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Abstract The Chelopech deposit is one of the largest
European gold deposits and is located 60 km east of Sofia,
within the northern part of the Panagyurishte mineral
district. It lies within the Banat–Srednegorie metallogenic
belt, which extends from Romania through Serbia to
Bulgaria. The magmatic rocks define a typical calc-alkaline
suite. The magmatic rocks surrounding the Chelopech
deposit have been affected by propylitic, quartz–sericite,
and advanced argillic alteration, but the igneous textures
have been preserved. Alteration processes have resulted in
leaching of Na2O, CaO, P2O5, and Sr and enrichment in
K2O and Rb. Trace element variation diagrams are typical
of subduction-related volcanism, with negative anomalies
in high field strength elements (HFSE) and light element,
lithophile elements. HFSE and rare earth elements were
relatively immobile during the hydrothermal alteration
related to ore formation. Based on immobile element
classification diagrams, the magmatic rocks are andesitic

to dacitic in compositions. Single zircon grains, from three
different magmatic rocks spanning the time of the Chelo-
pech magmatism, were dated by high-precision U–Pb
geochronology. Zircons of an altered andesitic body, which
has been thrust over the deposit, yield a concordant
206Pb/238U age of 92.21±0.21 Ma. This age is interpreted
as the crystallization age and the maximum age for
magmatism at Chelopech. Zircon analyses of a dacitic
dome-like body, which crops out to the north of the
Chelopech deposit, give a mean 206Pb/238U age of 91.95±
0.28 Ma. Zircons of the andesitic hypabyssal body hosting
the high-sulfidation mineralization and overprinted by
hydrothermal alteration give a concordant 206Pb/238U age
of 91.45±0.15 Ma. This age is interpreted as the intrusion
age of the andesite and as the maximum age of the
Chelopech epithermal high-sulfidation deposit. 176Hf/177Hf
isotope ratios of zircons from the Chelopech magmatic
rocks, together with published data on the Chelopech area
and the about 92-Ma-old Elatsite porphyry–Cu deposit,
suggest two different magma sources in the Chelopech–
Elatsite magmatic area. Magmatic rocks associated with the
Elatsite porphyry–Cu deposit and the dacitic dome-like
body north of Chelopech are characterized by zircons with
ɛHfT90 values of ∼5, which suggest an important input of
mantle-derived magma. Some zircons display lower ɛHfT90
values, as low as −6, and correlate with increasing
206Pb/238U ages up to about 350 Ma, suggesting assimila-
tion of basement rocks during magmatism. In contrast,
zircon grains in andesitic rocks from Chelopech are
characterized by homogeneous 176Hf/177Hf isotope ratios
with ɛHfT90 values of ∼1 and suggest a homogeneous
mixed crust–mantle magma source. We conclude that the
Elatsite porphyry–Cu and the Chelopech high-sulfidation
epithermal deposits were formed within a very short time
span and could be partly contemporaneous. However, they
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are related to two distinct upper crustal magmatic reser-
voirs, and they cannot be considered as a genetically paired
porphyry–Cu and high-sulfidation epithermal related to a
single magmatic–hydrothermal system centered on the
same intrusion.

Keywords Chelopech . Au–Cu . High-sulfidation .

Epithermal . Bulgaria . U–Pb dating . Hf isotopes

Introduction

The Bulgarian Panagyurishte mineral district is a major ore
producing area within the Eastern European, Late Creta-
ceous Banat–Timok–Srednogorie belt (Berza et al. 1998;
Ciobanu et al. 2002; Heinrich and Neubauer 2002). This
district displays some of the best examples of porphyry–Cu
and high-sulfidation epithermal ore deposit associations
(Strashimirov et al. 2002; Moritz et al. 2004), more typically
recognized in younger tectonic settings such as in the
circum-Pacific region (Sillitoe 1997, 1999; Hedenquist and
Lowenstern 1994; Corbett and Leach 1998). Within the
northern Panagyurishte district, the high-sulfidation Au–Cu
epithermal Chelopech deposit and the Elatsite porphyry–Cu
deposit are two of the major producing mines and are only
6 km apart (Fig. 1). Based on their spatial relationship, they
were interpreted as genetically linked (Popov et al. 2000,
2001; Strashimirov et al. 2002). We here examine the
postulated genetic link of the magmatic rocks that host both
deposits.

Only few geochronological studies, on Tertiary deposits,
have documented the time relationships of spatially
associated porphyry–Cu and high-sulfidation epithermal
deposits. At Lepanto, Philippines (Arribas et al. 1995),
adjacent porphyry–Cu and high-sulfidation epithermal
deposits are coeval within resolution of radioisotopic age
determinations. In contrast, at Mindanao, Philippines
(Rohrlach 2003), La Famatina, Argentina (Losada-Calderòn
et al. 1994; Losada-Calderòn and McPhail 1996), the
Potrerillos district, Chile (Marsh et al. 1997), and the
Emperor gold mine in the Tavua Caldera, Fiji (Setterfield et
al. 1992), epithermal ore formation postdates exposed
magmatism and porphyry–Cu ore formation by more than
1 Ma and by about 2 Ma at the Collahuasi district, northern
Chile (Masterman et al. 2004, 2005), which is significantly
longer than ≤100,000 years: The duration of a single

�Fig. 1 a The Late Cretaceous Apuseni–Banat–Timok–Srednogorie
(ABTS) belt (modified from Heinrich and Neubauer 2002). b
Simplified geology of the Panagyurishte mineral district (after
Cheshitev et al. 1995), U–Pb ages reported for the Panagyurishte
deposits from von Quadt et al. (2005a), except Chelopech U–Pb ages
from Stoykov et al. (2004)
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hydrothermal event that can be sustained by a single upper
crustal intrusion (Cathles et al. 1997).

In this contribution, we examine the time and genetic
relationship of the Chelopech high-sulfidation epithermal
deposit within the regional magmatic and metallogenic
setting of the northern Panagyurishte district in light of new
field observations, whole rock major and trace element
compositions and precise U–Pb age data and Hf isotopic
compositions of magmatic zircons.

Regional setting

The Chelopech deposit is one of the largest Au deposits in
Europe. It is located in the northern part of the Panagyur-
ishte mineral district (Popov and Popov 2000), which
belongs to the Banat–Timok–Srednogorie belt (Fig. 1a).
This tectonic zone is considered part of the Tethyan
Eurasian metallogenic belt, which is linked to subduction
magmatism during convergence of the African and Eur-
asian plates (Jankovic 1997; Berza et al. 1998; Ciobanu et
al. 2002; Heinrich and Neubauer 2002; Lips 2002; von
Quadt et al. 2005a,b), and is characterized by Late
Cretaceous to Early Tertiary magmatic activity and ore
formation. The Bulgarian part of this tectonic zone, the
Srednogorie Belt, is subdivided into three magmatic seg-
ments: the Western, Central and Eastern Srednogorie zones.
These zones are defined on the basis of the nature of the
basement, the thickness of the crust, regional geophysical
data, major element rock composition, and their petrolog-
ical characteristics (Dabovski et al. 1991). The Panagyurishte
mineral district is located in the Central Srednogorie zone,
60–90 km east of Sofia, and has supplied about 95% of the
Bulgarian Cu and Au production (465 Mt ore in past
production, Strashimirov et al. 2002), from porphyry–Cu and
Au–Cu epithermal deposits (Mutafchiev and Petrunov 1996,
unpublished report). These ore deposits are aligned along a
NNW trend, which is oblique to the EW trend of the
Srednogorie belt (Fig. 1b).

