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Abstract: In this paper we construct Birkhoff coordinates for the focusing nonlinear
Schrödinger equation near the zero solution.

1. Introduction

Consider the focusing nonlinear Schrödinger equation (fNLS)

i∂tψ = −∂2
xψ − 2|ψ |2ψ (1.1)

with periodic boundary conditions, i.e. ψ(x + 1, t) = ψ(x, t) for x, t ∈ R. The fNLS
equation (1.1) is integrable and admits a Lax-pair formalism – see [14]. It can be written
in Hamiltonian form as follows. Let L2 := L2(T,C) denote the Hilbert space of
L2-integrable complex-valued functions on the circle T := R/Z and let L2 := L2 × L2.
For C1-functionals F and G introduce the Poisson bracket

{F,G} (ϕ) = i
∫ 1

0

(
∂ϕ1 F ∂ϕ2 G − ∂ϕ2 F ∂ϕ1 G

)
dx, (1.2)

where ϕ = (ϕ1, ϕ2) and ∂ϕi F denotes the L2-gradient of F with respect to ϕi , i = 1, 2.
The Hamiltonian system with Hamiltonian

H ≡ H(ϕ) :=
∫ 1

0
(∂xϕ1∂xϕ2 + ϕ2

1ϕ
2
2)dx (1.3)

is then given by

∂t (ϕ1, ϕ2) = i(−∂ϕ2H, ∂ϕ1H). (1.4)
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Equation (1.1) is obtained by restricting (1.4) to the invariant subspace

iL2
R :=

{
(ϕ1, ϕ2) ∈ L2 |ϕ1 = −ϕ̄2

}
.

With (ϕ1, ϕ2) = (ψ,−ψ̄) one has

∂tψ = i∂ψ̄ Hf = i∂2
xψ + 2i |ψ |2ψ, (1.5)

where

Hf(ψ) =
∫ 1

0
(−∂xψ∂x ψ̄ + ψ2ψ̄2)dx . (1.6)

When restricting (1.4) to the invariant subspace

L2
R :=

{
(ϕ1, ϕ2) ∈ L2 |ϕ1 = ϕ̄2

}

of L2 one obtains the defocusing nonlinear Schrödinger equation (dNLS). With
(ϕ1, ϕ2) = (ψ, ψ̄) one has

∂tψ = −i∂ψ̄ Hd = i∂2
xψ − 2i |ψ |2ψ, (1.7)

where

Hd(ψ) =
∫ 1

0
(∂xψ∂x ψ̄ + ψ2ψ̄2)dx .

Equation (1.4) admits the Lax pair representation

∂t L(ϕ) = [A(ϕ), L(ϕ)], (1.8)

where ϕ = (ϕ1, ϕ2), L = L(ϕ) is the Zakharov-Shabat operator (ZS operator)

L(ϕ) := i

(
1 0
0 −1

)
∂x +

(
0 ϕ1
ϕ2 0

)
(1.9)

and

A(ϕ) := i

( −2∂2
x + ϕ1ϕ2 −∂xϕ1 − 2ϕ1∂x

∂xϕ2 + 2ϕ2∂x 2∂2
x − ϕ1ϕ2

)
.

Birkhoff normal form. The theory of normal forms of integrable (or near integrable)
systems aims at representing such systems in coordinates which are particularly suited
to integrate them as well as to study their (Hamiltonian) perturbations. The most simple
case is arguably the normal form of such systems near an isolated equilibrium solution.
It goes back to Birkhoff and is usually referred to as Birkhoff normal form.

Assume that the origin 0 of R
n × R

n is an isolated equilibrium of some Hamiltonian
system with real analytic Hamiltonian H and standard symplectic structure. It means
that 0 is an isolated singular point of the corresponding Hamiltonian vector field X H .
For simplicity, we assume that H admits an expansion of the form

H = 1

2

n∑
i=1

λi (q
2
i + p2

i ) + · · · ,
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where z = (q, p) denotes a point near 0 ∈ R
n × R

n and the dots stand for terms of
higher order in z. The real numbers λ1, . . . , λn are referred to as the frequencies of the
linearized system. They are said to be nonresonant up to order m, if

n∑
i=1

kiλi �= 0 whenever 1 ≤
n∑

i=1

|ki | ≤ m,

where k1, . . . , kn are arbitrary integers and m ≥ 1. They are nonresonant if they are
nonresonant up to any finite order. A Hamiltonian H is in Birkhoff normal form up to
order m if it is of the form

H = N2 + N4 + · · · + Nm + · · · ,
where the Nk, 2 ≤ k ≤ m, are homogenous polynomials of order k, which are actually
functions of q2

k + p2
k , 1 ≤ k ≤ n, and where . . . stands for terms of order strictly greater

than m. If this holds for any m, the Hamiltonian is said to be in Birkhoff normal form.
Birkhoff showed that if the frequencies λ1, . . . , λn are nonresonant up to order m ≥ 3,
then there exists an analytic canonical transformation � = id + · · · near 0 such that

H ◦� = N2 + N4 + · · · + Nm + · · ·
is in Birkhoff normal form up to order m. If the frequencies λ1, . . . , λn are nonreso-
nant up to any order, then this normalization process can be carried to any order. The
resulting symplectic transformation, however, is in general no longer convergent in any
neighborhood of the origin and can only be given the meaning of a formal power series.

If some canonical transformation into Birkhoff normal form were convergent, then
the resulting Hamiltonian would be integrable in a neighborhood of the origin, the
integrals in involution being q2

1 + p2
1, . . . , q2

n + p2
n . It turns out that a certain converse

is true. If a Hamiltonian with a nonresonant elliptic equilibrium admits n functionally
independent integrals in involution, then the formal transformation into Birkhoff normal
form is convergent, hence the Hamiltonian itself is integrable. Such a result was proven
by Vey [13] and then improved by Ito [7] and Zung [15]. Note that the normalizing
transformation is typically only defined in a neighborhood of the elliptic equilibrium.
In case the transformation is defined on all of phase space, one refers to the Birkhoff
coordinates as global Birkhoff coordinates.

In the last decade, normal form theory has been extended to Hamiltonian PDEs. In
particular, Birkhoff normal forms of finite order have been studied for Hamiltonian PDEs
and applied to obtain results on long time asymptotics for solutions near an equilibrium
– see e.g. [2] and references therein. As in Hamiltonian systems of finite dimension,
in the case of integrable PDEs one expects stronger results to hold. First results in this
direction were obtained for the KdV equation and the defocusing nonlinear Schrödinger
equation – see [8], respectively, [6].

Denote by H N ≡ H N (T,C) the Sobolev space of complex valued functions on the
circle T,

H N (T,C) := {ψ(x) =
∑
k∈Z

e2π ikx ψ̂(k) : ‖ψ‖N < ∞},

where for N ≥ 0,

‖ψ‖N :=
(∑

k∈Z

(1 + |k|)2N |ψ̂(k)|2
) 1

2

,
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and ψ̂(k) := ∫ 1
0 ψ(x)e

−2π ikx dx , k ∈ Z, denote the Fourier coefficients of ψ . Further
let l2

C2 be the Hilbert space

l2
C2 = l2(Z,C)× l2(Z,C), (x, y) = (xk, yk)k∈Z.

We endow l2
C2 with the standard Poisson bracket for which {xk, yk} = − {yk, xk} = 1

for any k ∈ Z whereas all other brackets between coordinate functions vanish. It induces
the standard Poisson brackets on the real subspaces

l2
R2 := l2(Z,R)× l2(Z,R) and il2

R2 := l2(Z, iR)× l2(Z, iR).

