous result with "pairwise non-conjugate" replaced with "pairwise non-isomorphic". To control the covolume we use some computations that appear in Prasad's volume formula [3]. To ensure that the subgroups constructed are not conjugate we need to exhibit parahoric subgroups in $G(k_v)$ (where k_v is a non-archimedean completion of k) that are not conjugate but of the same volume. This can be easily achieved when G is not of type A_n and is split over k_v . When G is of type A_n the Bruhat-Tits building of a split $G(k_v)$ has more symmetries, and the argument must be slightly adapted. In particular, there we need the assumption $n \ge 4$, which explains the excluded cases in the statement of Theorem 1. The simple Lie groups excluded are listed in Table 1.

For the Lie groups of type A_2 and A_3 we can use algebraic groups that are outer forms (type 2A_2 and 2A_3) to show the existence of arbitrarily large families of arithmetic lattices of the same covolume. In contrast with Theorem 1, now each family corresponds to a different commensurability class.

Theorem 2 Let \mathscr{G} be a connected adjoint semi-simple Lie group without compact factors. We suppose that $\mathfrak{g}_{\mathbb{C}}$ contains only factors of type A_2 (resp. only factors of type A_3). Let $m \in \mathbb{N}$. Then there exists a family $\{\Gamma_1, \ldots, \Gamma_m\}$ of irreducible arithmetic lattices in \mathscr{G} such that for $i, j \in \{1, \ldots, m\}$:

- 1. Γ_i is commensurable to Γ_j ;
- 2. Γ_i and Γ_j have the same covolume in \mathscr{G} ;
- *3. if* $i \neq j$ *, then* Γ_i *and* Γ_j *are not isomorphic.*

The lattices { Γ_i } *can be chosen torsion-free. Moreover, they can be chosen cocompact. They can be chosen non-cocompact unless there are no such lattices in* \mathscr{G} *.*

It follows from Margulis' arithmeticity theorem that irreducible lattices can only exist in a Lie group \mathscr{G} that is isotypic (i.e., for which all the simple factors of $\mathfrak{g}_{\mathbb{C}}$ have the same type), so that the assumptions in Theorem 2 are minimal. The existence of irreducible cocompact lattices in any isotypic \mathscr{G} was proved by Borel and Harder [4]. Non-compact irreducible quotients of \mathscr{G} do not always exist. For example there is no such quotient of PU(3, 1) × PSO(5, 1) (this example is detailed in [5, Prop. (15.31)]). A general criterion for the existence of non-cocompact arithmetic lattices appears in the work of Prasad-Rapinchuk [6], where the authors extend the results of [4]. The proof of Theorem 2 uses these existence results.

By Wang's theorem, it is clear that the covolume common to the lattices of a family grows with the size of the family. Even though in this article we focus on qualitative results, we note that the proofs of Theorems 1-2 could be used to obtain quantitative results on the growth of the covolume with the size of the family.

We now discuss the geometric significance of our results. Let *X* be the symmetric space associated with \mathscr{G} , that is $X = \mathscr{G}/K$ for a maximal compact subgroup $K \subset \mathscr{G}$. This class of spaces includes the *hyperbolic n-space* \mathscr{H}^n ; we have that \mathscr{H}^2 is associated with $\mathscr{G} = PSL_2(\mathbb{R})$, and \mathscr{H}^3 with $\mathscr{G} = PSL_2(\mathbb{C})$. For a torsion-free irreducible lattice $\Gamma \subset \mathscr{G}$, the locally symmetric space $\Gamma \setminus X$ will be called *an X-manifold* (in particular it is irreducible and has finite volume). The following result follows directly from Theorems 1–2 and the existence of cocompact arithmetic lattices in \mathscr{G} (see for instance [6, Theorem 1]).

Corollary 3 Let X be a Riemannian symmetric space of non-compact type that contains no factor isometric to \mathscr{H}^2 or \mathscr{H}^3 , and suppose that irreducible quotients of X do exist. Then there exist arbitrarily large families of pairwise non-isometric commensurable compact X-manifolds having the same volume. The analogue statement with non-compact X-manifolds is true unless all X-manifolds are compact.

The result for compact *X*-manifolds associated with non-compact simple Lie groups (including $PSL_2(\mathbb{R})$ and $PSL_2(\mathbb{C})$) already follows from a recent paper of McReynolds [7], who constructed families of manifolds with the stronger property of being isospectral. His construction uses arithmetic lattices except for the case $X = \mathcal{H}^n$, where he proved the result by considering the non-arithmetic lattices constructed by Gromov and Piatetski-Shapiro.

