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Abstract.

A finite element method for Burgers’ equation is studied. The method is analyzed
using techniques from stabilized finite element methods and convergence to entropy
solutions is proven under certain hypotheses on the artificial viscosity. In particular
we assume that a discrete maximum principle holds. We then construct a nonlinear
artificial viscosity that satisfies the assumptions required for convergence and that can
be tuned to minimize artificial viscosity away from local extrema.
The theoretical results are exemplified on a numerical example.
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1 Introduction.

In this note we will revisit some of our results on discrete maximum prin-
ciples for finite element methods [2, 3, 4] and show how they may be applied for
the analysis of one dimensional non-linear conservation laws. It is well known
that any centered finite difference scheme or the standard Galerkin method
will exhibit violent spurious oscillations close to shocks due to the conservation
properties (no entropy is produced). Different techniques have been proposed to
solve this problem. In the Galerkin framework, stabilized finite element methods
using shock-capturing have been investigated by Johnson and Szepessy in [10]
and by Szepessy in [15]. In these works convergence to entropy solutions for scalar
conservation laws has been proved both in the one and two dimensional case.
Essentially the streamline-diffusion/shock capturing (SD/SC) method works be-
cause one term (SD) gives L2-control of the low order residual and the other term
(SC) gives a stronger local control close to shocks (hence the name). Success is
obtained by a combination of a global anisotropic diffusion (in the streamline
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direction) and a residual based isotropic diffusion the coefficient of which is O(h)
in the vicinity of shocks.
In the finite volume or finite difference community on the other hand oscillation
free solutions have been obtained by the introduction of so call slope limiters or
flux limiters that will assure that oscillations remain bounded. For a discussion of
slope limiter high resolution schemes of finite difference or finite volume type, see
the monographs by Leveque [12] or by Godlewski and Raviart [8] and references
therein. The discontinuous Galerkin method is often considered as a natural
generalization of finite volume methods in a Galerkin framework, and it has been
considered in the case of scalar conservation laws in the work by Jaffre, Johnson
and Szepessy [9] and the works of Cockburn and Shu, see for instance [7].
The aim of the present paper is to revisit the concept of nonlinear artificial
viscosity for conservation laws in finite element methods using the ideas from the
theory of discrete maximum principles, in the simple one dimensional case. In
particular we give sufficient conditions on the viscosity parameter for convergence
to entropy solutions. More precisely we show that under the following hypotheses
on the nonlinear artificial viscosity, ε(uh), (where uh denotes the finite element
solution associated to the mesh-size h)

(H1) ε(uh)∂xuh is locally Lipschitz continuous,
(H2) the bounds 0 ≤ ε(uh) ≤ Ch‖uh‖L∞(Ω) hold,
(H3) ε(uh) is sufficiently strong to make the method enjoy a discrete maximum

principle,

the approximating sequence of finite element solutions converges to the unique
entropy solution of the conservation law.
We propose an analysis for the standardGalerkin method using piecewise affine
continuous approximation and shock capturing artificial viscosity. Compared to
the streamline-diffusion/shock capturing method proposed in [10] our method
uses only a nonlinear artificial viscosity or shock capturing term and no least
squares stabilization of the residual. Moreover, we give an example of a function
of ε(uh) that satisfies (H1)–(H3), and has a weak consistency property, in fact,
the viscosity can be tuned to be as small as desired away from local extrema. In
our case the shock-capturing term is based not on the low order residual, but on
the jump of the gradient over element edges.
In the next section we will introduce the concept of the DMP-property. This
property of the bilinear (or semilinear) form of the weak formulation yields
sufficient conditions for discrete maximum principles in finite element methods
and is the cornerstone of our analysis. As we shall see the DMP-property of
the semilinear form associated to a problem provides a sufficient condition for
the numerical solution to be local extremum diminishing (LED). This strong
monotonicity property is then used to prove that the sequence of finite element
solutions to the one dimensional Burgers’ equation converges to the weak entropy
solution of the conservation law.
An outline of the paper is as follows, first, in Section 2 we present the abstract
theory for discrete maximum principles, we then consider the case of non-linear
conservation laws with strictly convex flux function in Section 3 and prove
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convergence to entropy solutions under the above hypotheses. In Section 4 we
then construct a class of artificial viscosities where a parameter allows to control
the spread of the artificial viscosity. The convergence theory applies uniformly
in the parameter and we compare this artificial viscosity with the classical von
Neumann–Richtmyer artificial viscosity. Finally in Section 5 we show the
performance of the method on two simple model cases. One includes a shock
wave and a rarefaction wave while the other has a smooth solution.