More generally, for any N ≥ 0, introduce

l2
N ≡ l2

N (Z,C) := {x = (x j ) j∈Z| x ∈ l2(Z,C), ‖x‖N < ∞},
where

‖x‖N :=
⎛
⎝∑

j∈Z

(1 + | j |)2N |x j |2
⎞
⎠

1
2

< ∞.

The main result of this paper is the following

Theorem 1.1. There exist a neighborhood W f of 0 ∈ iL2
R, a neighborhood U f of

0 ∈ il2
R2 , and a map

� f : W f → U f

such that

(i) � f is 1–1, onto, bi-analytic and preserves the Poisson bracket.
(ii) The coordinates (xk, yk)k∈Z = � f (ϕ) are Birkhoff coordinates for the focusing

NLS equation, i.e. for ϕ ∈ iL2
R ∩ (H1 × H1), the Hamiltonian Hf ◦�−1

f depends

only on the action variables Ik = 1
2 (x

2
k + y2

k ), k ∈ Z.
(iii) For any N ≥ 0,� f maps W f ∩(H N ×H N ) diffeomorphically onto U f ∩(l2

N ×l2
N ).

Remark 1.1. Statement (iii) of Theorem 1.1 remains valid if the Sobolev space H N

is replaced by the weighted Sobolev space Hω with subexponential weight ω and,
correspondingly, the sequence space l2

N by the weighted sequence space l2
ω – see [9].

Theorem 1.1 can be used to obtain a KAM-result for the focusing NLS equation of
the type obtained in [5] for the defocusing NLS equation. In the case of fNLS it is valid
in a neighborhood of 0 of the invariant subspace of iL2

R ∪ (H N × H N ) consisting of
odd potentials. It improves on the KAM theorem established in [10] and can be proved
in the same way as the corresponding result in [5].

To prove Theorem 1.1 we use that the defocusing NLS equation admits global
Birkhoff coordinates. More precisely, in [6] it is shown that there exists a real ana-
lytic canonical map� : L2

R → l2
R2 which associates to a potential ϕ in L2

R its Birkhoff

coordinates (xk(ϕ), yk(ϕ))k∈Z. The map � extends analytically to a map W → l2
C2 ,

defined on an open neighborhood W of L2
R in L2. In order to provide Birkhoff coordi-

nates on a neighborhood of 0 for the focusing NLS-equation, we will show that there
exists a neighborhood of 0 in iL2

R ∩ W so that the restriction of� to this neighborhood
has all the properties listed in Theorem 1.1. The main point consists in verifying that

�(iL2
R ∩ W ) ⊂ il2

R2 .
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2. Set-up

In this section we introduce some more notations, recall several results needed in the
sequel and establish some auxiliary results.

2.1. Spectral properties of L(ϕ) and its discriminant. For ϕ = (ϕ1, ϕ2) ∈ L2, consider
the ZS operator L(ϕ), defined by (1.9). For any λ ∈ C, let M = M(x, λ, ϕ) denote the
fundamental 2 × 2 matrix of L(ϕ),

L(ϕ)M = λM,

satisfying the initial condition M(0, λ, ϕ) = Id2×2. The entries of M are denoted by
Mi j , (1 ≤ i, j ≤ 2).

Periodic spectrum. Denote by Specper(ϕ) the spectrum of the operator L = L(ϕ)
with domain

domper(L) := {F ∈ H1
loc × H1

loc| F(1) = ±F(0)}.
This spectrum coincides with the spectrum of the operator L(ϕ) considered on [0, 2]
with periodic boundary conditions. The following proposition is well known – see e.g.
[6], Prop. I.6.

Proposition 2.1. For any ϕ ∈ L2, the set of periodic eigenvalues of L(ϕ) (listed with
multiplicities) consists of a sequence of pairs (λ−

k (ϕ), λ
+
k (ϕ)), λ

±
k (ϕ) ∈ C, satisfying

λ±
k (ϕ) = kπ + l2(k)

locally uniformly in ϕ, i.e. (λ±
k (ϕ)− kπ)k∈Z ∈ l2(Z,C) and the sequences are locally

uniformly bounded.

We say that two complex numbers a, b are lexicographically ordered, a � b, if

[Re(a) < Re(b)] or [Re(a) = Re(b) and Im(a) ≤ Im(b)].
Proposition 2.2. (i) For ϕ = (ψ, ψ̄) ∈ L2

R, the periodic eigenvalues (λ±
k (ϕ))k∈Z

are real. Moreover, they can be listed (with multiplicities) in such a way that

. . . λ+
k−1 < λ−

k ≤ λ+
k < λ−

k+1 · · · . (2.1)

(ii) For potentials ϕ = (ψ,−ψ̄) ∈ iL2
R the periodic eigenvalues (λ±

k (ϕ))k∈Z can be
listed (with multiplicities) in such a way that Im(λ+

k ) ≥ 0 ∀k ∈ Z, and (λ+
k (ϕ))k∈Z

is lexicographically ordered. In addition, for any k ∈ Z, λ−
k is given by

λ−
k = λ+

k .

Proof. (i) For ϕ ∈ L2
R, the operator L(ϕ) with periodic boundary conditions is self-

adjoint, hence its spectrum is real. The sequence of inequalities (2.1) follows from [6],
formula (I.20). (i i) The claimed statement follows from Proposition 2.1 and the fact that
if F = (F1, F2) is a periodic eigenfunction with eigenvalue λ, then F̌ := (−F̄2, F̄1) is
a periodic eigenfunction with eigenvalue λ̄. ��
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Dirichlet spectrum. For ϕ ∈ L2, denote by Specdir(ϕ) the Dirichlet spectrum of the
operator L(ϕ), i.e. the spectrum of L(ϕ) considered with domain

domdir(L) := {F = (F1, F2) ∈ H1([0, 1],C)2| F1(0) = F2(0), F1(1) = F2(1)}. (2.2)

Note that the Dirichlet spectrum is discrete. The following results are well known – see
e.g. [6] Prop. I.9, formula I.22.

Proposition 2.3. (i) For ϕ ∈ L2 the Dirichlet eigenvalues (µk(ϕ))k∈Z can be listed
(with multiplicities) in such a way that they are lexicographically ordered and
satisfy the asymptotic estimates

µk(ϕ) = kπ + l2(k),

locally uniformly in ϕ.
(ii) For ϕ ∈ L2

R, the Dirichlet eigenvalues are real and satisfy

λ−
k (ϕ) ≤ µk(ϕ) ≤ λ+

k (ϕ).

Discriminant. Let	(λ, ϕ) := M11(1, λ, ϕ)+ M22(1, λ, ϕ) be the trace of the funda-
mental matrix M evaluated at x = 1. It is well known that	(λ, ϕ) is an entire function
on C × L2 ( cf. [6], Lemma I.1 ). Denote by 	̇ the partial derivative of 	(λ, ϕ) with
respect to λ. The following properties of 	(λ, ϕ) are well known – see e.g. [11] or [6],
Sect. I.2, Lemma I.19, Lemma I.20, and Lemma I.22.

Proposition 2.4. (i) For any ϕ ∈ L2 and any λ ∈ C,

	2(λ, ϕ)− 4 = −4
(
λ−

0 (ϕ)− λ
) (
λ+

0(ϕ)− λ
) ∏

k �=0

(
λ+

k (ϕ)− λ
) (
λ−

k (ϕ)− λ
)

k2π2 .