The result for $X = \mathcal{H}^3$ was proved by Wielenberg for the case of non-compact manifolds [8], and later by Apasanov-Gutsul for compact manifolds [9]. For $X = \mathcal{H}^4$ the result with non-compact manifolds was proved by Ivanšić in his thesis [10]. All these results are obtained by geometric methods. In [11] Zimmerman gave a new proof for $X = \mathcal{H}^3$ by exhibiting examples of \mathcal{H}^3 -manifolds M with first Betti number β_1 at least 2, and showing that this property implies the existence of arbitrarily large families of covering spaces of M of same degree. In [12] Lubotzky showed that there exist (many) hyperbolic manifolds with $\beta_1 \ge 2$ in every dimension. Thus for all $X = \mathcal{H}^n$ we have a proof of Corollary 3 by Zimmerman's method. Since super-rigidity implies that $H^1(\Gamma \setminus X, \mathbb{R}) = 0$ for irreducible lattices Γ in \mathcal{G} with \mathbb{R} -rank($\mathcal{G}) \ge 2$, the same approach cannot be used to prove the result in this situation. Conversely, it does not seem that our method can be adapted to include the case of \mathcal{H}^2 and \mathcal{H}^3 .

Very recently, Aka constructed non-isomorphic arithmetic lattices that have isomorphic profinite completions [13]. In particular, his construction gives arbitrarily large families of lattices of equal covolume in the Lie group $SL_n(\mathbb{C})$, for any $n \ge 3$.

2 Arithmetic lattices

We can obviously reduce the proof of Theorem 1 to the case of an irreducible Γ . Then, like in Theorem 2, \mathscr{G} is supposed to be isotypic.

2.1

For generalities on arithmetic groups we refer the reader to [14] and [15]. We briefly explain here how irreducible arithmetic lattices in \mathscr{G} are obtained. Let *k* be a number field with ring of integers \mathscr{O} . Let G be an absolutely simple simply connected algebraic group defined over *k*.

We denote by \overline{G} the adjoint group of G, i.e., the *k*-group defined as G modulo its center, and by $\pi : G \to \overline{G}$ the natural isogeny. Let \mathscr{S} be the set of archimedean places v of k such that $G(k_v)$ is non-compact. We denote by $G_{\mathscr{S}}$ the product $\prod_{v \in \mathscr{S}} G(k_v)$, and similarly for $\overline{G}_{\mathscr{S}}$. Note that $G_{\mathscr{S}}$ is connected. For any matrix realization of G, the group $G(\mathscr{O})$ is an irreducible lattice in $G_{\mathscr{S}}$. Suppose that the connected component $(\overline{G}_{\mathscr{S}})^\circ$ of $\overline{G}_{\mathscr{S}}$ is isomorphic to \mathscr{G} . Then π extends to a surjective map $\pi_{\mathscr{S}} : G_{\mathscr{S}} \to \mathscr{G}$. An irreducible lattice in \mathscr{G} is called *an arithmetic lattice* if it is commensurable with a subgroup of the form $\pi_{\mathscr{S}}(G(\mathscr{O}))$ for some *k*-group G as above.

In the following G will always be a k-group as above, which determines a commensurability class of arithmetic lattices in \mathcal{G} .

2.2

We denote by V_f the set of finite places of k, and by \mathbb{A}_f the ring of finite adèles of k. For each $v \in V_f$ we consider k_v the completion of k with respect to v, and $\mathcal{O}_v \subset k_v$ its associated valuation ring. A collection $P = (P_v)_{v \in V_f}$ of compact subgroups $P_v \subset G(k_v)$ is called *coherent* if the product $\mathscr{K}_P = \prod_{v \in V_f} P_v$ is open in the adelic group $G(\mathbb{A}_f)$ (see [15, Ch. 6] for information on adelic groups). For example, for any matrix realization of G, the collection $(G(\mathscr{O}_v))_{v \in V_f}$ is coherent. For a coherent collection $P = (P_v)$, the group

$$\Lambda_P = \mathbf{G}(k) \cap \prod_{v \in V_{\mathbf{f}}} P_v,\tag{1}$$

where G(k) is seen diagonally embedded into $G(\mathbb{A}_f)$, is an arithmetic subgroup of G(k) (and thus an arithmetic lattice in $G_{\mathscr{P}}$). This follows from the equality $G(\mathscr{O}) = G(k) \cap \prod_v G(\mathscr{O}_v)$ together with the inequality

$$[\Lambda_P : \Lambda_{P'}] \le [\mathscr{H}_P : \mathscr{H}_{P'}],\tag{2}$$

valid for any two coherent collections P and P' with $P'_v \subset P_v$ for each $v \in V_f$. Since G is simply connected, strong approximation holds [15, Theorem 7.12] and it follows that (2) is in fact an equality. We put this (known) result in the following lemma.