Metamorphic basement rocks of the Panagyurishte
district consist predominantly of migmatite, amphibolite,
and gneiss, interpreted as Precambrian, and defined as
Pirdop Group by Dabovski (1988), Srednogorie-type
metamorphic rocks by Cheshitev et al. (1995) and Pre-
Rhodopean Supergroup by Katskov and Iliev (1993). In
contrast, Ivanov (1989) named them the Balkanide-type
metamorphic complex and inferred a Paleozoic age, an
interpretation supported by U–Pb zircon ages (Arnaudov et
al. 1989; Peytcheva and von Quadt 2004). Low-grade
metamorphic basement rocks of the Berkovitsa Group in
the northern part of the Panagyurishte district consist of
phyllite, chlorite schist, and diabase, interpreted as Late
Precambrian to Cambrian by Haydoutov et al. (1979) and

Haydoutov (2001). Basement intrusions consist of Paleo-
zoic gabbrodiorites, quartz diorites, tonalites, and grano-
diorites to granites (Dabovski et al. 1972; Kamenov et al.
2002; Peytcheva and von Quadt 2003, 2004; Carrigan et
al. 2005). All these units underwent ductile deformation
and associated low-grade metamorphism at ∼100 Ma
(Velichkova et al. 2004) and are unconformably covered
by Late Carboniferous to Jurassic clastic and carbonate
sedimentary rocks and Turonian conglomerate and sandstone,
containing metamorphic rock fragments and coal-bearing
interbeds (Fig. 1b; Foose and Manheim 1975; Aiello et al.
1977; Moev and Antonov 1978; Cheshitev et al. 1995;
Stoykov and Pavlishina 2003). These sedimentary rocks are
also overlain by the Turonian to Maastrichtian Srednogorie
volcano-sedimentary basin, which consists of magmatic
rocks and intra-arc sandstones, conglomerates, subordinate
pelagic marlstones, shales, and turbidites (Fig. 1b; Aiello et
al. 1977; Moev and Antonov 1978; Popov 2001; Stoykov
and Pavlishina 2003).

The Late Cretaceous magmatic rocks are calc-alkaline to
high-K calc-alkaline with a local transition to subalkaline,
and their geochemical composition is consistent with
magmatism related to an active continental volcanic arc
(Popov and Popov 1997; Stoykov et al. 2002, 2003;
Kamenov et al. 2003a,b; von Quadt et al. 2005a). Andesitic
and subvolcanic to effusive rocks predominate in the north,
whereas dacitic and holocrystalline intrusive rocks are more
abundant in the southern part (Fig. 1b; Boccaletti et al. 1978;
Stanisheva-Vassileva 1980). Small, subvolcanic dacite,
quartz monzodiorite, and granodiorite intrusions (mostly
<1 km2 in size) are comagmatic with the Late Cretaceous
volcanic rocks. Larger, syntectonic, Late Cretaceous grano-
dioritic–granitic intrusions are restricted to the southernmost
Panagyurishte district along the Iskar–Yavoritsa Shear Zone
(Fig. 1b; Ivanov et al. 2001; Peytcheva et al. 2001; Georgiev
and Ivanov 2003; Peytcheva and von Quadt 2003).

Local geological and metallogenic setting

The Chelopech deposit is located about 6 km southeast of
the Elatsite porphyry–Cu deposit (Fig. 2a). The Late
Cretaceous volcanic and volcano-sedimentary complex,
which hosts the Chelopech epithermal deposit, transgres-
sively overlie the Precambrian and Paleozoic metamorphic
basement rocks (Figs. 2a–c, 3; Popov et al. 2000). The Late
Cretaceous sedimentary succession starts with coal-bearing
sandstone and conglomerate, which is crosscut by sub-
volcanic bodies and overlain by the Chelopech Formation,
which in turn is composed of argillaceous limestone,
calcarenite, and sandstone interlayered with volcanic rocks
(Moev and Antonov 1978). Paleontological dating by
Stoykov and Pavlishina (2003) yields a Turonian age for
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both the basal sandstone and conglomerate and the
uppermost part of the Chelopech Formation (i.e. the
Turonian two-mica volcaniclastic sandstone in Figs. 2b,c, 3).
The Santonian–Campanian limestone and marlstone of the
Mirkovo Formation, and the calcarenite and mudstone
flysch of the Chugovitsa Formation overlie the Chelopech
Formation (Moev and Antonov 1978).

On the basis of K–Ar dating by Chipchakova and Lilov
(1976) and petrological studies, Popov and Kovachev (1996)
and Popov and Popov (1997, 2000) distinguished four
independent Late Cretaceous magmatic stages in the Chelo-
pech area. The oldest unit comprises the dacitic dome-like
bodies of Murgana and Petrovden to the north of Chelopech
(Fig. 2a). The second stage is a sequence of andesitic
agglomerate, rare ash tuff, intercalated with andesitic lava
flows and lava sheets. According to Popov and Kovachev
(1996), rocks of this stage were intruded by several
successive necks and late subvolcanic andesitic intrusions
at Chelopech. Epithermal ore formation overprints the latter.
The latest magmatic event described by Popov and Kovachev
(1996), Popov and Popov (2000), and Popov et al. (2000) is
the emplacement of a volcanic breccia, which crops out
along the Vozdol Valley, and is interpreted as a volcanic neck
(see Vozdol lava breccia neck, Unit 3 in Fig. 2b).

Recently, Stoykov et al. (2002, 2004) proposed three
different phases for the Chelopech volcanism linked to a
Late Cretaceous island arc setting:

1. A dome-like body is developed in the Turonian sedimen-
tary rocks and is well exposed in the Murgana area
(sample area CH114, Unit 1, in Fig. 2a). It has an
andesitic to trachydacitic composition with a porphyritic
texture displaying a microlitic groundmass (Stoykov et
al. 2002, 2004).

2. Lava and agglomerate flows have been described in
the northern part of the Chelopech area (sample area
CH56, Unit 2, in Fig. 2a). The composition of lava
flows is chiefly latitic, has an amphibole- and plagio-
clase-bearing porphyritic texture, and accessory biotite
and titanite. The groundmass is microlitic, with
plagioclase microlites. The presence of magmatic
xenoliths, with almost the same mineralogy, is
interpreted by Stoykov et al. (2002) as evidence of
mingling.

3. Lava breccia is present in the eastern part of the Vozdol
Valley to the northeast part of the Petrovden area
(Fig. 2b; sample area CH10, Unit 3, in Fig. 2a). Popov
et al. (2000) and Stoykov et al. (2002, 2004) interpret
this breccia as the youngest volcanic event in the
Chelopech magmatic zone, and they named this rock
“the Vozdol neck monovolcano”. The Vozdol “neck”
consists of clast-supported lava-breccia. The Vozdol
breccia clasts are andesitic and latitic in composition

and have petrographic characteristics similar to lava
and agglomerate flows, in which, phenocrysts are less
abundant (Stoykov et al. 2002, 2004).