(ii) For any ϕ ∈ L2, the λ-derivative 	̇ of 	(λ, ϕ) has countably many roots. They
can be listed (with multiplicities) in such a way that they are lexicographically
ordered and satisfy the asymptotic estimates

λ̇k = kπ + l2(k),

locally uniformly in ϕ. For any ϕ ∈ L2, 	̇(λ, ϕ) admits the following product
representation:

	̇(λ, ϕ) = 2(λ̇0 − λ)
∏
k �=0

λ̇k − λ

kπ
.

(iii) For any ϕ ∈ iL2
R and λ ∈ C,

	(λ̄, ϕ) = 	(λ, ϕ) and 	̇(λ, ϕ) = 	̇(λ̄, ϕ).
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Proof. The first two items are proved in [6], Sect. I.6. The third item is well known –
see for example [1]. For the convenience of the reader we repeat the proof here. Let
F = F(x, λ, ϕ) be the solution of

L(ϕ)F = λF (2.3)

such that F |x=0 = (1, 0). Then Fi (x, λ, ϕ) = Mi1 for i = 1, 2. A straightforward
computation shows that

F̌(x, λ, ϕ) = (−F2(x, λ̄, ϕ), F1(x, λ̄, ϕ)
)

is a solution of (2.3) with F̌ |x=0 = (0, 1). Hence, 	(λ, ϕ) = F1(1, λ, ϕ) + F2(1, λ̄, ϕ).
The latter equality proves the statement. ��

Spectral properties of potentials in iL2
R near 0. Potentials ϕ ∈ iL2

R near the origin
have additional spectral properties. To describe them let (Dk)k∈Z denote the sequence
of disks in C with center kπ and radius π/4.

Proposition 2.5. There exists a neighborhood W of 0 in L2, such that, for any
ϕ ∈ W ∩ iL2

R and k ∈ Z, the following properties hold:

(i) Specper(L(ϕ)) ∩ Dk = {λ−
k , λ

+
k };

(ii) Crit(	(·, ϕ)) ∩ Dk = {λ̇k};
(iii) Specdir(L(ϕ)) ∩ Dk = {µk};
(iv) λ̇k ∈ R, and 	(λ±

k (ϕ), ϕ) = 2(−1)k .

Proof. The existence of a neighborhood W of 0 in L2 so that any ϕ ∈ W ∩ iL2
R satisfies

items (i)− (i i i) follows from the fact that for ϕ = (0, 0),

λ−
k = λ+

k = λ̇k = µk = kπ ∀k ∈ Z

together with Proposition 2.1, Proposition 2.3 (i) and Proposition 2.4 (i i).
By Proposition 2.4 (iv) the critical points λ̇k of 	 are either real or they occur

in complex conjugate pairs. By item (i i) they cannot occur in complex conjugate
pairs. Hence they must be real. Further, by a deformation argument, one sees that
	(λ±

k (ϕ), ϕ) = 2(−1)k and item (iv) is proved as well. ��

2.2. Branches of the square root. We need to consider different branches of the square
root.

Canonical branch. We denote by +
√

z (or simply by
√

z) the principal branch of the
square root defined on C\ {x ∈ R | x ≤ 0} by +

√
1 = 1. Given a, b ∈ C with a �= b and

a � b, we denote by s
√
(a − z)(b − z) the standard branch of the square root, defined

on C\[a, b] and determined by

s
√
(a − z)(b − z)|z=b+(b−a) = − +

√
2(b − a), (2.4)

where [a, b] denotes the interval {ta + (1 − t)b| 0 ≤ t ≤ 1} in C. Using the pro-
duct representation of 	2(λ, ϕ) − 4 (cf. Proposition 2.4 (i i)), we now define, for
λ ∈ C\(∪k∈Z[λ−

k , λ
+
k ]), and ϕ ∈ L2, the canonical square root c

√
	2(λ, ϕ)− 4 by

c
√
	2(λ, ϕ)− 4 := 2i s

√
(λ−

0 (ϕ)− λ)(λ+
0(ϕ)− λ)

∏
k �=0

s
√
(λ−

k (ϕ)− λ)(λ+
k (ϕ)− λ)

kπ
.

(2.5)
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One easily sees that for any ϕ ∈ L2
R and λ ∈ [λ−

k (ϕ), λ
+
k (ϕ)] ⊂ R,

± (−1)k c
√
	2(λ± io, ϕ)− 4 > 0, (2.6)

where o denotes a real positive infinitesimal increment.
γ -branch. Recall that for any k ∈ Z we denote by (Dk)k∈Z the disk in C with center

kπ and radius π/4.

Proposition 2.6. There exists a neighborhood W of 0 in L2 so that for anyϕ ∈ W ∩iL2
R,

the following properties hold: For any k ∈ Z there exists a smooth arc γk ⊂ Dk from
λ−

k (ϕ) to λ+
k (ϕ) such that

(i) 	(λ, ϕ) ∈ R, for any λ ∈ ⋃
k∈Z

γk;
(ii) the orthogonal projection of γk to the imaginary axis is a diffeomorphism onto its

image;
(iii) γ̄k = γk;
(iv) λ̇k ∈ γk ∩ R;
(v) 	2(λ, ϕ)− 4 < 0 for any λ ∈ ⋃

k∈Z
(γk\{λ+

k , λ
−
k }).

Remark. For related results for non-selfadjoint Hill’s operators see also [12].

Proof. For any λ ∈ C, write λ = u + iv with u, v ∈ R and let 	 = 	1 + i	2, where
	1(u, v;ϕ) := Re(	(u + iv, ϕ)) and 	2(u, v;ϕ) := Im(	(u + iv, ϕ)). For any given
ϕ ∈ iL2

R we want to study the zero level set of 	2(λ, ϕ) ≡ 	2(u, v;ϕ) in C. To this
end, consider the function

F(u, v;ϕ) := 	2(u, v;ϕ)/v . (2.7)

By Proposition 2.4 (i i i), 	(λ, ϕ) is real-valued on R × iL2
R. Hence, 	2(u, v;ϕ) = 0

for λ ∈ R, and thus, for any ϕ ∈ iL2
R,

F(u, v;ϕ) =
∫ 1

0
(∂v	2)(u, vt;ϕ) dt . (2.8)

As	(λ, ϕ) is an analytic function on C×L2, F is a real analytic function on R×R×iL2
R,

hence has an analytic extension to a neighborhood of R × R × iL2
R in C × C × L2

which we again denote by F . Note that for any given ϕ ∈ iL2
R, the functions F(·, ·;ϕ)

and 	2(·, ·;ϕ) have the same zeroes in R × (R\{0}), hence it suffices to study the zero
level sets of F . To this end consider the following map:

F : B∞ × (−1, 1)× iL2
R → l∞ ≡ l∞(Z,R) (2.9)

defined by F = (Fk)k∈Z with

Fk(u, v;ϕ) := F(kπ + uk, v;ϕ), u := (uk)k∈Z. (2.10)

Here B∞ := {u ∈ l∞ | ‖u‖∞ < 1}.1 It follows from (2.8), Cauchy’s inequality (see
e.g. Lemma A.2 in [8]) and Lemma I.2 in [6] that F : B∞ × (−1, 1) × iL2

R → l∞
extends to a locally bounded function FC : VC → l∞(Z,C), where VC is an open
neighborhood of B∞ × (−1, 1)× iL2

R in (B∞ × (−1, 1)× iL2
R)⊗C. As for any k ∈ Z

1 More generally, for any δ > 0 let B∞
δ := {u ∈ l∞ | ‖u‖∞ < δ}.



Birkhoff Coordinates for the Focusing NLS Equation 1095

the component Fk is analytic on VC (cf. (2.8)) we conclude from Theorem A.3 in [8]
that F is real analytic on B∞ × (−1, 1)× iL2

R.
Note that 	(λ, 0) = 2 cos λ and 	2(u, v; 0) = −2 sin u sinh v. Hence,

F |u=0,v=0,ϕ=0 = (−2 sin kπ)k∈Z ≡ 0

and

∂F
∂u

|u=0,v=0,ϕ=0 = 2 diag((−1)k+1)k∈Z .