Lemma 4 Let $P = (P_v)_{v \in V_f}$ and $P' = (P'_v)_{v \in V_f}$ be two coherent collections of compact subgroups such that $P'_v \subset P_v \subset G(k_v)$ for all $v \in V_f$. Then

$$[\Lambda_P : \Lambda_{P'}] = \prod_{v \in V_{\mathrm{f}}} [P_v : P'_v]$$

2.3

For every field extension L|k with algebraic closure \overline{L} , the group of L-points given by $\overline{G}(L)$ is identified with the inner automorphisms of G that are defined over L. Note that in general $\overline{G}(L)$ is larger than the image of G(L) in $\overline{G}(\overline{L})$.

Lemma 5 Let P and P' be two coherent collections of compact subgroups P_v , $P'_v \subset G(k_v)$. Suppose that there exist a place $w \in V_f$ such that P_w and P'_w are not conjugate by the action of $\overline{G}(k_w)$. Moreover, we suppose that P_w and P'_w contain the center of $G(k_w)$. Then $\pi_{\mathscr{S}}(\Lambda_P)$ and $\pi_{\mathscr{S}}(\Lambda_{P'})$ are not conjugate in \mathscr{G} .

Proof Let C be the center of G. We may assume that each P_v (resp. P'_v) contains the center $C(k_v)$. If not replace P_v by $C(k_v) \cdot P_v$; the image $\pi_{\mathscr{S}}(\Lambda_P)$ does not change with this modification, and the hypothesis at w is kept.

Suppose that $\pi_{\mathscr{S}}(\Lambda_P)$ and $\pi_{\mathscr{S}}(\Lambda_{P'})$ are conjugate in \mathscr{G} . Then Λ_P and $\Lambda_{P'}$ are conjugate under the action of $\mathscr{G} \cong (\overline{G}_{\mathscr{S}})^{\circ}$. Since arithmetic subgroups of G are Zariski-dense, we have more precisely that Λ_P and $\Lambda_{P'}$ are conjugate by an element $g \in \overline{G}(k)$. By strong approximation the closure of Λ_P (resp. $\Lambda_{P'}$) in $G(k_w)$ is P_w (resp. P'_w), and it follows that g conjugates P_w and P'_w .

3 Parahoric subgroups and volume

In the following we assume that the reader has some knowledge of Bruhat-Tits theory. All the facts we need can be found in Tits' survey [16]. See [15, §3.4] for a more elementary introduction.

3.1

Let $v \in V_f$. A *parahoric subgroup* of $G(k_v)$, a certain kind of compact open subgroup of $G(k_v)$, is by definition the stabilizer of a simplex in the Bruhat-Tits building attached to $G(k_v)$. There are a finite number of conjugacy classes of parahoric subgroups in $G(k_v)$; these conjugacy classes in $G(k_v)$ correspond canonically to proper subsets of the local Dynkin diagram Δ_v of $G(k_v)$. If $P_v \subset G(k_v)$ is a parahoric subgroup, we denote by $\tau(P_v) \subset \Delta_v$ its associated subset, and we call it the *type* of P_v . Two parahoric subgroups P_v and P'_v can be conjugate by an element of $\overline{G}(k_v)$ only if there is an automorphism of Δ_v that sends $\tau(P_v)$ to $\tau(P'_v)$.

3.2

Let us denote by \mathfrak{f}_v the residual field of k_v . To each parahoric subgroup $P_v \subset G(k_v)$, a smooth affine group scheme over \mathscr{O}_v is associated in a canonical way [16, §3.4.1]. By reduction modulo v, this determines in turn an algebraic group over \mathfrak{f}_v . Its maximal reductive quotient is a \mathfrak{f}_v -group that will be denoted by the symbol \overline{M}_v . The structure of \overline{M}_v can be determined from $\tau(P_v)$ and the local index of $G(k_v)$ by the procedure described in [16, §3.5].