Our study shows that magmatic rocks represent approx-
imately 40% of the surface exposure in the immediate
vicinity of the Chelopech mine (Fig. 2b). Directly above the
deposit, only strongly altered magmatic rocks are present,
which are also recognized in the Petrovden area. Turonian
two-mica sandstone and Maastrichtian limestone and flysch
are not altered. Altered dacite in the Petrovden area
(Fig. 2b) probably belongs to the Murgana dome-like body
defined by Stoykov et al. (2002).

The Vozdol volcanic breccia is overlain by and inter-
fingered with the two-mica sandstone of the Chelopech
Formation (Figs. 2b and 3; Chambefort 2005). This
observation documents a synchronous deposition of the
breccia with the base of the sandstone unit during the
Turonian (Stoykov and Pavlishina 2003). This volcanic
breccia contains andesitic and sedimentary clasts (Fig. 2b)
inside an altered aplitic lava and/or sedimentary matrix. The
sedimentary clasts are composed of unaltered, rounded,
fine-grained volcaniclastic sandstone typical of the two-
mica sandstone of the Chelopech Formation. Two types of
magmatic clasts are recognized and referred to as AI and
AII. The two types of magmatic clasts are differentiated
based on texture, mineralogy, and geochemistry (Chambefort
2005). The proportion of the type AII clast decreases from
the southwest in the Vozdol Valley (Fig. 2b) to the northeast,
but both clast types are present in the outcrops. This volcanic
breccia unit includes different textural facies. Andesitic
hyaloclastite zones are characterized by an intensively altered
glass matrix, mostly oxidized, with a distinct jigsaw-fit
texture. Sedimentary clasts can be incorporated into the
altered aplitic lava matrix, which is characteristic of peperitic
breccia formation (Chambefort et al. 2003; Chambefort
2005). Some pillow lava clasts have been identified based
on concentric and radial joints. The presence of magmatic
clasts inside a sedimentary matrix with sharp and unquenched
contacts suggests that some parts of this volcanic breccia have
been resedimented during late sedimentary processes or at the
periphery of the volcanic system during syn-volcanic breccia
formation. Therefore, this breccia is renamed as a resedi-
mented and syn-volcanic andesitic breccia (Figs. 2, 3).

The Chelopech high-sulfidation deposit belongs to the
northern part of the Panagyurishte mineral district (Fig. 1),
which includes the Vozdol base–metal–quartz–carbonate
veins (Fig. 2b, Mutafchiev and Petrunov 1996, unpublished
report; Popov et al. 2000), the Karlievo porphyry–Cu
occurrence (Fig. 1), and the Elatsite porphyry–Cu deposit,
located 6 km to the north of Chelopech (Fig. 2a). Popov et
al. (2001) recognize a regional high geomagnetic anomaly
beneath this ore deposit cluster, which they interpret as a
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shallow large magmatic chamber. Next to Chelopech, the
Elatsite porphyry–Cu deposit is the major producing mine in
the northern Panagyurishte district with Cu and Au grades of
0.44% and 0.2 g/t, respectively (Fig. 2a). Ore minerals
include chalcopyrite and pyrite and subsidiary molybdenite,
gold, and platinum-group minerals (Kalaidjiev et al. 1984;
Petrunov and Dragov 1993; Strashimirov et al. 2002; von
Quadt et al. 2002, 2005b; Tarkian et al. 2003). The Elatsite
porphyry–Cu deposit is associated with Late Cretaceous sub-
volcanic bodies and porphyry dikes (Kalaidjiev et al. 1984;
von Quadt et al. 2002), which intrude rocks of the Berkovitsa

group (Haydoutov 1987) and granodiorites of the Vejen
pluton (314 Ma, Kamenov et al. 2002, 2003a). The Late
Cretaceous andesitic, granodioritic, and monzodioritic dikes
at Elatsite and around the deposit occur in swarms (Fig. 2a).
One of the largest dikes, the so-called big dike, is 4 km long
and 100–450 m wide, dips 40–45° to the south, and has been
interpreted as a hypabyssal branch of a larger intrusive body
at depth (von Quadt et al. 2002). No volcanic rocks are
exposed in the vicinity of the Elatsite deposit; the closest
outcrop is in the Chelopech area (Fig. 2a). Lower Paleozoic
phyllites of the Berkovitsa group (Haydoutov et al. 1979), a
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zone
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Fig. 4 Overview of the Petrovden alteration zone, affecting the
resedimented and synvolcanic breccia of Vozdol. a, b Outcrop of the
resedimented, synvolcanic Vozdol breccia, interfingering with the two-
mica volcaniclastic sandstone. The Vozdol breccia has been over-
printed by the Petrovden alteration zone in the eastern part of the
outcrop. c Quartz–sericite altered sample of the Petrovden dacitic

dome-like body, with preserved porphyritic texture, including plagio-
clase and amphibole ghosts. d Argillic altered sample of the Petrovden
dacitic dome-like body. e Argillic alteration zone of the Petrovden
alteration area, alumino–phosphate–sulfate minerals. (ana anatase,
APS alumino–phosphate–sulfate minerals, kao kaolinite, py pyrite, qtz
quartz, ser sericite)
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Turonian sandstone and coal-bearing formation, and epiclas-
tic rocks are exposed between the Elatsite and Chelopech
deposits (Fig. 2a; Stoykov et al. 2004).

The Chelopech epithermal high-sulfidation Au–Cu
deposit and relative timing of ore formation

The Chelopech deposit is hosted by a hypabyssal magmatic
body of andesitic composition, altered volcanic breccia,
(recently characterized as a breccia of phreatomagmatic
origin) (Fig. 3, Chambefort 2005), and subsidiary altered
volcanic tuff containing accretionary lapilli and pumices
interbedded with sedimentary rocks with oolitic, biodetrital,
and sandstone layers (Jacquat 2003; Chambefort 2005;
Moritz et al. 2005). These rock units, which are only
exposed within the underground mine, belong to the
Chelopech Formation. Neither hydrothermal alteration nor
any high-sulfidation mineralization affects the overlying
Mirkovo and Chugovitsa Formations. Therefore, the rela-
tive age of the Chelopech deposit is Turonian based on
pollen dating by Stoykov and Pavlishina (2003). The
Chelopech deposit displays a typical epithermal high-
sulfidation alteration, from an innermost advanced argillic
alteration zone with vuggy silica, through quartz–sericite
alteration to distal propylitic alteration (Georgieva et al.
2002). The mineralization includes three successive ore-
forming stages: (1) an early Fe–S pyrite–marcasite stage,