By the implicit function theorem there exist an open neighborhood W1 of ϕ = 0 in iL2
R,

ε > 0, and a real analytic function

G : (−ε, ε)× W1 → l∞, G = (gk)k∈Z,

such that for any v ∈ (−ε, ε) and any ϕ ∈ W1,

F(G(v, ϕ), v;ϕ) = 0 .

Moreover, there exists δ > 0 such that the map (−ε, ε)× W1 → B∞ × (−ε, ε)× W1,

(v, ϕ) �→ (G(v, ϕ), v, ϕ) ,
parametrizes the zero level set of F in B∞

δ × (−ε, ε)×W1. In particular, for any ϕ ∈ W1
and any k ∈ Z, the intersection of the zero level set of F with

Dε
k := {λ ∈ C | | Re(λ)− kπ | < δ, | Im(λ)| < ε}

is parametrized by zk : (−ε, ε) → Dε
k ,

v �→ kπ + gk(v, ϕ) + iv .

Let γ̃k := Image(zk) ⊆ Dε
k . By definition (2.7) of F , γ̃k\R coincides with the intersec-

tion of the zero level set of	2 with Dε
k\R. As	(λ, ϕ) is real for λ ∈ R, we see that the

intersection of the zero level set of 	2 with Dε
k coincides with

Zk := γ̃k ∪ (Dε
k ∩ R) ⊆ C .

Hence, for any ϕ ∈ W1 and any k ∈ Z, any complex number λ ∈ Dε
k satisfies

	(λ, ϕ) ∈ R ⇐⇒ λ ∈ Zk . (2.11)

Recall that at ϕ = 0, λ±
k = λ̇k = kπ and 	(λ±

k ) = 2(−1)k . Hence, by Proposition 2.1
and Proposition 2.4 (i i) there exists an open neighborhood W of ϕ = 0 in L2 such that
W ∩ iL2

R ⊆ W1 and for any ϕ ∈ W ∩ iL2
R and any k ∈ Z,

λ±
k (ϕ), λ̇k(ϕ) ∈ Dε

k and 	(λ±
k (ϕ), ϕ) = 2(−1)k .

Using that 	(λ±
k (ϕ), ϕ) = 2(−1)k as well as the symmetry 	(λ̄, ϕ) = 	(λ, ϕ) one

sees that for any ϕ ∈ W ∩ iL2
R and any k ∈ Z,

λ±
k (ϕ), λ̇k(ϕ) ∈ Zk .

Now one easily sees that for any ϕ ∈ W ∩ iL2
R,

γk := γ̃k ∩ {λ ∈ C | |	(λ)| ≤ 2}
has the claimed properties. ��
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Let W be a neighborhood of 0 in L2 as in Proposition 2.6. For ϕ in W ∩ iL2
R we now

define the following modification γk

√
(λ−

k (ϕ)− λ)(λ+
k (ϕ)− λ) of the standard branch of

the square root defined by (2.4): first define it for λ ∈ C\Dk by

γk

√
(λ−

k (ϕ)− λ)(λ+
k (ϕ)− λ) := s

√
(λ−

k (ϕ)− λ)(λ+
k (ϕ)− λ), (2.12)

and then extend it by analyticity to C\γk . The γ -root of 	2(λ, ϕ)− 4 in C\ ∪k∈Z γk is
defined by

γ
√
	2(λ, ϕ)− 4 := 2i γ0

√
(λ−

0 (ϕ)− λ)(λ+
0(ϕ)− λ)

∏
k �=0

γk

√
(λ−

k (ϕ)− λ)(λ+
k (ϕ)− λ)

kπ
.

(2.13)

Similarly as for the canonical root of	2(λ, ϕ)− 4 for ϕ ∈ L2
R, one verifies that for any

ϕ ∈ W ∩ iL2
R, k ∈ Z and λ ∈ γk , we have

± (−1)ki γ
√
	2(λ± o, ϕ)− 4 > 0, (2.14)

where o denotes a real positive infinitesimal increment.

2.3. Action variables for dNLS and their analytic extensions. Let ϕ ∈ L2
R be a potential

of real type. Following [6], Sect. III.1, we associate to ϕ the kth action variable

Ik(ϕ) := 1

π

∫
k

λ
	̇(λ, ϕ)

c
√
	2(λ, ϕ)− 4

dλ, (2.15)

wherek is a counterclockwise oriented contour in C around the interval [λ−
k (ϕ), λ

+
k (ϕ)].

The k are chosen so small that together with their interiors they do not intersect each
other. Alternatively, Ik can be written as

Ik(ϕ) = 1

π

∫
k

log
[
(−1)k

(
	(λ, ϕ)− c

√
	2(λ, ϕ)− 4

)]
dλ. (2.16)

By [6], Theorem III.2 and [6], Prop. III.21, we have the following results:

Proposition 2.7. There exists a neighborhood W of L2
R in L2 such that for any k ∈ Z,

the action variable Ik analytically extends to potentials ϕ ∈ W and

(i) (2.15)– (2.16) hold on W ,
(ii)

{
I j , Ik

} = 0 for any j, k ∈ Z.

Proof. By Theorem III.2 in [6], Ik and I j are real analytic functions on L2
R. Hence by

Proposition III.24 in [6],
{

Ik, I j
}

is real analytic as well and
{

Ik, I j
} |L2

R
= 0. This

shows that
{

Ik, I j
} = 0 in some neighborhood of L2

R in L2. ��
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2.4. Angle variables for dNLS and their analytic extensions. Let ϕ ∈ L2
R and denote by

�(ϕ) the curve �(ϕ) = {(λ, z) : z2 = 	2(ϕ, λ)− 4} ⊂ C
2. In view of definition (2.2),

for any Dirichlet eigenvalue µk of L(ϕ) one has

(M11 + M12)|1,µk = (M21 + M22)|1,µk . (2.17)

Using (2.17) and the Wronskian identity det M(1, λ) = 1, it follows that

	2(µk, ϕ)− 4 = (M21 + M12)
2|1,µk

.

The latter identity allows us to choose a sign of the root
√
	2(µk, ϕ)− 4,

∗√
	2(µk, ϕ)− 4 := (M21 + M12)|1,µk ,

and hence the point µ∗
k on �(ϕ)

µ∗
k =

(
µk,

∗√
	2(µk, ϕ)− 4

)
:= (

µk, (M21 + M12)|1,µk

)
.

We refer to µ∗
k as a Dirichlet divisor. Following [6], Sect. III.3, we can associate to

ϕ ∈ L2
R for any k ∈ Z with λ−

k < λ+
k , the kth angle variable θk(ϕ), defined by the

following path integral on �(ϕ):

θk(ϕ) :=
∑
j∈Z

∫ µ∗
j

λ−
j

χk(λ)√
	2(λ)− 4

dλ mod 2π, (2.18)

where χn(λ) ≡ χn(λ, ϕ), n ∈ Z, is a family of analytic functions on C × L2
R uniquely

determined by the normalization conditions

1

2π

∫
 j

χn(λ)

c
√
	2(λ)− 4

dλ = δ jn ∀ j, n ∈ Z. (2.19)

Each angle variable is real-analytic modulo 2π on the (dense) domain L2
R\Dk , where

Dk := {ϕ ∈ L2| λ−
k (ϕ) = λ+

k (ϕ)}. (2.20)

In fact, the right-hand side of (2.18), when taken modulo π , analytically extends to
W\Dk , where W is a (sufficiently small) neighborhood of L2

R in L2 which is inde-
pendent of k (cf. Theorem III.10 in [6]). By Theorem III.10, Proposition III.24, and
Proposition III.25 in [6], the following results hold.