3.3

Let $(\overline{M}_v, \overline{M}_v)$ be the commutator group of \overline{M}_v , and let $R(\overline{M}_v)$ be the radical of \overline{M}_v . Both are defined over \mathfrak{f}_v , and we have (see [17, 8.1.6])

$$\overline{M}_v = (\overline{M}_v, \overline{M}_v) \cdot R(\overline{M}_v).$$

The radical $R(\overline{M}_v)$ is a central torus in \overline{M}_v , whose intersection with $(\overline{M}_v, \overline{M}_v)$ is finite [17, 7.3.1]. It follows that the product map

$$(\overline{M}_v, \overline{M}_v) \times R(\overline{M}_v) \to \overline{M}_v$$

is an isogeny. By applying Lang's isogeny theorem [15, Prop. 6.3], we obtain that the order of $\overline{M}_{v}(\mathfrak{f}_{v})$ is given by the following:

$$|\overline{M}_{v}(\mathfrak{f}_{v})| = |(\overline{M}_{v}, \overline{M}_{v})(\mathfrak{f}_{v})| \cdot |R(\overline{M}_{v})(\mathfrak{f}_{v})|.$$
(3)

Theorem 6 (Prasad) Let μ be a Haar measure on $G_{\mathscr{S}}$. Then there exists a constant c_G (depending on the algebraic group G) such that for any coherent collection P of parahoric

subgroups $P_v \subset G(k_v)$, we have

$$\mu(\Lambda_P \setminus \mathbf{G}_{\mathscr{S}}) = c_{\mathbf{G}} \prod_{v \in V_{\mathbf{f}}} \frac{|\mathfrak{f}_v|^{(t_v + \dim \overline{M}_v)/2}}{|\overline{M}_v(\mathfrak{f}_v)|},$$

where for each $v \in V_f$ the integer t_v depends only on the k_v -structure of G.

This theorem is a much weaker form of Prasad's volume formula, given in [3, Theorem 3.7]. In fact, Prasad's result explicitly gives the value of c_G for a natural normalization of the Haar measure μ . Moreover, the integers t_v are explicitly known. Since we want to prove qualitative results, we will not need more than the statement of Theorem 6.

4 Proof of Theorem 1

We now prove Theorem 1, assuming that the group \mathscr{G} is isotypic. Let $\Gamma \subset \mathscr{G}$ be an irreducible arithmetic lattice, with G and \overline{G} the associated *k*-groups as in Sect. 2.1. We retain all notation introduced above.

4.1

The group G is quasi-split over k_v for almost all places v [15, Theorem 6.7]. Let us denote by T the set of the places $v \in V_f$ such G is not quasi-split over k_v . Let $\ell | k$ be the smallest Galois extension such that G is an inner form over ℓ (see for instance [17, Ch. 17], where this field is denoted by E_τ). If $v \notin T$ is totally split in $\ell | k$, i.e., if $\ell \subset k_v$, then G is split over k_v . It follows from the Chebotarev density theorem that the set of places $v \notin T$ that are totally split in $\ell | k$ is infinite. Let us denote this infinite subset of V_f by S.

4.2

Let $v \in S$. The local Dynkin diagram Δ_v of $G(k_v)$ can be found in [16, §4.2]. Let *n* be the absolute rank of \mathscr{G} (and of G). We suppose first that \mathscr{G} (and consequently G as well) is not of absolute type A_n . Then there exist two vertices $\alpha_1, \alpha_2 \in \Delta_v$ such that α_1 is hyperspecial and α_2 is not. Let $P_v^{(1)}$ (resp. $P_v^{(2)}$) be a parahoric subgroup in $G(k_v)$ of type $\tau(P_v^{(1)}) = \{\alpha_1\}$ (resp. $\tau(P_v^{(2)}) = \{\alpha_2\}$). Then $P_v^{(1)}$ and $P_v^{(2)}$ are not conjugate by the action of $\overline{G}(k_v)$ (see Sect. 3.1). Note also that these two groups, being parahoric subgroups, contain the center of $G(k_v)$. We consider the subgroup \overline{M}_v associated with $P_v^{(1)}$ (resp. associated with $P_v^{(2)}$). In both cases i = 1, 2 the radical $R(\overline{M}_v)$ is a split torus of rank n - 1 and the semi-simple part $(\overline{M}_v, \overline{M}_v)$ is of type A_1 . From (3) we see that the order of $\overline{M}_v(\mathfrak{f}_v)$ is the same for $P_v^{(1)}$ and $P_v^{(2)}$.