2 The DMP-property.

Let Ω be some open, simply connected domain and I some time interval defin-
ing a space time domain Q = Ω × I. Consider the following abstract problem
on Ω: find u ∈ L(0, T ;V ) such that

(∂tu, v)Q +

∫ T
0

a(u; v) dt = (g, v)Q, ∀v ∈ L(0, T ;W )(2.1)

with u(0) = u0 and its finite element discretization: find uh ∈ Vh such that

(∂tuh, vh)h + ah(uh; vh) = (g, vh), ∀vh ∈ Vh and ∀t ∈ I(2.2)

with (uh(0), vh)Ω = (u0, vh)Ω for all vh ∈ Vh. Here, V and W are two function
spaces and Vh is the finite element space consisting of piecewise affine continu-
ous functions defined on some nonoverlapping, conforming triangulation Th of Ω,
a( · ; ·) is a semi-linear form with some discrete counterpart ah( · ; ·), ( · , ·)X de-
notes the L2(X)-scalar product and ( · , ·)h denotes the L2(Ω)-scalar product
evaluated using nodal quadrature. The corresponding norms are denoted by

‖ · ‖X = ( · , ·)
1
2

X and ‖ · ‖h = ( · , ·)
1
2

h . We will use the notation [[w]]e for the jump
of w over element boundary e in one space dimension, defined by

lim
ε→0
w(xe + ε)− w(xe − ε)

and {w}e for the average of w over element boundary e, defined by

lim
ε→0

1

2
(w(xe + ε) + w(xe − ε)).

By vi we will denote the basis functions in Vh such that vi(xj) = δij for all
nodes xj in the mesh, where δij denotes the Kronecker delta funtion. The support
of vi will be denoted Ωi. We assume that the continuous Cauchy-problem (2.1)
problem is well-posed. Local well-posedness for the discrete problem (2.2) is
obtained provided ah(uh; v) is locally Lipschitz continuous. Very often the ana-
lysis of (2.1) relies on a maximum principle of some kind. Unfortunately such
maximum principles are inherited by the discrete version of the problem only
in particular cases [6, 18, 16, 2], such methods are said to satisfy a discrete
maximum principle (DMP). In particular in the important case of hyperbolic
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conservation laws the finite element solution obtained using a linear scheme
does not satisfy a DMP unless first order artificial viscosity is added.

Because of the nonlinearity of ah, a DMP for (2.2) cannot be proved by showing
that the stiffness matrix is an M-matrix. A framework for the study of discrete
maximum principles for semilinear forms was proposed in [4].

Definition 2.1. We say that the semi-linear form ah(uh; v) has the strong
DMP-property if the following holds true: ∀uh ∈ Vh and for all interior vertex xi,
if uh is locally minimal (resp. maximal) on vertex xi over macro-element Ωi
(uh(xi) ≤ uh(x), ∀x ∈ Ωi) then there exists αK > 0 such that

ah(uh; vi) ≤ −
∑
K∈Ωi

αK |∇uh|K |.(2.3)

(resp. ah(uh;wi) ≥
∑
K∈Ωi

αK |∇uh|K |)

Definition 2.2. We say that the semi-linear form a(uh; v) has the weak
DMP-property if it satisfies the criterion of the strong DMP-property for local
minima under the additional assumption that the local minimum is negative.

Following the ideas of [2, 3, 4], the DMP-property may be used to prove dis-
crete maximum principles for time dependent or stationary convection–diffusion-
reaction equations discretized with piecewise affine finite elements. For com-
pleteness we sketch the argument for a particular case. Assume that we solve
the problem find uh ∈ V 0h (where V

0
h is the space of piecewise affine con-

tinuous functions satisfying homogeneous Dirichlet boundary conditions) such
that

ah(uh, vh) = (f, vh), ∀vh ∈ V
0
h , with f ≥ 0 in Ω.

Suppose that for the continuous problem a maximum principle holds such that
u ≥ 0. We then wish to prove that uh also satisfies uh ≥ 0, i.e. that the dis-
crete method inherits the maximum principle of the continuous problem. We
assume that ah( · ; ·) enjoys the weak DMP-property. Suppose now that there
exists a node Si such that uh(Si) < 0 and uh(Si) is a local minimum. Testing
with vi we have

ah(uh, vi) ≤ −
∑
K∈Ωi

αK |∇uh|K |.

However since ah(uh, vi) = (f, vi) ≥ 0, the only way this can hold true is if
∇uh = 0 for all K ∈ Ωi and hence Si is not a strict local minimum. Since we can
repeat the argument for all nodes up to the boundary, the minimum is taken on
the boundary and hence uh ≥ 0 in Ω.
In general one may say that the weak DMP-property is associated to positivity
whereas the strong DMP-property may be associated to monotonicity, as we shall
see in Section 5.
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3 The Burgers’ equation: convergence to entropy solutions.

To fix the ideas, from now on, we will consider the case of the homogeneous
Burgers’ equation set on an interval Ω of the real line with periodic boundary
conditions and in the time interval I = (0, T ). The initial data have bounded
variation, u0 ∈ BV. The source term is zero, g = 0, and the bilinear form is
given by

a(u; v) = −

(
u2

2
, ∂xv

)
Ω

.