with disseminated to massive pyrite replacement bodies, the
latter being particularly well developed along volcanic tuff
and sedimentary rock layers, (2) an intermediate Au-bearing
Cu–As–S stage, which constitutes the economic ore stage,
characterized by the presence of enargite, luzonite, tennan-
tite, bornite, and native gold, and (3) a late-stage, uneco-
nomic base–metal vein stage with sphalerite and galena
(Petrunov 1994, 1995; Jacquat 2003; Moritz et al. 2004,
2005; Chambefort 2005). The Chelopech Mine produces
approximately 130,000 oz gold/year and 21,700 t copper/
year of ore and contains 22 Mt measured and indicated
reserves, at 3.6 g/t gold and 1.4% Cu (Dundee Precious
Metals Inc. data; http://www.dundeeprecious.com/). Hydro-
thermal alteration and ore formation have been both
lithologically and structurally controlled (Chambefort
2005; Chambefort and Moritz 2006). The Late Cretaceous
ore-controlling faults have been reactivated during Tertiary
Alpine orogenic events, displacing older rock units
over the ore bodies along the Chelopech Thrust (Fig. 2c;
Chambefort and Moritz 2006). The overthrust of
older rock units on top of the Chelopech deposit and
post-ore sedimentation of the Mirkovo and Chugovitsa
Formations provided a favorable environment for the
exceptional preservation of this Late Cretaceous epithermal
deposit.

Popov and Kovachev (1996) and Popov et al. (2000)
mention the occurrence of mineralized clasts in the volcanic
breccia of the Vozdol Valley (Fig. 2b). They thus interpreted
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this neck as a post-ore magmatic event crosscutting the ore
bodies at depth. By contrast, Chambefort (2005) interpreted
it as a resedimented and syn-volcanic breccia, which formed
during the emplacement of lava into unconsolidated sedi-
ments in a shallow basin as documented by the interfingering
of the breccia and the two-mica sandstone (Figs. 3 and 4a,b).
However, both interpretations agree that the Vozdol breccia
unit constitutes the latest magmatic event in the Chelopech
vicinity.

The altered volcanic rock clasts in the Vozdol breccia unit
contain a hydrothermal alteration assemblage of fine-grained
quartz, dickite, kaolinite, barite, pyrite, anatase, and alumino–
phosphate–sulfate minerals (Georgieva et al. 2004). Georgieva
et al. (2004) state that such alteration is typical of the upper
part of the Chelopech deposit and, therefore, conclude that the
presence of these altered clasts in the Vozdol breccia sets a
minimum age limit for ore formation at Chelopech. However,
there are other alteration zones in the area, including the fault-
controlled quartz–sericite (Fig. 4c) and argillic alteration
(Fig. 4d,e) in the Petrovden area (Figs. 2b, 4a) with a
hydrothermal alteration assemblage composed of quartz,
kaolinite, dickite, pyrite (Fig. 4d), anatase, and alumino–
phosphate–sulfate minerals (Fig. 4e), which have affected
the Petrovden dacitic dome, the Vozdol breccia unit, and
the Turonian sandstone and coal-bearing formation (Popov
and Kovachev 1996; Jelev et al. 2003). Thus, a single
origin cannot be unambiguously attributed to the altered
clasts in the Vozdol breccia, making the age interpretation
uncertain. Moreover, no field relationships exist to
constrain the relative timing of the hydrothermal alter-
ations at Petrovden (Fig. 4a,b) and Chelopech.

Previous dating in the Panagyurishte area

Early, potassium–argon age determination of whole rocks
and mineral separates from the Panagyurishte mineral
district suggested four magmatic stages ranging between
91 and 65 Ma (Chipchakova and Lilov 1976; Lilov and
Chipchakova 1999). More recent radioisotopic investiga-
tions include 40Ar/39Ar, U–Pb, and Re–Os dating, which
are better capable of unraveling the polyphase evolution of
magmatism, deformation, and ore formation of the Pan-
agyurishte district. Pre-Cretaceous metamorphic and mag-
matic events of the Panagyurishte district are not considered
here (see Zagorchev and Moorbath 1987; Arnaudov et al.
1989; Kamenov et al. 2002; Peytcheva and von Quadt
2004; Velichkova et al. 2004; Carrigan et al. 2005); only
dating of Late Cretaceous events is summarized below.

Available U–Pb zircon data from the Panagyurishte
mineral district show a 14-My-long protracted Late Creta-
ceous magmatic and hydrothermal evolution (Fig. 5), with
magmatic and ore-forming events becoming progressively

younger from north to south across the EW-trending
Srednogorie zone (von Quadt et al. 2005a). In the northern
Panagyurishte district, at the Elatsite porphyry–Cu deposit
(Fig. 1), magmatism and ore formation started at 92.1±0.30
(von Quadt et al. 2002), and porphyry–Cu ore formation
was completed within 900,000 years (von Quadt et al.
2005a). Re–Os ages of 92.43±0.04 to 92.03±0.05 Ma
(Zimmerman et al. 2003), suggesting a minimum absolute
life span of 400,000±90,000 years for the stockwork
mineralization, are in agreement with U–Pb data. Intrusive
activity in the central part of the Panagyurishte district at
Medet and Assarel (Figs. 1 and 5) is slightly younger, with
U–Pb zircon ages between 90.06±0.22 and 89.61±0.26 Ma
(von Quadt and Peytcheva 2004; von Quadt et al. 2005a),
and was followed by magmatism at Elshitsa and porphyry–
Cu ore formation at Vlaykov Vruh (Figs. 1 and 5) dated at
86.62±0.11 to 86.11±0.23 Ma and 85.65±0.15 Ma, re-
spectively (Peytcheva et al. 2003). The youngest magmatic
event dated by U–Pb in the southern Panagyurishte district
is the emplacement of the Capitan Dimitrievo pluton at
78.54±0.13 Ma (Kamenov et al. 2003a,b). The progressive
southward migration of magmatism and ore formation is
explained as a consequence of slab rollback (Kamenov et
al. 2003a,b, 2004; von Quadt et al. 2003) or southward
retreat of the subducting slab (Handler et al. 2004; von
Quadt et al. 2005a).

40Ar/39Ar dating by Velichkova et al. (2004) indicates
that low-grade Alpine metamorphism occurred at about
106–100 Ma and, therefore, predates Late Cretaceous
magmatic activity within the Panagyurishte district. Incre-
mental heating experiments of biotite and amphibole from
Late Cretaceous magmatic rocks of the Panagyurishte
district by Handler et al. (2004) yield 40Ar/39Ar plateau
ages between 91.72±0.70 and 80.21±0.45 Ma that agree
with the north-to-south younging, indicated by the U–Pb
zircon ages (Fig. 5). However, the 40Ar/39Ar ages are
systematically and, in some cases, significantly younger in
a given locality than the U–Pb zircon ages (von Quadt et al.
2005a). Therefore, the 40Ar/39Ar ages most likely reflect
post-magmatic and post-ore formation cooling ages. Most
40Ar/39Ar age spectra reveal a weak Eocene to Early
Oligocene thermal overprint at about 40–32 Ma (Handler
et al. 2004). Lips et al. (2004) also report 40Ar/39Ar ages for
magmatic hornblende and biotite and hydrothermal white
mica from the Elatsite and Medet porphyry–Cu deposits
(Figs. 1 and 5). Magmatic hornblende from Elatsite and
biotite from Medet yielded ages of 91.2±0.6 and 90.4±
0.9 Ma, which overlap within uncertainty with U–Pb ages
obtained by von Quadt et al. (2002, 2005a; Fig. 5). White
micas from alteration assemblages from both deposits
yielded younger 40Ar/39Ar ages between 79.0±0.8 and
79.9±0.7 Ma. At Elatsite, for example, these white mica
ages have no geological connection with ore-forming
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Table 1 Representative geochemical analyses of fresh and altered magmatic rocks of the Chelopech deposit area