If G is of type A_n then Δ_v is a cycle of n + 1 vertices, all hyperspecial. The group $\overline{G}(k_v)$ acts simply transitively by rotations on Δ_v . Let us choose a labelling $\alpha_0, \ldots, \alpha_n$ of the vertices that follows an orientation of Δ_v . We now consider $P_v^{(1)}$ with $\tau(P_v^{(1)}) = \{\alpha_0, \alpha_2\}$, and $P_v^{(2)}$ with $\tau(P_v^{(2)}) = \{\alpha_0, \alpha_3\}$. If $n \ge 4$ then no rotation of Δ_v sends $\tau(P_v^{(1)})$ to $\tau(P_v^{(2)})$, so that $P_v^{(1)}$ and $P_v^{(2)}$ are not conjugate by $\overline{G}(k_v)$. Moreover, we can check as above that the order of \overline{M}_v is the same for $P_v^{(1)}$ and $P_v^{(2)}$.

4.3

We consider a coherent collection P of parahoric subgroups $P_v \subset G(k_v)$. Let $m \in \mathbb{N}$ and choose a finite subset $S_m \subset S$ of length m. For each $v \in S_m$ we replace P_v by either $P_v^{(1)}$ or $P_v^{(2)}$, and consider the arithmetic subgroup in G(k) associated with this modified coherent collection. Thus we obtain 2^m different arithmetic subgroups in G(k), and by Lemma 5 their images in \mathscr{G} are pairwise non-conjugate. But by Theorem 6 they all have the same covolume.

To obtain families of torsion-free lattices we make the following change. Let us choose two distinct places $v_1, v_2 \in S \setminus S_m$, and for i = 1, 2 replace P_{v_i} by its subgroup K_i defined as the kernel of the reduction modulo v_i . We denote this modified coherent collection by P'. Let p_i be the characteristic of \mathfrak{f}_{v_i} . Then K_i is a pro- p_i -group [15, Lemma 3.8], and since $p_1 \neq p_2$ we have that $K_1 \cap K_2$ is torsion-free. Thus $\Lambda_{P'}$ is torsion-free. The above construction with the coherent collection P' instead of P now gives non-conjugate lattices in \mathscr{G} that are torsion-free. Using Lemma 4 we see that these sublattices also share the same covolume.

4.4

Let Aut(\mathscr{G}) be the automorphism group of \mathscr{G} . Then Aut(\mathscr{G})/ \mathscr{G} (where \mathscr{G} acts on itself as inner automorphisms) is a group whose order is bounded by the symmetries of the Dynkin diagram of \mathscr{G} . In particular, it is a finite group. By letting *m* tends to infinity, we have constructed arbitrarily large families of non-conjugate lattices in \mathscr{G} of the same covolume. By considering each family modulo the equivalence induced by the action of Aut(\mathscr{G})/ \mathscr{G} , we see that there exist arbitrarily large families of lattices that are not conjugate by Aut(\mathscr{G}). Since strong rigidity holds for all the lattices under consideration (see [14, §5.1] and the references given there), we get that these families consist of non-isomorphic lattices.

5 Proof of Theorem 2

We now give the proof of Theorem 2. Thus we suppose that $\mathfrak{g}_{\mathbb{C}}$ has only factors of type A_n (with n = 2 or n = 3). Let $m \in \mathbb{N}$.

5.1

Let *k* be a number field that has as many complex places as there are simple factor of \mathscr{G} isomorphic to $PSL_{n+1}(\mathbb{C})$. Let $\ell|k$ be a quadratic extension having one complex place for each factor of \mathscr{G} that is projective unitary (i.e., of the form PU(p, q)) or isomorphic to $PSL_{n+1}(\mathbb{C})$. Using approximation for *k* (see [18, Theorem (3.4)]) it is possible to choose $\alpha \in k$ such that $\ell = k(\sqrt{\alpha})$ is as above with the additional property that for the set $R \subset V_{\rm f}$ of ramified places in $\ell|k$ we have $2^{\#R} \ge m$.