The discrete form is simply a( · ; ·) with an artificial viscosity term added.

ah(uh; vh) = −

(
u2h
2
, ∂xvh

)
Ω

+ (ε(uh)∂xuh, ∂xvh)Ω.(3.1)

We assume that the ε(uh) satisfies the hypotheses (H1)–(H3) of the introduction.
Recall that the artificial viscosity coefficient ε(uh) is assumed to be Lipschitz
continuous and satisfy the bounds 0 ≤ ε(uh) ≤ Ch‖uh‖L∞(Ω). Moreover to
satisfy assumption (H3) we assume that the form ah( · ; ·) enjoys the strong DMP-
property of Definition 2.1. We let Vh be the space of piecewise affine continuous
functions defined on a uniform mesh with N elements, with the nodes {xi}Ni=0
and local mesh size h = |Ω|N−1. It follows that the discrete scalar product

writes (u, v)h =
∑N
i=0 u(xi)v(xi)h.

Since the form ah( · ; ·) (3.1) is locally Lipschitz continuous the discrete prob-
lem admits a local solution and using the lemmata below this solution may be
extended to all time. To prove that the sequence of solutions {uh}h converges to
the unique entropy solution we typically need an L∞-stability bound to assure
weak-* convergence and a BV estimate uniform in h and in time. First of all we
note that we have the following energy stability

Lemma 3.1. Let uh be the solution of (2.2) with the semilinear form (3.1).
Then there holds for h > 0

1

2
‖uh(T )‖

2
h +
∥∥ε(uh) 12 ∂xuh∥∥2Q = 12‖uh(0)‖2h.

Proof. Immediate by taking vh = uh in (2.2) and integrating in time. Note
that

(uh∂xuh, uh)Ω = 0, ∀t ∈ R+

thanks to the periodic boundary conditions.

Remark 3.1. In fact the theory developed in the following section may
be extended to any flux function f(u) that is strictly convex, C2(R) and such
that there exists cf ∈ R such that f(u) = cff ′(u)u, for all u. More precisely
f(u) = u2l where l ≥ 1 is an integer.
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Lemma 3.2. Let uh be the solution of (2.2) with g = 0 and with the semi-
linear form (3.1) satisfying the strong DMP-property. Then any local extremum
of |uh| is decreasing in time (LED). As an immediate consequence ‖uh‖L∞(Q) ≤
‖uh(0)‖L∞(Ω).

Proof. Assume that there is a local maximum in the node xi. Take vh = vi
in (2.2). Since the lumped mass is used for the time derivative term we have

∂tuh(xi, t) = −h
−1ah(uh, vi) ≤ 0

where the last inequality is a consequence of the strong DMP-property as-
sumption. Hence any local maximum must be decreasing. The result for lo-
cal minima follows in the same fashion. The L∞-bound follows by the LED
property.

The only way the total variation can increase for a solution that is LED is
by the appearance of new local extrema. Hence the importance of the following
lemma.

Lemma 3.3. (Conservation of local extrema) Let uh be the solution of (2.2)
with g = 0 and with the semilinear form (3.1) satisfying the strong DMP-
property. The number of local extrema in uh( · , t) is smaller than or equal to
the number of local extrema in uh(0).

Proof. Local extrema can appear only in a process where the gradient in one
cell changes sign with respect to the gradient in the neighbouring cells. Clearly
for this to happen the value of the gradient has to vanish at some time t, since
uh is C

0 in space and time for each fixed h. Consider therefore an element K
with ∂xuh = 0 and such that its neighbouring elements K

′ and K ′′ have gra-
dients with the same sign (otherwise uh|K is already a local extremum). Let xi
denote the left endpoint of K and xi+1 the right endpoint, with correspond-
ing testfunctions vi and vi+1. We assume that ∂xuh|K′ ≥ 0 and ∂xuh|K′′ ≥ 0
(see Figure 3.1). If ∂t∂xuh|K ≥ 0 then no new local extremum can appear.

Figure 3.1: Illustration of the situation described in Lemma 3.3.
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Consider therefore the gradient on element K.

∂t∂xuh|K = ∂th
−1(uh(xi+1, t)− uh(xi, t))

= h−1(∂tuh(xi+1, t)− ∂tuh(xi, t))

= h−2(ah(uh; vi+1)− ah(uh; vi)).

However since ah( · ; ·) has the DMP-property ah(uh; vi+1) ≥ 0 and ah(uh; vi)
≤ 0. It follows that ∂t∂xuh|K ≥ 0 and in the same fashion one may prove that
∂t∂xuh|K ≤ 0 when ∂xuh|K′ ≤ 0 and ∂xuh|K′′ ≤ 0. Hence no new local extrema
can be created.

Remark 3.2. Note that this result does not imply that a node may not
become a local extremum during the time evolution. It says that no new local
extremum can be created, but sets no limits to the transport of existing max-
imum or minimum points. However the same technique may be used to show
that as a local extremum moves from one node to the next it can never grow.
Details are left to the reader.

Lemma 3.4. Let uh be the solution of (2.2) with g = 0 and with the semilinear
form (3.1) satisfying the strong DMP-property. Then there holds

∂tTV (uh) ≤ 0.