Proposition 2.8. There exists a neighborhood W of L2
R in L2 so that for any k ∈ Z,

χk extends analytically to C × W and θk , when taken modulo π , analytically extends to
W\Dk , satisfying the following properties:

(i) relations (2.18) and (2.19) hold for any k, n, j ∈ Z;
(ii)

{
I j , θk

} = δ jk on W\Dk for any j, k ∈ Z;
(iii)

{
θ j , θk

} = 0 on W\(Dk ∪ D j ), for any k, j ∈ Z.
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2.5. Birkhoff coordinates for dNLS and their analytic extensions. In [6], Chapt. III, it is
shown that the map

� : L2
R → l2

R2 , ϕ �→ �(ϕ) = (xk(ϕ), yk(ϕ))k∈Z,

given by

(xk(ϕ), yk(ϕ)) =
{√

2Ik(ϕ) (cos θk(ϕ), sin θk(ϕ)) if ϕ ∈ L2
R\Dk

(0, 0) if ϕ ∈ L2
R ∩ Dk

defines global Birkhoff coordinates. More precisely, the following theorem holds.

Theorem 2.1. The map

� : L2
R → l2

R2

is a diffeomorphism with the following properties:
(i) � is bi-analytic and preserves the Poisson bracket.

(ii) The coordinates (xk, yk)k∈Z = �(ϕ) are Birkhoff coordinates for the defocusing
NLS equation (and its hierarchy), i.e. for ϕ ∈ L2

R ∩ (H1 × H1), the push forward
Hd ◦ �−1 of the dNLS-Hamiltonian Hd depends only on the action variables
Ik = 1

2 (x
2
k + y2

k ), k ∈ Z.
(iii) The differential at 0, d0� : L2

R → l2
R2 , is the Fourier transform (cf. [6], Prop. III.20).

More precisely, for any f = ( f1, f2) ∈ L2
R, the image (ξ, η) := d0�( f1, f2) is

given by

(ξk, ηk) = −
(

f̂1(−k) + f̂2(k)√
2

, i
f̂1(−k)− f̂2(k)√

2

)
(2.21)

or

(ξk, ηk) = −(√2 Re f̂2(k),
√

2 Im f̂2(k)). (2.22)

(iv) For any N ≥ 1,�maps L2
R∩(H N × H N ) diffeomorphically onto l2

R2 ∩(l2
N ×l2

N ).

By Theorem 2.1, the map� : L2
R → l2

R2 extends to an analytic map on a neighborhood

of L2
R in L2 with values in l2

C2 :

Proposition 2.9. There exists a neighborhood W of 0 in L2, and a neighborhood U of
0 in l2

C2 such that � analytically extends to a map W → U, which we again denote by
�, satisfying the following properties:

(i) � is 1–1, onto, bi-analytic and preserves the Poisson bracket.
(ii) The push forward H ◦�−1 of the Hamiltonian (1.3), restricted to U ∩ (l2

1 × l2
1),

depends only on the action variables Ik = 1
2 (x

2
k + y2

k ), k ∈ Z.
(iii) The differential at 0, d0� : L2 → l2

C2 is the Fourier transform and is given by the

formula (2.21) for arbitrary elements ( f1, f2) ∈ L2.
(iv) For any N ≥ 0, the restriction of � to W ∩ (H N × H N ) is a diffeomorphism

W ∩ (H N × H N ) → U ∩ (l2
N × l2

N ).

Proof. By Theorem 2.1,

(d0�)|L2
R

= d0(�|L2
R
) : L2

R → l2
R2

is a linear R-isomorphism given by formula (2.21). As� is real analytic it then follows
that d0� : L2 → l2

C2 is a C-linear isomorphism given by formula (2.21). The claimed
statements then follow from the inverse function theorem and Theorem 2.1. ��
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3. Actions

In this section we want to show that the action variables for ϕ in a neighborhood of 0
in iL2

R are real valued. Let W be a neighborhood of 0 in L2 such that Proposition 2.5,
Proposition 2.6, and Proposition 2.9 hold. The main result of this section is the following
one.

Proposition 3.1. For any ϕ ∈ W ∩ iL2
R, the action variables (2.15) are real valued.

Proof. We have to show that for any k ∈ Z, Ik = Ik . By (2.15), and Proposition 2.7 (i),

Ik = 1

π

∫
k

λ
	̇(λ)

c
√
	2(λ)− 4

dλ, (3.1)

where we chose k to be the (counterclockwise oriented) circle in C of center kπ and
radius π/4. Then

Ik = 1

π

∫
k

λ̄
	̇(λ)

c
√
	2(λ)− 4

dλ. (3.2)

As λ−
k = λ+

k by Proposition 2.2, it follows from the definition of the standard branch of
the square root (cf. Sect. 2.2), that

s
√
(λ−

k − λ)(λ+
k − λ) = s

√
(λ−

k − λ̄)(λ+
k − λ̄),

and thus by (2.5),

c
√
	2(λ)− 4 = − c

√
	2(λ̄)− 4.

When combined with Proposition 2.4 (i i i), formula (3.2) becomes

Īk = 1

π

∫
k

λ̄
	̇(λ̄)

− c
√
	2(λ̄)− 4

dλ.

Parametrize k by λ(t) = kπ + π
4 eit with 0 ≤ t ≤ 2π . Then λ(t) = λ(−t) and

dλ = − iπ
4 e−i t dt , and thus

Ik = 1

π

∫ 2π

0
λ(−t)

	̇(λ(−t))
c
√
	2(λ(−t))− 4

i
π

4
ei(−t)dt

= 1

π

∫ 2π

0
λ(s)

	̇(λ(s))
c
√
	2(λ(s))− 4

i
π

4
eisds

= Ik,

where for the latter identity we used again (3.1). ��
In fact, one can show that for ϕ ∈ W ∩ iL2

R, the action variables are nonpositive.

Proposition 3.2. Let W be the neighborhood of 0 in L2 as in Proposition 3.1. Then for
any k ∈ Z and ϕ ∈ W ∩ iL2

R, we have Ik ≤ 0.
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Proof. It follows from Proposition 2.7 (i) that for any k ∈ Z,

Ik(ϕ) = 1

π

∫
k

log
[
(−1)k

(
	(λ, ϕ)− c

√
	2(λ, ϕ)− 4

)]
dλ. (3.3)

If λ−
k = λ+

k then (3.3) shows that Ik(ϕ) = 0. So for the rest of the proof we assume

that λ−
k �= λ+

k . By (2.5), (2.12), and (2.13) one has c
√
	2(λ)− 4 = γ

√
	2(λ)− 4 for

λ ∈ ⋃
k∈Z

k and by (2.14), for any k ∈ Z, λ ∈ γk\
{
λ−

k , λ
+
k

}
, and ε ∈ {−1,+1},

ε(−1)ki γ
√
	2(λ + εo)− 4 > 0. (3.4)

Hence, by Proposition 2.6 (v),

ε(−1)ki γ
√
	2(λ + εo)− 4 = +

√
4 −	2(λ), (3.5)

where o denotes a real positive infinitesimal increment. In addition, it follows from (3.4)
that for any λ ∈ ⋃

k∈Z
(γk\{λ+

k , λ
−
k }) the imaginary part of γ

√
	2(λ± o)− 4 does not

vanish. Hence, the sign of this imaginary part remains constant. As a consequence, for
λ ∈ γk\{λ+

k , λ
−
k }, the principal branch of the logarithm

log
[
(−1)k

(
	(λ)− γ

√
	2(λ± o)− 4

)]

is well defined. By shrinking the contour k to γk , and assuming that γk is oriented,
issuing from λ−

k and ending at λ+
k , we can write

Ik(ϕ) = 1

π

∫
γk

log
[
(−1)k

(
	(λ)− γ

√
	2(λ + o)− 4

)]
dλ

− 1

π

∫
γk

log
[
(−1)k

(
	(λ)− γ

√
	2(λ− o)− 4

)]
dλ.