5.2

Let G_0 be the quasi-split simply connected *k*-group of type A_n with splitting field ℓ . By [6, Theorem 1], there exists an inner form G of G_0 such that $G|k_v$ is quasi-split for all $v \in R$ and such that $(\overline{G}_{\mathscr{S}})^{\circ} \cong \mathscr{G}$. The group G can be chosen to be *k*-isotropic unless the condition (1) in [6] is not satisfied at infinite places, in which case there is no isotropic *k*-group G with $(\overline{G}_{\mathscr{S}})^{\circ} \cong \mathscr{G}$. We can always choose G to be anisotropic, by specifying in [6, Theorem 1] that G is k_v -anisotropic at some $v \in V_f \setminus R$.

5.3

The local Dynkin diagram Δ_v of $G(k_v)$ for $v \in R$ is shown in [16, §4.2]; it is named C–BC₁ for the type A₂, and C–B₂ for A₃ (= D₃). With this diagram at hand we can easily construct (similarly to Sect. 4.2) a pair of non-conjugate parahoric subgroups of $G(k_v)$ ($v \in R$) that have equal volume. Taking them as part of coherent collection we produce *m* pairwise non-conjugate arithmetic subgroups that, by Theorem 6, are of the same covolume in \mathscr{G} . By Godement's compactness criterion, these lattices are cocompact exactly when G is anisotropic. The last steps of the proof are verified exactly as in Sects. 4.3–4.4.

Acknowledgments I would like to thank Misha Belolipetsky, Pierre de la Harpe, Gopal Prasad and Matthew Stover for helpful comments on an early version of this paper. I also thank Menny Aka for a helpful correspondence on his preprint.

References

- 1. Wang, H.-C.: Topics on totally discontinuous groups. Symmetric spaces (W. Boothby and G. Weiss eds.). Pure Appl. Math. 8, 459–487 (1972)
- 2. Thurston, W.P.: The geometry and topology of 3-manifolds. Lecture Notes from Princeton University (1980)
- Prasad, G.: Volumes of S-arithmetic quotients of semi-simple groups. Inst. Hautes Études Sci. Publ. Math. 69, 91–117 (1989)
- Borel, A., Harder, G.: Existence of discrete cocompact subgroups of reductive groups over local fields. J. Reine Angew. Math. 298, 53–64 (1978)
- 5. Morris, D.W.: Introduction to arithmetic groups. Preliminary version 0.5, arXiv:math/0106063, (2008)
- Prasad, G., Rapinchuk, A.S.: On the existence of isotropic forms of semi-simple algebraic groups over number fields with prescribed local behavior. Adv. Math. 207, 646–660 (2006)
- 7. McReynolds D.B.: Isospectral locally symmetric manifolds. Preprint arXiv:math/060650, (2009)
- Wielenberg, N.J.: Hyperbolic 3-manifolds which share a fundamental polyhedron, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference, Ann. of Math. Stud., vol. 97, pp. 505–513. Princeton University Press (1981)
- Apasanov, B.N., Gutsul, I.S.: Greatly symmetric totally geodesic surfaces and closed hyperbolic 3-manifolds which share a fundamental polyhedron, Topology '90. Ohio State Univ. Math. Res. Inst. Publ., vol. 1, de Gruyter (1992)
- Ivanšić, D.: Finite-volume hyperbolic 4-manifolds that share a fundamental polyhedron. Differ. Geom. Appl. 10, 205–223 (1999)
- Zimmermann, B.: A note on hyperbolic 3-manifolds of same volume. Monatsh. Math. 117, 139–143 (1994)
- Lubotzky, A.: Free quotients and the first betti number of some hyperbolic manifolds. Transform. Groups 1(1–2), 71–82 (1996)
- 13. Menny, Aka.: Arithmetic groups with isomorphic finite quotients. J. Algebra (in press)
- Zimmer, R.J.: Semisimple Groups and Ergodic Theory, Monographs in Mathematics vol. 81. Birkhäuser, Basel (1984)
- Platonov, V., Rapinchuck, A.S.: Algebraic Groups and Number Theory (engl. transl.), Pure and Applied Mathematics, vol. 139. Academic Press, Boston (1994)
- 16. Tits, J.: Reductive groups over local fields. Proc. Sympos. Pure Math. 33, 29-69 (1979)
- 17. Springer, T.A.: Linear Algebraic Groups (2nd edn.), Progr. Math., vol. 9. Birkhäuser, Basel (1998)
- 18. J. Neukirch: Algebraic Number Theory, Grundlehren Math. Wiss., vol. 322. Springer, Berlin (1999)