Units Vozdol syn-eruptive
andesitic breccia

Altered andesite
underground

Altered andesite
surface

Altered dacite
(Petrovden)

Volcanic
tuff (mine)

Samples 2σ V1-00 V7-00 C16-01 C75-01 V33-00 V62-01 V59-01 V58-00 C54-01 C56-01

%
SiO2 0.3 59.83 62.99 63.43 75.11 70.29 60.90 63.72 68.92 82.67 74.80
Al2O3 0.2 18.91 17.60 19.24 10.92 17.13 18.45 17.80 15.66 7.95 14.77
Fe2O3 0.1 4.40 4.49 4.14 4.76 0.90 5.29 3.45 4.27 2.56 1.67
MnO 0.02 0.07 0.09 0.02 0.01 0.00 0.10 0.08 0.02 0.01 0.00
MgO 0.15 1.20 1.46 0.64 0.49 0.27 0.44 2.35 0.72 0.45 0.01
CaO 0.15 4.40 3.00 0.42 0.22 0.16 2.72 0.20 0.03 0.12 0.03
Na2O 0.15 6.27 5.84 0.35 0.22 0.21 4.08 2.49 0.10 0.19 0.06
K2O 0.06 2.01 2.07 4.30 2.74 7.26 5.40 3.55 4.59 1.94 0.07
TiO2 0.03 0.55 0.57 0.63 0.39 0.59 0.59 0.49 0.55 0.26 0.51
P2O5 0.02 0.24 0.25 0.26 0.14 0.02 0.26 0.18 0.04 0.10 0.20
LOI 1,100°C 1.66 1.22 6.21 5.26 2.71 2.10 5.85 5.24 3.23 7.40
Total 99.54 99.58 99.64 100.26 99.54 100.33 100.16 100.14 99.48 99.52
(ppm)
V 8 133 142 173 91 131 149 126 84 67 109
Cr 8 17 13 18 13 10 15
Ga 3 15 17 21 17 18 19 21 21 11 27
Co 3 54 34 10 30 23 24 14 42 20 40
Sc 2 11 10 6 7 3 9 7 7 5 6
Y 4 26 22 36 29 8 20 17 21 17 4
Nb 5 8 8 5 6 7 8 8 9 4 7
Zr 30 101 89 145 91 155 130 135 169 47 129
Sr 9 906 948 41 182 37 676 131 10 76 1,900
Ba 40 583 808 90 2,427 317 817 483 509 220 5,718
Rb 7 34 38 187 115 307 241 144 186 95 1
Pb 6 10 16 47 264 7 12 83 77 42 157
Th 7 3 6 9 6 8 9 10 8 4 6
U 1 2 2 4 2 5 2 2 2 1 2
Cu 9 10 26 38 72 6 18 31 12 205 107
Zn 11 45 57 29 110 20 63 199 31 120 19
As 1.5 11 12 16 110 12 7 3 5 21 9
Ag 0.5 – – 0 8 – – – 0 – 1
Au (ppb) 35 – – 132 378 – – 3 19 20 8
S% 1.7 0 0 3 5 0 0 3 4 3 2
(ppm) (10%)
La 28.8 26.6 25.9 22.0 14.0 45.2 28.1 40.4 46.2 37.5
Ce 58.5 55.4 55.0 38.4 32.1 82.9 53.3 77.0 70.5 80.2
Pr 6.4 6.2 6.2 3.8 3.4 8.8 5.4 8.5 6.9 8.3
Nd 26.1 24.6 26.1 13.9 11.7 33.5 19.6 30.9 24.6 28.6
Sm 6.8 6.0 5.1 3.2 2.8 6.1 3.4 5.3 3.8 3.5
Eu 1.5 1.4 1.2 1.3 0.6 1.7 1.0 1.1 1.0 1.1
Gd 4.4 4.1 4.0 4.4 1.7 4.8 2.7 4.3 3.3 1.7
Dy 4.0 3.9 4.5 5.1 2.3 3.5 2.2 3.5 3.0 0.6
Ho 0.8 0.7 1.0 1.0 0.4 0.7 0.4 0.7 0.6 0.1
Er 2.1 2.0 2.5 2.7 1.2 2.0 1.4 2.1 1.8 0.6
Tm 0.3 0.3 0.4 0.4 0.2 0.3 0.2 0.3 0.3 0.1
Yb 1.9 1.8 2.3 2.3 1.2 2.0 1.5 2.2 1.6 0.8
Lu 0.3 0.3 0.3 0.3 0.2 0.3 0.2 0.3 0.2 0.1

Major and trace elements: X-ray fluorescence, University of Lausanne; REE: inductively coupled plasma atomic emission spectrometry,
University of Geneva (Voldet 1993)
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processes at about 92 Ma as evidenced by the U–Pb zircon
age constraints provided by von Quadt et al. (2002; Fig. 5).
Therefore, as suggested by Lips et al. (2004), these young
ages most likely reveal argon loss or thermal resetting.

Within the Chelopech area, the oldest dated rock unit is
the dacitic dome-like body at Murgana, approximately
3.5 km to the northwest of the Chelopech mine (Stoykov et
al. 2004; sample CH 114 in Fig. 2a), which yielded a U–Pb
zircon age of 92.22±0.30 Ma. An U–Pb age of 91.3±
0.30 Ma was obtained for both an andesite clast of the
Vozdol breccia immediately to the northeast of the mine
and for a brecciated andesite lava flow between Murgana
and the Chelopech mine (Stoykov et al. 2004; samples CH
56, CH10 in Fig. 2a). They interpret the former as the

youngest magmatic event, and the age is slightly at variance
with a 40Ar/39Ar age of biotite from the same Vozdol
breccia of 89.95±0.45 Ma, interpreted by Handler et al.
(2004) as a magmatic event.

Analytical techniques

Major and trace elements were analyzed by X-ray fluores-
cence at the University of Lausanne, Switzerland, using a
Philips PW 1400. The relative 2σ precision of major and
trace element analyses is listed in Table 1. Loss on ignition
(LOI) was determined by igniting a weighed sample at
1,050°C. Rare earth elements (REE) were analyzed by ICP-
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AES at the University of Geneva following the procedure of
Voldet (1993). The 2σ precision is 5–10%.

Cathodoluminescence images of zircons were photo-
graphed on a CamScan MV2300 SEM at the University of
Lausanne, operating at 15 kV.