Proof. For uh ∈ Vh, TV (uh) =
∑N
j=0 |uh(xj) − uh(xj−1)|, with the con-

vention that x−1 = xN . Let K
+
xj (K

−
xj) denote the element whose left (right)

endpoint is xj . At each time t we may extract the ordered sets of positions of
those local maxima of uh{x̂j}Mj=0 for which ∂xuh|K+x̂j

< 0, and local minima

{x̆j}Mj=0 for which ∂xuh|K−x̆j
< 0. M denotes the cardinality of these sets. By

Lemma 3.3 M is bounded from above uniformly in h and t. The criteria on the
gradient are chosen so as to include only one end point of constant portions of
the solution that are local extrema.
Assume now that the sets are numbered in such a way that x̂j−1 < x̆j < x̂j
for all j. By construction this is always possible.
The total variation may then be written

TV (uh(t)) =
M∑
j=0

(uh(x̂j , t)− uh(x̆j+1, t) + uh(x̂j , t)− uh(x̆j , t))

with the convention that x̆M+1 = x̆0 (by periodicity). We conclude by deriving
in time and noting that ∂tuh(x̂j , t) ≤ 0 and ∂tuh(x̆j , t) ≥ 0 by the LED property
of Lemma 3.2.

Lemma 3.5. Let uh be the solution of (2.2) with g = 0 and with the semilinear
form (3.1) satisfying the strong DMP-property. Then for all h > 0 there holds

‖∂tuh(t)‖L1(Ω) + ‖∂xuh(t)‖L1(Ω) ≤ C, ∀t ∈ R+(3.2)
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and

‖uh( · , t1)− uh( · , t2)‖L1(Ω) ≤ C|t1 − t2|, ∀t1, t2 ∈ R+(3.3)

with C independent of h.

Proof. Since ∂tTV (uh(t)) ≤ 0 and ‖∂xuh( · , t)‖L1(Ω) = TV (uh(t)) we immed-
iately conclude that ‖∂xuh( · , t)‖L1(Ω) ≤ C. Consider now

‖∂tuh( · , t)‖L1(Ω) ≤
∑
i

|∂tuh(xi, t)|h

=
∑
i

|ah(uh; vi)| ≤ ‖uh‖L∞(Ω)
∑
i

‖∂xuh( · , t)‖L1(Ωi)

≤ c‖uh‖L∞(Ω)‖∂xuh( · , t)‖L1(Ω).

For inequality (3.3) we note that

‖uh( · , t1)− uh( · , t2)‖L1(Ω) ≤
∑
i

|uh(xi, t1)− uh(xi, t2)|h

=
∑
i

∣∣
∫ t1
t2

∂tuh(xi, t)dt
∣∣h =∑

i

∣∣
∫ t2
t1

ah(uh( · , t), vi) dt
∣∣

≤

∫ t2
t1

∑
i

|ah(uh( · , t), vi)| dt ≤ ‖uh‖L∞(Q)

∫ t2
t1

∑
i

‖∂xuh( · , t)‖L1(Ωi) dt

≤ C|t1 − t2|‖uh‖L∞(Q) max
t∈[t1,t2]

‖∂xuh( · , t)‖L1(Ω)

and we conclude applying the first inequality.

Combining the results of Lemma 3.2, Lemma 3.4 and Lemma 3.5 we may
conclude that

‖uh(t)‖L∞(Ω) + TV (uh(t)) ≤ C, ∀t ∈ R+

and

‖uh(t1)− uh(t2)‖L1(Ω) ≤ C|t1 − t2|, ∀t1, t2 ∈ R+

with C independent of h. It then follows by Helly’s theorem [11, Theorem A.3,
p. 261] that we may extract a subsequence from {uh}h such that uh → u for
almost all (x, t) and uh → u in L1(Ω) for all t ∈ R+. Moreover the limit function u
satisfies

‖u(t)‖L∞(Ω) + TV (u(t)) ≤ C, ∀t ∈ R+

and

‖u(t1)− u(t2)‖L1(Ω) ≤ C|t1 − t2|, ∀t1, t2 ∈ R+.



DMP SATISFYING FEM FOR 1D CONSERVATION LAWS 723

We now recall a discrete commutator property introduced by Johnson and
Szepessy [10] (see also Bertoluzza [1]). Let Ih denote the standard nodal in-
terpolant.

Lemma 3.6. Let uh ∈ Vh and φ ∈ C∞(Ω) then there holds

‖uhφ− Ihuhφ‖L1(Ω) ≤ Ch‖uh‖L1(Ω)‖φ‖W1,∞(Ω)(3.4)

‖∂x(uhφ− Ihuhφ)‖L2(Ω) ≤ C‖uh‖L2(Ω)‖φ‖W1,∞(Ω)(3.5)

and

‖uhφ− Ihuhφ‖L∞(Ω) ≤ Ch‖uh‖L∞(Ω)‖φ‖W1,∞(Ω)(3.6)

Proof. See [10, 1].

Theorem 3.7. (Convergence to weak solutions) The solutions {uh}h of (2.2)
with a semilinear form (3.1) satisfying the strong DMP-property and g = 0
converges to a weak solution of (2.1).