As by (3.5), for any ε ∈ {−1,+1},

(−1)k γ
√
	2(λ + εo)− 4 = −ε i +

√
4 −	2(λ),

it then follows that

Ik(ϕ) = 1

π

∫
γk

log
[
(−1)k	(λ) + i +

√
4 −	2(λ)

]
dλ

− 1

π

∫
γk

log
[
(−1)k	(λ)− i +

√
4 −	2(λ)

]
dλ. (3.6)

Using that for λ ∈ γk ,
∣∣∣(−1)k	(λ) + i +

√
4 −	2(λ)

∣∣∣ =
∣∣∣(−1)k	(λ)− i +

√
4 −	2(λ)

∣∣∣ ,
one sees that

Re
(

log
[
(−1)k	(λ) + i +

√
4 −	2(λ)

])
= Re

(
log

[
(−1)k	(λ)− i +

√
4 −	2(λ)

])
.
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Moreover, as 	(λ) is real valued and −2 ≤ 	(λ) ≤ 2 for λ ∈ γk , one has

Im
(

log
[
(−1)k	(λ) + i +

√
4 −	2(λ)

])
= −Im

(
log

[
(−1)k	(λ)− i +

√
4 −	2(λ)

])
.

Hence (3.6) leads to the identity

Ik(ϕ) = 2

π

∫
γk

i Im
(

log
[
(−1)k	(λ) + i +

√
4 −	2(λ)

])
dλ.

To evaluate the latter integral, parametrize the path γk by the imaginary part. By Propo-
sition 2.6 (i i) this is possible, i.e. there exists a C1-curve t �→ a(t) so that

λ(t) = a(t) + ti, |t | ≤ Imλ+
k .

Then, with ȧ(t) = d
dt a(t),

dλ = (ȧ + i)dt.

As the action variables are real valued by Proposition 3.1, we get

Ik(ϕ) = − 2

π

∫ Imλ+
k

Imλ−
k

Im
(

log
[
(−1)k	(λ(t)) + i +

√
4 −	2(λ(t))

])
dt.

Since for any |t | < Imλ+
k ,

Im
(
(−1)k	(λ(t)) + i +

√
4 −	2(λ(t))

)
= +

√
4 −	2(λ(t)) > 0,

one concludes that

Im
(

log
[
(−1)k	(λ(t)) + i +

√
4 −	2(λ(t))

])
∈ (0, π).

Thus we have shown that Ik(ϕ) < 0 for any k ∈ Z with λ−
k �= λ+

k . ��
For ϕ ∈ W ∩ iL2

R, Proposition 3.2 can be used to obtain a formula for the Birkhoff
coordinates (xk, yk)k∈Z provided by Proposition 2.9. It follows from the construction in
[6], III.4, that for any ϕ ∈ W\Dk ,

xk = √
2 ξk

λ+
k − λ−

k

2
cos θk and yk = √

2 ξk
λ+

k − λ−
k

2
sin θk, (3.7)

where θk is defined by formula (2.18) and where

ξk := +
√

4Ik/(λ
+
k − λ−

k )
2 (3.8)

is a real analytic non-vanishing function defined on W (cf. Theorem III.3 in [6]). On
W\Dk , the angle variable θk is analytic modulo π . When taken modulo 2π , θk might
not be continuous. In fact, continuous deformations of ϕ in W\Dk could lead to dis-
continuities of λ−

k and λ+
k due to the imposed lexicographic ordering λ−

k � λ+
k , and

hence to an increment ±π on the right-hand side of (2.18). It follows from Proposi-
tion 2.2 (ii) and Proposition 2.5 (i) that for continuous deformations of ϕ in the smaller
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set (W ∩ iL2
R)\Dk , the eigenvalues λ−

k = λ̄+
k and λ+

k change continuously. Hence, for
ϕ ∈ (W ∩ iL2

R)\Dk the angle variable

θk(ϕ) =
∑
j∈Z

∫ µ∗
j

λ−
j

χk(λ, ϕ)√
	2(λ, ϕ)− 4

dλ mod 2π (3.9)

is an analytic function on (W ∩ iL2
R)\Dk and by (3.7), (3.8), and Proposition 3.2 we

get that

xk = i +
√−2Ik cos θk and yk = i +

√−2Ik sin θk (3.10)

for any ϕ ∈ iL2
R\Dk .

4. Even Potentials

To prove Theorem 1.1, the notion of even potentials will play an important role. In this
section, we assume that W is a neighborhood of 0 in L2, chosen in such a way that
Propositions 2.6, 2.7, 2.8, 2.9 and Propositions 3.1, 3.2 hold. Denote by U the image of
W by the bi-analytic map � of Proposition 2.9, U = �(W ).

Definition 4.1. An element ϕ = (ϕ1, ϕ2) in L2 is said to be even if

ϕ2(x) = ϕ1(1 − x) a.e. x ∈ R.

Note that ϕ = (ψ, ψ̄) ∈ L2
R is even iff ψ(x) = ψ̄(1 − x) a.e. whereas ϕ = (ψ,−ψ̄) ∈

iL2
R is even iff ψ(x) = −ψ̄(1 − x) a.e. . Denote by L2

R, even [L2
even] the set of even

potentials in L2
R [L2]. Then iL2

R, even is the set of even potentials in iL2
R.

Definition 4.2. An element (x, y) = (xk, yk)k∈Z in l2
C2 is said to be even iff yk = 0 for

any k ∈ Z.

Denote by l2
R2, even

the even elements of l2
R2 . Then il2

R2, even
is the set of even elements

of il2
R2 .

Lemma 4.1. d0�|iL2
R, even

: iL2
R, even → il2

R2, even
is a R-linear isomorphism.

Proof. The claimed statement follows easily from formula (2.21) of Theorem 2.1. ��
Next we want to show that �(W ∩ iL2

R, even) ⊆ il2
R2, even

. For this we first need to
establish a few auxiliary results.

Lemma 4.2. For any k ∈ Z, (W ∩ iL2
R, even)\Dk is dense in W ∩ iL2

R, even.

Proof. First note that by formula (2.15), W ∩Dk is contained in the zero set of the action
variable Ik , i.e. W ∩Dk ⊆ {ϕ ∈ W | Ik(ϕ) = 0}. Assume that the claimed statement does
not hold. Then there exists k ∈ Z and a non empty, open set U ⊆ W so that Ik vanishes
on U ∩ iL2

R, even. Note that L2
even = (iL2

R, even) ⊗ C and recall that Ik is real-valued

on W ∩ iL2
R, even. It then follows from Ik |U∩iL2

R, even
≡ 0 that Ik ≡ 0 on a non empty

connected component of W ∩ L2
even, contradicting Theorem 2.1. ��
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Lemma 4.3. For any ϕ ∈ W ∩ L2
even, µk(ϕ) ∈ {λ+

k (ϕ), λ
−
k (ϕ)} ∀k ∈ Z.