High-precision conventional U–Pb zircon analyses were
performed on single zircon grains at the ETH Zurich,

Switzerland. Selected zircons were air-abraded to remove
marginal zones with lead-loss, washed in warm 4 N nitric
acid and rinsed several times with distilled water and
acetone in an ultrasound bath. Dissolution and chemical
extraction of U and Pb was performed following Krogh
(1973), using a 205Pb–235U spike. Both Pb and U were
loaded with silica gel and phosphoric acid on single Re

Fig. 8 a Zr (ppm) vs TiO2 (wt
%) plot of magmatic rocks from
the Chelopech, Petrovden, and
Elatsite area. b Classification of
the magmatic rocks from the
Chelopech area according to
Winchester and Floyd (1977),
including Elatsite analyses from
von Quadt et al. (2002)
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filaments and measured on a Finnigan MAT 262 thermal
ionization mass spectrometer using an ion counter system.
Uncertainties of mean age values are given at the 2σ level.

Hf isotope ratios of zircons were obtained on a Nu
Instruments multiple collector inductively coupled plasma
mass spectrometer (MC-ICPMS; David et al. 2001) at
the ETH Zurich, Switzerland. During the analyses, we

obtained the 176Hf/177Hf ratio of the JMC 475 standard of
0.282141±5 (2 sigma mean) using the 179Hf/177Hf=0.7325
ratio for normalization. For the calculation of the ɛHf
values, the present day ratios (176Hf/177Hf)CH=0.28286 and
(176Lu/177Hf)CH=0.334 were used, and for 90 Ma, a
176Lu/177Hf ratio of 0.0050 for all zircons was taken into
account.
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Petrology and geochemistry of magmatic rocks
at the Chelopech deposit

Whole rock petrology

We treat only rocks in the immediate vicinity of the
Chelopech mine (Fig. 2b,c) and discuss the results in
combination with the geochemical and petrological studies
of Stoykov et al. (2002, 2004). The different analyzed rock
types of the Chelopech area, with characteristic magmatic
textures and alteration assemblages, are viewed in thin
sections in Fig. 6. Fresh magmatic samples were selected
from the two andesitic clast types (AI and AII) of the
Vozdol syn-eruptive breccia and andesite of the Chugovitsa
syn-volcanic breccia (Figs. 2b, 3; Chambefort 2005).
Altered samples from the surface were selected above the
mine and in the Petrovden area (Fig. 2b). Underground
samples of subvolcanic intrusion and altered volcanic tuff,
which host the mineralization, were also analyzed (Fig. 2c).

The andesitic clasts AI and AII of the Vozdol syn-
eruptive breccia are porphyritic in texture with a microlitic
mesostasis. The phenocrysts are plagioclase (∼48 vol.%),
amphibole (∼10 vol.% in clast AI and ∼20 vol.% in clast
AII), apatite (∼2 vol.%), minor biotite (∼1 vol.%), minor
titanite (∼1 vol.%), and minor magnetite (Fig. 6a,b). The
groundmass is composed of finely crystallized plagioclase
and quartz. AII clasts include residual corroded quartz
phenocrysts (Fig. 6b) and contain rare, entirely crystallized
magmatic enclaves identical to those described in the
dome-like volcanic body by Stoykov et al. (2002) in the
northern part of the Vozdol Valley. Chugovitsa syn-volcanic
breccia clasts display the same petrography as clasts AI of
the Vozdol breccia. The porphyric texture is preserved in
altered samples (Fig. 6c–h). It is important to underscore
that biotite, contrary to the other phenocrysts, is systemat-
ically altered, even in so-called fresh samples from surface
samples. Biotite has an alteration assemblage composed of
titanite, quartz, and calcite (Fig. 6c). The alteration minerals
grow along the cleavage planes of the relict biotite. In the
propylitic zone, alteration minerals such as chlorite,
epidote, calcite, and titanite crystallize at the expense of
ferromagnesian minerals (Fig. 6d).

Altered magmatic rocks from Petrovden (Fig. 2b) dis-
play a residual porphyritic texture with ghosts of plagio-
clase (∼15 vol.%) and amphibole (∼3 vol.%) phenocrysts,
and subsidiary resorbed quartz (<2 vol.%), essentially
replaced by a quartz–sericite alteration assemblage.
Figure 6e to g shows the typical texture and mineralogy
of samples from the quartz–sericite alteration zone. The
porphyritic texture is well preserved, but the magmatic
mineral assemblage is completely replaced by sericite,
quartz, oxide, and pyrite. Georgieva et al. (2002) also
describe alumino–phosphate–sulfate minerals in this alter-

ation zone. In the advanced argillic alteration zone, the
original magmatic texture is also preserved (Fig. 6h), even
though the rock is composed of a quartz–clay mineral
assemblage associated with disseminated pyrite. Pumice
and bedding textures are still recognizable in volcanic tuff
affected by advanced argillic alteration (Fig. 6i).

Geochemistry of the magmatic rocks at Chelopech

One of the major problems in hydrothermally altered
volcanic environments, especially in areas immediately
next to the mineralization zone, is to interpret the initial
rock composition. At Chelopech, most of the primary
mineralogy was partly or totally overprinted by the
hydrothermal event. However, some clasts from the Vozdol
syn-eruptive breccia (Fig. 2b) are relatively fresh, and
combined with published data on magmatic rocks of
Stoykov et al. (2002, 2004), it is possible to compare fresh
magmatic rock samples from this area with strongly altered
rocks within the ore deposit. Preserved volcanic textures,
immobile element geochemistry, spider diagrams, and REE
patterns have been used to determine the influence of the
hydrothermal alteration processes on chemical composition
and to classify these rocks. Representative analyses of fresh
and altered samples of the Chelopech area are in Table 1;
the entire data set can be found in Chambefort (2005).
Major and trace element concentrations were recalculated to
100% volatile free and plotted against LOI as a monitor for
hydrothermal alteration (Fig. 7).

The SiO2 concentration of fresh samples varies from 55
to 67 wt%, whereas altered samples have a larger variation
from 53 to 80 wt% (Fig. 7a). Alteration processes resulted
in leaching of Na2O and CaO (Fig. 7b,c). In contrast, the
altered samples from the underground mine and the surface
are enriched in K2O and Rb (Fig. 7d,e).

The nature of the volcanic to subvolcanic rocks in the
Chelopech area was determined using the Nb/Y vs Zr/TiO2

classification diagram of Winchester and Floyd (1977). The
reasonable correlation between TiO2 (wt%) and Zr (ppm)
contents in fresh and altered samples (Fig. 8a) and the
absence of any correlation with LOI (Fig. 7f,g) allows us to
consider these elements as relatively immobile during the
alteration processes. However, the Y content is variable,
particularly in the most altered rocks (Fig. 7h). Therefore,
the Nb/Y ratio, which corresponds to the alkalinity index
(Winchester and Floyd 1977) in Fig. 8b, cannot be considered
as a reliable parameter to classify magmatic rocks from the
Chelopech area. This problem of classification using Y
concentrations and the Winchester and Floyd (1977) diagram
has already been noted in previous studies (Finlow-Bates and
Stumpfl 1981; Hill et al. 2000). In conclusion, only variations
of the Zr/TiO2 ratio can be confidently used for determining
the original magmatic compositions. Except those from the
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Petrovden area, the samples plot mostly in the andesite field in
the classification diagram of Winchester and Floyd (1977)
(Fig. 8b), which is in agreement with preserved andesitic
volcanic textures presented in Fig. 5.