Proof. We must show that in the limit uh satisfies

(u0, φ(0))Ω − (uh, ∂tφ)Q −

(
u2h
2
, ∂xφ

)
Q

= 0

for all φ ∈ C∞(Q) with φ(0, t) = φ(1, t) and φ(x, T ) = 0. Using the formulation
(2.2) we have after integration by parts

∣∣∣∣(uh(0), φ(0))Ω − (uh, ∂tφ)Q −
(
u2h
2
, ∂xφ

)
Q

∣∣∣∣
≤
∣∣ ∫
Ω

(uh(0)φ(0)− Ih(uh(0)Ihφ(0))) dx
∣∣

+
∣∣ ∫ T
0

∫
Ω

(∂tuhφ− Ih(∂tuhIhφ)) dxdt
∣∣

+

∣∣∣∣
∫ T
0

∫
Ω

∂x
u2h
2
(φ− Ihφ) dxdt

∣∣∣∣+
∣∣(ε(uh)∂xuh, ∂xIhφ)Q∣∣

= I + II + III + IV.

We proceed to bound I–IV term by term. First note that by the definition
of the nodal interpolant and by Lemma 3.6, (3.4) we have for term I and II
respectively

I =
∣∣ ∫
Ω

(uh(0)φ(0)− Ih(uh(0)φ(0))) dx
∣∣ ≤ Ch‖uh(0)‖L1(Ω)‖φ‖W1,∞(Ω)

≤ Ch‖u0‖L2(Ω)‖φ‖W1,∞(Ω)
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and

II =
∣∣
∫ T
0

∫
Ω

(∂tuhφ− Ih(∂tuhφ)) dxdt
∣∣ ≤ Ch‖∂tuh‖L1(Q)‖φ‖L∞(I;W1,∞(Ω)).

For term II we use interpolation to obtain

III ≤ ‖uh‖L∞(Q)‖∂xuh‖L1(Q)Ch‖φ‖L∞(I;W1,∞(Ω)).

Finally we bound III by using the stability estimate of Lemma 3.1, the assump-
tion (H2) on ε(uh) and the H

1-stability of the nodal interpolant

IV ≤ (ε(uh)∂xuh, ∂xuh)
1
2

Q(ε(uh)∂xIhφ, ∂xIhφ)
1
2

Q

≤ Ch
1
2 ‖uh‖L∞(Q)‖∂xφ‖L∞(I;H1(Ω)).

Considering the upper bounds for I, II and III in combination with Lemma 3.1,
3.2 and 3.5 it follows that for each ε > 0 there exists h0 > 0 such that for all
h < h0

∣∣∣∣(uh, ∂tφ)Q +
(
u2h
2
, ∂xφ

)
Q

∣∣∣∣ < ε

and the claim follows by the convergence

|(uh(0)− u0, φ)| = |(uh(0)− u0, φ− Ihφ)| ≤ Ch‖u0‖L1(Ω)‖φ‖W1,∞(Ω) → 0

as h→ 0 for all φ ∈ C∞(Ω̄).

Theorem 3.8. (Satisfaction of entropy inequalities) Let uh be the finite elem-
ent solution of (2.2) with a semilinear form (3.1) satisfying the strong DMP-
property and g = 0, then there holds

lim
h→0
((η(uh), ∂tφ)Q − (ψ(uh), ∂xφ)Q) ≤ 0

for the strictly convex entropy η(s) = s2 and associated entropy flux ψ such that
ψ′(s) = f ′(s)η′(s) and for all testfunctions φ ∈ C∞0 (Q), φ ≥ 0.

Proof. If η(s) = s2 we note that η′(uh) = 2uh and hence Lemma 3.6 holds
for the product η′(uh)φ. We proceed by rewriting the entropy inequality on weak
form as a sum of residuals accounting for the quadrature error in the discrete
scalar product and Galerkin orthogonality.

|−(η(uh), ∂tφ)Q − (ψ(uh), ∂xφ)Q + (φε(uh)∂xuh, η
′′(uh)∂xuh)Q|

=

∣∣∣∣−
∫ T
0

(∂tuh, η
′(uh)φ)hdt−

∫ T
0

∫
Ω

(η(uh)∂tφ− Ih(η(uh)∂tφ)) dxdt

+

(
∂x
u2h
2
, η′(uh)φ

)
Q

+ (ε(uh)∂xuh, ∂x(φη
′(uh)))Q − (ε(uh)∂xuh, η

′(uh)∂xφ)Q

∣∣∣∣
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≤
∣∣ ∫ T
0

∑
i

(∂tuh(xi)η
′(uh(xi))φ(xi)− ∂tuh(xi)Ih(η

′(uh(xi))φ(xi)))h dt
∣∣

+
∣∣ ∫ T
0

∫
Ω

(η(uh)∂tφ− Ih(η(uh)∂tφ)) dxdt
∣∣

+

∣∣∣∣
(
∂x
u2h
2
, η′(uh)φ− Ih(η

′(uh)φ)

)
Q

∣∣∣∣
+ |(ε(uh)∂xuh, ∂x(φη

′(uh)− Ih(η
′(uh)φ)))Q|+ |(ε(uh)∂xuh, η

′(uh)∂xφ)Q|

= I + II + III + IV + V.

Consider I–V term by term. We estimate term I by applying Lemma 3.6, equa-
tion (3.6),

I ≤
( ∫ T
0

∑
i

|∂tuh(xi)|h dt
)
‖η′(uh)φ− Ih(η

′(uh)φ)‖L∞(Q)

≤ C‖∂tuh‖L1(Q)‖η
′(uh)‖L∞(Q)h‖φ‖L∞(I;W1,∞(Ω)).