Proof. Let ϕ = (ϕ1, ϕ2) ∈ L2 ∩W be an even potential. Let F = (F1, F2) be a Dirichlet
eigenfunction associated to the kth Dirichlet eigenvalue µk(ϕ), i.e.

{
i∂x F1 + ϕ1 F2 = µk F1

−i∂x F2 + ϕ2 F1 = µk F2
(4.1)

and F1(0) = F2(0), F1(1) = F2(1). Let F̃(x) := (F2(1 − x), F1(1 − x)). Note that
F̃ satisfies the same boundary conditions as F . To see that F̃ is a solution of (4.1),
interchange the two equations in (4.1) and evaluate them at 1 − x . As (∂x Fj )(1 − x) =
−∂x (Fj (1 − x)), one gets

{
i∂x (F2(1 − x)) + ϕ2(1 − x)F1(1 − x) = µk F2(1 − x)
−i∂x (F1(1 − x)) + ϕ1(1 − x)F2(1 − x) = µk F1(1 − x).

Using the assumption that ϕ is even, one then concludes that

{
i∂x F̃1(x) + ϕ1(x)F̃2(x) = µk F̃1(x)

−i∂x F̃2(x) + ϕ2(x)F̃1(x) = µk F̃2(x).

Hence F̃ is an eigenfunction for the Dirichlet eigenvalueµk . We now distinguish between
two cases: If F̃ = F , then

(F1(0), F2(0)) = (F2(1), F1(1)).

Since F satisfies Dirichlet boundary conditions, F1(0) = F2(0) and F1(1) = F2(1), it
satisfies periodic boundary conditions as well. If F̃ �= F , then F − F̃ is a non-trivial
solution of the system (4.1), which satisfies anti-periodic boundary conditions, i.e.

(F − F̃)(1) = −(F − F̃)(0).

In other words we have shown that µk(ϕ) ∈
{
λ±

j (ϕ), j ∈ Z

}
. Lemma 4.3 then follows

from Proposition 2.5 (i) and (iii). ��
Lemma 4.4. �(W ∩ iL2

R, even) ⊆ il2
R2, even

.

Proof. Letϕ ∈ W ∩iL2
R, even. By Proposition 2.8 (i), for any k ∈ Z withλ+

k (ϕ) �= λ−
k (ϕ),

the angle variable θk(ϕ) is well defined by (2.18) and the normalizing condition (2.19)

∫
 j

χk(λ)

c
√
	2(λ)− 4

dλ = 2πδ jk

is valid. Shrink the contour  j to the arc γ j , given by Proposition 2.6, to get, in view of
formula (2.19) and Proposition 2.8 (i),

∫
γ j

χk(λ)√
	2(λ)− 4

dλ ∈ {±πδ jk
}
.
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By Lemma 4.3, µk ∈ {
λ−

k (ϕ), λ
+
k (ϕ)

}
for any k ∈ Z. Hence for any k ∈ Z with

λ+
k (ϕ) �= λ−

k (ϕ),

θk(ϕ) =
∑
j∈Z

∫ µ∗
j

λ−
j

χk(λ)√
	2(λ)− 4

dλ ∈ {0, π} mod 2π.

By formula (3.10) for (x, y) = �(ϕ) it then follows that for such k’s,

xk(ϕ) = i +
√−2Ik(ϕ) and yk(ϕ) = i +

√−2Ik(ϕ) sin θk(ϕ) = 0

on (W ∩ iL2
R, even)\Dk . It then follows by Proposition 3.2 that xk ∈ iR. By Lemma 4.2,

(W ∩ iL2
R, even)\Dk is dense in W ∩ iL2

R, even. By the continuity of xk and yk it then

follows that xk ∈ iR and yk = 0 on W ∩ iL2
R, even. This shows that

�(W ∩ iL2
R, even) ⊆ il2

R2, even

as claimed. ��
Proposition 4.1. By shrinking W and U if necessary, it follows that

�|W∩iL2
R, even

: W ∩ iL2
R, even → U ∩ il2

R2, even

is a diffeomorphism.

Proof. In view of Lemma 4.1 and Lemma 4.4 the claimed statement follows from the
inverse function theorem. ��

5. The Real Symplectic Subspace iL2
R

Recall that we have introduced the real subspace L2
R of L2 = L2(T,C) × L2(T,C)

given by

L2
R =

{
ϕ = (ψ, ψ̄)| ψ ∈ L2(T,C)

}
.

Note that iL2
R is a real subspace of L2 as well and for any ϕ = (ϕ1, ϕ2) ∈ L2 one has

ϕ ∈ iL2
R iff ϕ2 = −ϕ̄1. (5.1)

The subspace iL2
R can be identified with L2(T,R)× L2(T,R) in a natural way. To this

end introduce the C-linear isomorphism T : L2(T,C)× L2(T,C) → L2,

(ψ1, ψ2) �→ (ϕ1, ϕ2) = 1√
2
(ψ1 + iψ2,−ψ1 + iψ2).

In a straightforward way one shows the following lemma.

Lemma 5.1. (i) iL2
R is the image by T of the real subspace L2(T,R)× L2(T,R) of

L2(T,C)× L2(T,C).
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(ii) T is canonical when its domain of definition is endowed with the canonical Poisson
structure

{F,G}0 (ψ1, ψ2) =
∫ 1

0

(
∂ψ1 F ∂ψ2 G − ∂ψ2 F ∂ψ1 G

)
dx

and the target of T with the Poisson bracket introduced in Sect. 1.

Now consider an analytic functional F : W → C defined in a neighborhood W of 0 in
L2.

Lemma 5.2. If F |iL2
R

is real valued then the Hamiltonian vector field (−i∂ϕ2 F, i∂ϕ1 F)

is tangent to iL2
R.

Proof. Consider the pull back F ◦ T of F . Then F ◦ T is an analytic functional on
W ′ := T −1(W ) whose restriction to

(
L2(T,R)× L2(T,R)

) ∩ W ′ is real valued. This
implies that the Hamiltonian vector field (−∂ψ2(F ◦ T ), ∂ψ1(F ◦ T )) takes values in
L2(T,R)× L2(T,R) on W ′ ∩ (

L2(T,R)× L2(T,R)
)
. As T is canonical,

T
(−∂ψ2(F ◦ T ), ∂ψ1(F ◦ T )

) = (−i∂ϕ2 F, i∂ϕ1 F),

and this vector field is tangent to iL2
R on W ∩ iL2

R as T maps L2(T,R)× L2(T,R) to
iL2

R. ��

6. Proof of Theorem 1.1

The idea of our proof can be best explained in terms of the Birkhoff coordinates
(xk, yk)k∈Z. We consider the sequence of Hamiltonian vector fields

X (k)(x, y) := ((−yk, xk)δkl)l∈Z

on il2
R2 with Hamiltonian Ik = 1

2 (x
2
k + y2

k ) and study their integral curves. For any k ∈ Z,

the solution
(

x (k)l (t), y(k)l (t)
)

l∈Z

of the initial value problem

(ẋl , ẏl) = (−yk, xk) δkl ∀ l ∈ Z, (6.1)

(xl(0), yl(0)) = (ξl , ηl) ∈ iR2 ∀ l ∈ Z, (6.2)

is given by

(
x (k)l (t), y(k)l (t)

)
=

{
(ξl , ηl) ∀ l �= k
(ξk cos t − ηk sin t, ξk sin t + ηk cos t) l = k.