In conclusion, the Chelopech magmatic rocks from both
surface and underground are similar and have an andesitic
composition. The magmatic rocks of the Petrovden area,
considered as the altered counterpart of the Murgana dome-

c

a

e

d

b

f

V33-00 V33-00

V58-01V58-01

C16-01 C16-01

Fig. 10 Characteristic morphology of analyzed zircons. a, c, and e transmitted light. b, d, and f cathodoluminescence pictures. a, b Sample
V33-00; c, d sample V58-01, and e–f sample C16-01
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like body defined by Stoykov et al. (2002) (Fig. 2a), have a
more dacitic composition.

Rare earth elements and spider diagrams

REE patterns and spider diagrams are shown in Fig. 9. Five
groups of samples are presented, which have been delimited
by their geographical position and their lithologies. Fresh
rock compositions from the Vozdol and Chugovitsa syn-
volcanic breccia (Fig. 2b) with an andesitic composition are
shown in Fig. 9a. In comparison, altered andesite from
underground subvolcanic bodies (Fig. 9b), altered andesitic
rock from surface outcrops directly above the mine (Fig. 9c),
altered dacitic rock from the Petrovden zone (Figs. 2b and
9d), and underground altered volcanic tuff (Fig. 9e) have
been plotted in different diagrams for the sake of clarity.

All rocks have decreasing light REE and relatively flat
heavy REE patterns and are typical of subduction-related
volcanic rocks (Pearce 1982). No significant Eu anomaly is
present in the REE spectra, suggesting that there is no
extensive plagioclase fractionation involved in the genesis
of these rock types.

Trace element spider diagrams exhibit some variations
between fresh and altered rock samples: Fresh magmatic
rocks (Fig. 9f) display negative anomalies in large ion,
lithophile elements (Sr, K, Rb, and Ba) and high field
strength elements (Nb, Ti, and Zr), characteristic of
subduction-related magmatic rocks (Pearce 1982).

Altered hypabyssal bodies with preserved andesitic
texture, sampled underground and on surface (Fig. 9g–i),
are depleted in Sr and P2O5 compared to fresh andesitic
rocks (Fig. 9f) and are enriched in K2O and Rb. Sr, K2O,
Ba, Y, and P2O5 are strongly mobile elements during the
alteration processes. TiO2, Nb, and Zr appear to be
immobile during the hydrothermal alteration, while the
variable Ba concentration can be related to the presence or
absence of barite in the alteration assemblages. Volcanic
tuff (Fig. 9j) displays similar patterns to those of altered
andesitic rock.

Geochronological studies of the Chelopech deposit

Previous geochronological studies in the Chelopech area
were designed to unravel the magmatic evolution (Handler
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et al. 2004; Stoykov et al. 2004; Figs. 2a and 3). In this
study, we focus on dating the immediate host and country
rocks of the Chelopech deposit, to constrain the age of
formation of the high-sulfidation epithermal deposit with
respect to local magmatism and, more regionally, to

porphyry–Cu ore formation and magmatism at Elatsite,
located 6 km to the northwest (Fig. 2a).

Sample V33-00

This sample comes from altered rocks just above the
Chelopech underground mine (Fig. 2b,c). It is characterized
by argillic alteration. Clay minerals and sericite replace
plagioclase phenocrysts of the initial porphyritic texture.
Hydrothermal quartz is crystallized in the mesostasis, with
anatase and minor alumino–phosphate–sulfate minerals.
Zircon is relatively abundant. Oscillatory zoning is typical
of magmatic zircons (Fig. 10a,b); grains are pink, euhedral,
prismatic, and are ∼50 to 400 μm long.

Sample V58-01

This quartz–sericite altered sample comes from an outcrop
on the Petrovden peak (Fig. 2b). It is a sample of the altered
part of the Murgana dacitic dome-like body defined by
Stoykov et al. (2002). This rock has preserved porphyritic
texture with resorbed quartz phenocrysts (Fig. 6e). Plagio-
clase phenocrysts are totally replaced by sericite and minor
hydrothermal quartz. The mesostasis is composed of a very
fine assemblage of sericite and quartz. Hydrothermal
anatase is also present and has incorporated Ti released

Table 3 Hf zircon isotope data for magmatic rocks of the Chelopech
deposit

Sample 176Hf/177Hf 2σ Error ɛHf today ɛHfT90 (Ma)

V33-00
2754 0.282760 0.000003 −0.42 1.06
2753 0.282731 0.000003 −1.45 0.04
2755 0.282737 0.000003 −1.24 0.25
2752 0.282760 0.000002 −0.42 1.06
2757 0.282760 0.000005 −0.42 1.06
V58-01
2760 0.282565 0.000003 −7.32 −5.84
2762 0.282836 0.000003 2.26 3.75
2761 0.282852 0.000004 2.83 4.32
2763 0.282684 0.000004 −3.11 −1.63
2758 0.282852 0.000004 2.83 4.32
2759 0.282840 0.000009 2.40 3.89
C16-01
2637 0.282774 0.000005 0.07 1.56
2638 0.282774 0.000010 0.07 1.56
2641 0.282751 0.000004 −0.74 0.74

176 Hf/177 Hf analyses, ETH—Zurich
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during alteration of magmatic ferromagnesian minerals.
Zircon grains are of two types: prismatic (Fig. 10c,d) and
rounded-prismatic and are typically ∼40 to 250 μm long.
Cathodoluminescence shows that rounded-prismatic zircons
have a cloudy core surrounded by a layer with oscillatory
zoning (Fig. 10d), which can be interpreted as an inherited
zircon core.

Sample C16-01

This sample comes from the exploitation block 18 on level
405 of the mine and represents the hypabyssal body with an
andesitic texture, which is the immediate host of the
mineralization (Fig. 2c). It displays argillic alteration
associated with disseminated pyrite. A relic porphyry
texture can still be recognized despite the intense alteration.
As in the other dated samples, zircon grains are very
abundant. Crystals are prismatic with ∼160 to 220 μm in
size. As for sample V33-00, cathodoluminescence shows
oscillatory zoning typical of magmatic zircons (Fig. 10e,f).

U–Pb geochronology

U–Pb zircon isotope data are reported in Table 2. Five
zircons were separated and analyzed from sample V33-00
and reported on a 206Pb/238U vs 207Pb/235U concordia
diagram (Fig. 11a). Zircons 2753, 2754, 2755, and 2756
define a calculated concordant 206Pb/238U age of 92.21±
0.21 Ma (Ludwig 1999). This age is interpreted as the
formation age of the hypabyssal andesite. Zircon 2752
displays a minor proportion of inherited lead and is not
included in the calculation. The abraded zircons have a wide
range of U contents from 135.0 to 499.1 ppm, and the Pb
contents in the same grains range from 2.194 to 7.882 ppm.