For term two we use standard interpolation in L1 to obtain

II ≤ Ch‖∂x(η(uh)∂tφ)‖L1(Q)

≤ h(‖η′(uh)‖L∞(Q)‖∂xuh‖L1(Q)‖∂tφ‖L∞(Q) + ‖η(uh)‖L∞(Q)‖∂t∂xφ‖L1(Q)).

For term III once again we apply Lemma 3.6, equation (3.6),

III ≤ ‖uh‖L∞(Q)‖∂xuh‖L1(Q)‖η
′(uh)‖L∞(Q)h‖φ‖L∞(I;W1,∞(Ω))

Upper bounds for the remaining two terms are obtained by

IV ≤
∥∥ε(uh) 12 ∂xuh∥∥Q

∥∥ε(uh) 12 ∂x((η′(uh)φ) − Ih(η′(uh)φ))∥∥Q
≤ C‖η′(uh)‖L2(Q)h

1
2 ‖φ‖L∞(I;W1,∞(Ω))

and

V ≤ C
∥∥ε(uh) 12 ∂xuh∥∥Q‖η′(uh)‖L∞(Q)h 12 ‖φ‖L∞(I;H1(Ω)).

Here we used the stability estimate (3.1) in both IV and V combined with
Lemma 3.6 equation (3.5) for IV . It follows by the estimates of Lemmas 3.1, 3.2
and 3.5 that for each ε > 0 there exists h0 > 0 such that for h < h0

| − (η(uh), ∂tφ)Q − (ψ(uh), ∂xφ)Q + (φε(uh)∂xuh, η
′′(uh)∂xuh)Q| < ε.

Hence

lim
h→0
(−(η(uh), ∂tφ)Q − (ψ(uh), ∂xφ)Q + (φε(uh)∂xuh, η

′′(uh)∂xuh)Q) = 0

and since the third term in the left hand side is positive we may conclude.

Remark 3.3. Since the flux function is strictly convex, one strictly convex
entropy function is enough for uniqueness as shown by Panov [13]. We conclude
that uh converges to the unique entropy solution of Burgers equation as h→ 0.
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4 A nonlinear artificial viscosity guaranteeing the DMP-property and
the von Neumann artificial viscosity.

In this section we will construct an artificial viscosity that satisfies the hy-
potheses (H1)–(H3) and that has a weak consistency property. This leads to
a class of forms ah( · ; ·) that are locally Lipschitz continuous and have a DMP-
property. Then we recall the classical von Neumann–Richtmyer artificial viscosity
and show that although it does not enter the above framework it has a weak
DMP-property and thus guarantees that the solution of the conservation law
remains positive for all time.

Theorem 4.1. Let the semilinear form of (2.2) be defined by

ah,1(uh; vh) = −

(
u2h
2
, ∂xvh

)
Ω

+
∑
K

(ε1,K(uh)∂xuh, ∂xvh)K ,

with

ε1,K(uh) = νh‖uh‖∞,K

(
max
x∈∂K

|[[∂xuh(x)]]|

2{|∂xuh(x)|}

)p
.

If {|∂xuh(x)|} = 0 for one node x ∈ ∂K we define ε1,K(uh) = νh‖uh‖∞,K. Under
these assumptions ah,1( · ; ·) is locally Lipschitz continuous and enjoys the strong
DMP-property for ν > 1

2 and for all p ≥ 0.

Proof. In this case Lipschitz continuity follows by the Lipschitz continuity
of ‖uh‖∞,K and the Lipschitz continuity of the function

f(x, y) =
|x− y|

||x|+ |y||
, when x �= 0 or y �= 0.

We assume that there is a local minimum in the node xi clearly then

max
x∈∂K

|[[∂xuh(x)]]|

2{|∂xuh(x)|}
=
|[[∂xuh(xi, t)]]|

2{|∂xuh(xi, t)|}
= 1

for both elements K, K ′ in the support of vi. By the fact that h∂xuh∂xvh =
−|∂xuh| in Ωi we may deduce that

ah,1(uh; vi) = (uh∂xuh, vi)− ν
∑
K⊂Ωi

h‖uh‖∞,K |∂xuh|K(4.1)

≤

(
1

2
− ν

) ∑
K⊂Ωi

h‖uh‖∞,K |∂xuh|K .

The proof for a local maximum is similar.

The viscosity ν has to be chosen large enough so as to make the viscous
term dominate the flux term at local extrema. On the other hand, p appears
as a completely free parameter. Since f(x, y) ≤ 1 for all x, y with equality at
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local extrema we see that a large value of p will result in small artificial viscosity
away from local extrema. The size of p determines the order of the method:
p = 0 corresponds to the classical linear artificial viscosity method giving first
order accuracy, whereas p ≥ 1 will give a high order scheme away from local
extrema. The higher the value of p the less artificial viscosity is introduced. In
the limit p → ∞ the artificial viscosity ε1,K will be 1 in elements where one
node is a local extremum and 0 in all other elements. This limit behavior is
in some sense optimal, corresponding to the minimal stabilization necessary for
the theory of the previous section to apply. However it is known that strongly
localized shock capturing terms lead to very ill-conditioned nonlinear systems.
This is reflected in the analysis by the fact that the constant in the Lipschitz
continuity explodes as p→∞.