Clearly, it exists for all time and evolves in il2
R2 . Actually, it evolves in Iso(ξ, η)∩ il2

R2 ,

where for (x, y) = (xk, yk)k∈Z in l2
C2 we denote by Iso(x, y) the set of sequences

Iso(x, y) :=
{
(x

′
k, y

′
k)k∈Z ∈ l2

C2 | x
′2
k + y

′2
k = x2

k + y2
k ∀k ∈ Z

}
.

We want to show that any given point in Iso(x, y) ∩ il2
R2 can be reached from any

other point in Iso(x, y) ∩ il2
R2 by concatenating integral curves of the above vector



1106 T. Kappeler, P. Lohrmann, P. Topalov, N. T. Zung

fields. First we follow the integral curve of X (0) which starts at the point (ξ, 0), where
ξ = (ξl)l∈Z ∈ il2(Z,R) is given by

ξl = i +
√

|xl |2 + |yl |2 ∀l ∈ Z (6.3)

until we reach the point (ξ (0), η(0)) where

(ξ
(0)
l , η

(0)
l ) =

{
(ξl , 0) if l �= 0
(x0, y0) if l = 0.

Then we continue on the integral curve of X (1) until we reach (ξ (1), η(1)) where

(ξ
(1)
l , η

(1)
l ) =

{
(ξ
(0)
l , η

(0)
l ) if l �= 1

(x1, y1) if l = 1.

Next we continue on the integral curve of X (−1) until we have reached (ξ (−1), η(−1))

where

(ξ
(−1)
l , η

(−1)
l ) =

{
(ξ
(1)
l , η

(1)
l ) if l �= −1

(x−1, y−1) if l = −1.

In this way we construct a sequence of points in Iso(x, y) ∩ il2
R2 ,

(ξ, 0), (ζ (0), η(0)), (ξ (1), η(1)), (ξ (−1), η(−1)), . . . . (6.4)

It is easy to see that this sequence converges to the point (x, y). In order to prove
Theorem 1.1 we apply �−1 to such sequences of points and use Proposition 4.1 and
Lemma 5.2 to conclude that their images are in iL2

R.

Proof of Theorem 1.1. By Proposition 2.9 there exist an open neighborhood W of 0 in
L2, an open neighborhood U of 0 in l2

C2 , and a diffeomorphism � : W → U so that

�(W ∩ iL2
R) = U ∩ il2

R2 . By Proposition 4.1 we can assume that

�(W ∩ iL2
R, even) = U ∩ il2

R2, even.

Without loss of generality we may assume that U is a ball. In a first step we want to
prove that

�−1(U ∩ il2
R2) ⊆ W ∩ iL2

R.

Let (x, y) be an arbitrary point in U ∩ il2
R2 . As U is assumed to be a ball it follows that

(ξ, 0), defined by (6.3), is also in U , hence

(ξ, 0) ∈ U ∩ il2
R2, even.

By Proposition 4.1 it follows that ζ := �−1(iξ, 0) is in W ∩ iL2
R. As � is canonical,

the pull backs of the vector fields X (k) by � are again Hamiltonian vector fields. They
are given by (k ∈ Z),

Y (k) = i(−∂ϕ2 Ik, ∂ϕ1 Ik).
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We recall that Ik are analytic functionals on W which are real valued on iL2
R. Hence by

Lemma 5.2, the vector fields Y (k) when restricted to W ∩ iL2
R are tangent to iL2

R. It
then follows that the sequence

ζ (k) := �−1(ξ (k), η(k))

is in iL2
R where (ξ (k), η(k)) is given by (6.4). As iL2

R is closed in L2 and� is continuous
one concludes that

lim
k→∞ ζ

(k) = lim
k→∞�

−1(ξ (k), η(k)) = �−1(x, y)

is an element in iL2
R. This shows that

�−1(U ∩ il2
R2) ⊆ W ∩ iL2

R. (6.5)

By Proposition 2.9 (i i i), the differential of � at 0, d0� : L2 → l2
C2 , is a C-linear

isomorphism. By applying the inverse function theorem and using (6.5) once more one
then concludes that there exists a neighborhood U f ⊆ U ∩ il2

R2 of 0 in il2
R2 and a

neighborhood W f ⊆ W ∩ iL2
R of 0 in iL2

R so that

� : W f → U f

is a diffeomorphism. The properties of � f := �|W f , stated in items (i) − (i i i) of
Theorem 1.1, now follow from the corresponding properties of the Birkhoff map � :
W → U (Proposition 2.9, items (i),(i i), and (iv)) in a straightforward way. ��

References

1. Ablowitz, M., Ma, Y.: The periodic cubic Schrödinger equation. Studies Appl. Math. 65, 113–158 (1981)
2. Bambusi, D., Grébert, B.: Birkhoff normal form for PDE’s with tame modulus. Duke Math. J. 135,

507–567 (2005)
3. Grébert, B., Guillot, J.C.: Gaps of one-dimensional periodic AKNS systems. Forum Math. 5, 459–

504 (1993)
4. Grébert, B., Kappeler, T.: Symmetries of the Nonlinear Schrödinger equation. Bull. Soc. Math.

France 130(4), 603–618 (2002)
5. Grébert, B., Kappeler, T.: Perturbations of the defocusing nonlinear Schrödinger equation. Milan

J. Math. 71, 141–174 (2003)
6. Grébert, B., Kappeler, T., Pöschel, J.: Normal form theory for the nonlinear Schrödinger equation. Pre-

liminary version available at http://www.math.sciences.univ-nantes.fr/~grebert/publication.html, 2002
7. Ito, H.: Convergent normal forms for integrable systems. Comment. Math. Helv. 64, 412–461 (1989)
8. Kappeler, T., Pöschel, J.: KdV & KAM. Ergeb. der Math. und ihrer Grenzgeb., Berlin-Heidelberg-New

York: Springer Verlag, 2003
9. Kappeler, T., Serier, F., Topalov, P.: On the characterisation of the smoothness of skew-adjoint potentials

in periodic Dirac operators. Preprint
10. Kuksin, S.B., Pöschel, J.: Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear

Schrödinger equation. Ann. Math. 143, 149–179 (1996)
11. Li, Y., McLaughlin, D.W.: Morse and Melnikov functions for NLS Pde’s. Commun. Math. Phys. 162,

175–214 (1994)
12. Tkachenko, V.A.: Spectra of non-selfadjoint Hill’s operators and a class of Riemann surfaces. Ann. Math.

143, 181–231 (1996)
13. Vey, J.: Sur certains systemes dynamiques separables. Amer. J. Math. 100, 591–614 (1978)
14. Zakharov, V.E., Shabat, A.B.: A scheme for integrating nonlinear equations of mathematical physics by

the method of the inverse scattering problem I. Funct. Anal. Appl. 8, 226–235 (1974)
15. Zung, N.T.: Convergence versus integrability in Birkhoff normal forms. Ann. Math. 161, 141–156

(2005)

Communicated by G. Gallavotti

http://www.math.sciences.univ-nantes.fr/~grebert/publication.html

	Birkhoff Coordinates for the Focusing NLS Equation
	Abstract:
	Introduction
	Set-up
	Actions
	Even Potentials
	The Real Symplectic Subspace iL2R
	Proof of Theorem 1.1
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