Remark 4.1. Note that the term ε1,K is strongly related to flux-limiter
schemes adding first order artificial viscosity on local extrema only. In fact in
the limit of infinite p and on linear model problems with constant transport co-
efficient one may show that on uniform grids the proposed finite element method
corresponds to an upwind scheme at local extrema and a centered difference
scheme away from extrema.

We will now consider two different forms of artificial viscosities that are not
strong enough to make the semi-linear form have the strong DMP-property,
however they guarantee a certain weak DMP-property leading to a proof of
positivity of the solutions in the approximating sequence {uh}h. The first form
considered is the von Neumann–Richtmyer artificial viscosity [17] and the second
is a higher order generalization obtained by replacing the gradient by the jump
of the gradient in the viscosity coefficient.

Lemma 4.2. Let the semilinear form of (2.2) be defined by

ah,i(uh; vh) = −

(
u2h
2
, ∂xvh

)
Ω

+
∑
K

(εi,K(uh)∂xuh, ∂xvh)K ,

with either i = 2 (von Neumann/Richtmyer)

ε2,K(uh) = νh
2|∂xuh|, or, i = 3 ε3,K(uh) = νh

2
K max
xi∈∂K

|[[∂xuh]]|xi |.

Then ah,i( · ; ·), i = 1, 2 are locally Lipschitz continuous and satisfy the weak
DMP-property for ν > 1

2 , for uh that are negative on subdomains containing no
more than two nodes.

Proof. The proof for ε2,K(uh) is similar to the proof of Theorem 4.1 using
the fact that |uh| ≤ h|∂xuh| at one of the elements in which the local minimum
is taken, since uh(xi) < 0. Note that at a local extremum ε3,K(uh) ≥ ε2,K(uh)
whereas away from local extrema ε3,K(uh) < ε2,K(uh) by which the result carries
over to ε3,K(uh).

Remark 4.2. The Lemma 4.2 is not strong enough to guarantee convergence
of the approximating sequence to entropy solutions using the previous analysis,
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Figure 5.1: From left to right: the initial data u0, the exact solution at T = 0.7 and
the standard Galerkin solution at T = 0.7.

but it will ensure that solutions with positive initial data will remain positive
for all times. Note that ε2(uh) is a close relative to the Smagorinsky model
for turbulent viscosity (see [14]) and ε3(uh) is its higher order generalization.
A possible interpretation of the positivity result is that the Smagorinsky model
guarantees that the numerical scheme is diffusion dominated close to stagnation
points.

Corollary 4.3. Let uh be the discrete solution of (2.2) with the semilinear
form ai( · ; ·), i = 1, 2. If uh( · , 0) ≥ 0 then uh( · , t) ≥ 0 for t > 0.

Proof. Clearly uh can go negative simultaneously in at most two consecutive
nodes. Assume therefore that uh(xi) = −ε (with ε > 0) is a local minimum with
one neighbour positive. By the weak DMP-property ∂tuh(xi) > 0 and since ε is
arbitrarily small we may conclude.

5 Numerical results.

We consider the Burgers’ equation on the domain Ω = (−1, 1) with peri-
odic boundary conditions. The initial data and the exact solution at final time
T = 0.7 are presented in Figure 5.1 (left and middle graphic). The equations are
discretized using 100 elements in space and integrated using the explicit Euler
scheme and a very small timestep (CFL = 0.01, k = CFL× h) so that the error
due to time discretization is assumed negligeable. In Figure 5.1, right plot, we
show the strongly oscillating solution of the standard Galerkin method. The so-
lutions using the different methods discussed above are presented in Figure 5.2.
In the leftmost graphic of Figure 5.2 we give the solution using the standard
upwind method for comparison. As predicted by theory, the von Neumann–
Richtmyer artificial viscosity (ε2,K) yields positive solutions (middle, Figure 5.2),
but with spurious oscillations on the shock front. The results when using ε2,K
and ε3,K are very similar on this test case and we only give the former ones. The
shock-capturing stabilization ε1,K (right, Figure 5.2) on the other hand yields
oscillation free solutions and the shock is resolved with one interior point.
In Figure 5.3 (left graphic) the convergence behavior in h is shown on four
consecutive meshes, N = 100, N = 200, N = 400 and N = 800. Then, in
the right graphic of Figure 5.3, the behavior of the approximate solution with
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Figure 5.2: From left to right: the standard upwind method, the von Neumann
–Richtmyer artificial viscosity (ν = 0.5) of Lemma 4.2, and the DMP-satisfying form
of Lemma 2.1 with ν = 0.5, p = 100.

Figure 5.3: Left: Convergence of the approximations with ν = 0.5, p = 100 using
N = 100, N = 200, N = 400 and N = 800; Right: Dependence of the approximate
solution on p (ν = 0.5, N = 100), p = 0.5, p = 1, p = 10 and p = 100.

varying p is investigated. A zoom of the upper part of the solution is shown for
a sequence of approximations obtained using different values on p. The most
diffused solution corresponds to p = 0.5 and then with increasing resolution:
p = 1, p = 10 and p = 100. The solutions using p = 10 and p = 100 are
distinguishable only at the shock tip. Hence choosing p > 10 does not have
a strong influence on solution quality in this example. Finally in Figure 5.4 we
study the robustness of the method with respect to different values of ν and CFL
using ε1,K(uh) (the time discretization has not been investigated theoretically,
but we give this numerical comparison for completeness). In the left graphic of
Figure 5.4 a zoom of the upper part of the shock is presented for an approximate
solution obtained with ν = 0.49 and various values of p. The solution clearly
violates the DMP for p > 1 showing that the limit value of ν is sharp (note
however the scale on the y-axis). As can be expected lower values on p are more
robust with respect to variations in ν. Finally in the right graphic of Figure 5.4
we consider the effect of varying CFL condition for p = 1. The cases CFL = 0.9,
CFL = 0.5 and CFL = 0.1 are considered. As expected CFL = 1 was the limit
value for stability. Similar resolution of the shock is observed for CFL = 0.5
and CFL = 0.1 the rarefaction wave on the other hand is better resolved for
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Figure 5.4: Left: Zoom of function crest showing the violation of the DMP using
ν = 0.49 and p = 0.5, p = 1, p = 10 and p = 100; Right: Zoom of function crest
for different values of the CFL = k

h
(N = 100, p = 1).

Figure 5.5: Left: the smooth initial data u0, right: the exact solution at T = 0.5 .

Figure 5.6: Log-log plots of the h-convergence of the error in norm L1. Left plot: the
non smooth solution given by the initial data of Figure 5.1. Right plot: the smooth
solution given by the initial data (5.1). The methods are as follows: p = 0 (full line
with circles), p = 1 (dash-dot line with circles), p = 10 (dashed line with circles) and
standard Galerkin, i.e. ε(uh) = 0, (dotted line with circles). In the left plot we also
give the the slope of O(h) (full line, without markers) and in the right plot the slope
of O(h2) (full line, without markers).
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CFL = 0.5. It was noted during the numerical experiments that higher p required
lower CFL for the scheme to satisfy the DMP. In Figure 5.6 (left plot) we give
the convergence of the error in the L1-norm. As expected the error is O(h) for all
values of p due to the discontinuous solution. Observe that the standard Galerkin
method does not converge.

5.1 A numerical example with smooth solution.

In this case our aim is to investigate the global order of convergence of our
method for different values of p on a problem with smooth solution. To this end
we consider the initial data

u0(x) =
1

2
(cos(πx) + 1) .(5.1)

We compute the solution on three consecutive meshes with N = 50, N = 100
and N = 200 respectively. The final time, T = 0.5, was chosen just before
the standard finite element method exhibits the first signs of instability on the
coarsest mesh. A reference solution was computed using the unstabilized finite
element method on a mesh with N = 1000. In all computations we chose CFL =
0.001 to avoid any influence of the time discretization. In Figure 5.5 we report the
initial data and the solution at time T = 0.5. In Figure 5.6 (right plot) we report
log-log plots for the convergence of the error in the norm L1 for the cases p = 0
(full line with circles), p = 1 (dash-dot line with circles) and p = 10 (dashed
line with circles). As a reference we also give the convergence of the unstabilized
finite element method resulting in a centered finite difference scheme (dotted line
with circles) and the slope of O(h2) (full line, without markers). For p = 0 we
report first order convergence in space, which is expected since this corresponds
to standard artificial viscosity. For p = 1 and p = 10 the convergence is O(h2)
with a slightly smaller error constant for the larger value on p. The standard
finite element method has the smallest constant and also exhibits second order
convergence. The difference in the constant between the case p = 1 and the
standard finite element scheme is less than a factor 2.

6 Conclusion.

In a simple framework we have pointed out similarities between some arti-
ficial viscosity methods and recent finite element stabilization techniques for
convection-dominated flow problems. The nonlinear artificial viscosity is of
order h close to local maxima and minima, thereby assuring a discrete maxi-
mum principle. This local perturbation does not seem to affect the global con-
vergence order for smooth solutions. The present analysis holds only for the
space of piecewise affine continuous functions and in one space dimension. In
the case of higher order polynomial spaces the question of discrete maximum
principle is completely open (also for elliptic problems) and the present type of
simple artificial viscosity using only fluctuations of the gradient over element
edges can hardly be expected to work, since spurious frequencies may be present
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both in the polynomial spectrum and as derivative jumps on element boundaries.
For a recent analysis of a similar (linear) stabilized method applied to a linear
model problem in the high order case we refer to [5]. The main obstacle for the
extension of the present work to several space dimensions is the construction
of artificial viscosity terms that are both Lipschitz continuous and makes the
semilinear form enjoy the strong DMP-property.
We hope that these arguments will provide some further insight in the close re-
lationsship between high resolution methods and stabilized finite element
methods in flow computations.
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