Two out of six zircons analyzed from sample V58-01 of
the Petrovden dacitic dome-like body, are concordant and
display a mean 206Pb/238U age of 91.95±0.28 Ma (2758,
2761, Table 2, Fig. 11b). This age overlaps within
uncertainties with the age of 92.22±0.30 Ma obtained by
Stoykov et al. (2004) for the Murgana dacitic dome-like
body (Figs. 2b and 5). One zircon grain has a larger pro-
portion of inherited lead (2763, Table 2), yielding an age of

313.4±1.6 Ma. Two zircon grains are discordant and define
an upper intercept at 469.6 +9.9, −9.6 Ma (Fig. 11b′). This
discordia age is interpreted as an assimilation of Paleozoic
crustal material, in agreement with cathodoluminescence
showing the presence of inherited cores (Fig. 10d). The
zircon has a range of U contents from 110.2 to 292.6 ppm
and Pb contents from 3.459 to 15.410 ppm. A non-abraded
zircon grain (2759, Table 2, Fig. 11b′) displays a minor
proportion of inherited lead, characterizing lead loss during
evolution with time.

Six zircons of sample C16-01 were analyzed and are all
concordant. Only four of them were used to define a mean
206Pb/238U age of 91.45±0.15 Ma (2643, 2642, 2640, 2641,
Table 2, Fig. 11c). A non-abraded zircon (2639, Table 2,
Fig. 11c) shows minor inherited lead and was not used in
the calculation. Zircon 2638 displays an important error and
was also not used to determine the mean age. This age of
91.45±0.15 Ma is interpreted as the intrusion age of the
subvolcanic body, which hosts the mineralization under-
ground. The abraded zircons have a wide range of U
contents from 128.6 to 199.1 ppm, and the Pb contents in
the same grains range from 2.427 to 3.534 ppm.

Hf isotopes

Zircons of the andesitic body sampled on surface just above
the mine (V33-00, in Fig. 2b) yield a range of ɛHf recal-
culated at 90 Ma from 0.04 to 1.06 (Table 3). The Petrovden
zircon samples (V58-01, in Fig. 2b) have ɛHf values that
vary from −5.84 to 4.32. There is a correlation between the
incorporation of an increasing old lead component with low
176Hf/177Hf ratios (Fig. 12). The zircons with the highest
proportion of an old component have the lowest ɛHf value.
Sample C16-01 (Fig. 2c) has ɛHf values that range from
0.74 to 1.56.

Samples C16-01 and V33-00 display almost the same
range of ɛHf values between 0.04 and 1.56 (Fig. 12). These
values are characteristic of a mixed crustal and mantle
origin for the magma and define the same magma source
for both magmatic units.

In contrast, zircons from dacitic rocks of the Petrovden
area (Fig. 2b) have a large variation of 176Hf/177Hf ratios.

Table 4 Age and Hf isotope differences between Petrovden and Chelopech magmatic rocks

Petrovden Chelopech

Composition Dacite, dome-like body Andesite, subvolcanic, lava
flow, synvolcanic breccia

ɛHfT90 −5.84→3.75 3.89→4.32 0.04→1.06
Interpretation Inherited lead from

old basement rocks
Mantellic component Mixed crustal–mantle source

Ages (U–Pb)
(This study; Stoykov et al. 2004)

469.6+9.9, −9.6 Ma 92.22±0.30 Ma 92.21±0.21→91.30±0.30 Ma
313.4±1.6 Ma

684 Miner Deposita (2007) 42:665–690



Old lead enriched zircons have the lowest ɛHf values,
which are characteristic of the assimilation of a crustal
component, whereas youngest zircons display ɛHf values
with a more predominant mantellic component in the
magma source (Fig. 12).

Discussion and conclusions

Evolution and geochronology of magmatism at Chelopech

The Chelopech magmatic rocks are relatively homogeneous
and display similar geochemical variations. REE and trace
element patterns are typical of subduction-related volca-
nism. Our whole-rock analyses of the magmatic rocks,
which host the Chelopech deposit, are in agreement with
the recent petrological study of Stoykov et al. (2002) and
indicate a calc-alkaline andesitic to dacitic (Petrovden
member) composition. In addition, Stoykov et al. (2002)
describe shoshonitic compositions and high-K volcanic
rocks. We have shown that K2O and Na2O are strongly
mobile in the hydrothermal area, even in so-called fresh

magmatic rocks (Fig. 7). Therefore, Na2O+K2O vs SiO2 or
K2O vs SiO2 (wt%) diagrams (Le Maître 1989; Stoykov et
al. 2002) must be used with caution. The presence of
plagioclase associated with amphibole and biotite pheno-
crysts shows that the H2O content in the magma was higher
than 1.5 wt% (Thorpe 1982).

Figure 12 displays the ɛHf data of magmatic rocks from
the Chelopech and Petrovden areas obtained in this study
and by Stoykov et al. (2004), which are compared to data of
magmatic rocks from the Elatsite porphyry–Cu deposit area
(von Quadt et al. 2002), and Table 4 contrasts the different
characteristics of the Petrovden dacite and the Chelopech
andesite. It appears that the Hf isotope data can be
subdivided into two groups. A fairly homogeneous group
of data with ɛHf of 0.04 to 1.56 for ages at approximately
91–92 Ma is exhibited by the underground subvolcanic
andesitic body at Chelopech (C16-01, in Fig. 2c), altered
andesite located on surface immediately on top of the mine
(V33-00, Fig. 2b,c), lava and brecciated flow, and clasts
from the Vozdol lava breccia (CH56, CH10 in Fig. 2a,
Stoykov et al. 2004). Such ɛHf values are characteristic of a
mixed crust–mantle source.

Elatsite Porphyry-Cu
deposit 

Maximum age of the 
Chelopech mineralization

90.591.091.592.092.593.0

Elatsite porphyry-Cu 
mineralization 
(Von Quadt et al. 2002)

Chelopech epithermal
high-sulfidation 
deposit

U-Pb this study

U-Pb Stoykov 
et al. (2004 )

Ages (Ma)

V33-00 upper mine andesite

V58-01 Petrovden dacite

C16-01 underground andesite

HOR 1390 Elatsite Qtz-monzodiorite

LF 025 Elatsite diorite

CH10 andesite clast, Vozdol breccia

CH56 andesitic lava and brecciated flow

CH114 Murgana dacitic dome-like body
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U-Pb Von Quadt 
et al. (2002)

Re-Os Zimmerman 
et al. (2003)
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Fig. 13 Compilation of age data on the Chelopech high-sulfidation epithermal and Elatsite porphyry–Cu deposits
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In contrast, samples from the Murgana–Petrovden
dacitic dome-like body (V58-01 in Fig. 2b, CH114 in
Fig. 2a, Stoykov et al. 2004) display higher ɛHf values,
which range from 2.90 to 5.02 for the same age range and
which overlap with the ɛHf values of intrusive rocks at the
porphyry–Cu deposit of Elatsite (von Quadt et al. 2002).
These isotopic compositions are typical of a predominantly
mantle source. The correlation of decreasing ɛHf values
with older zircon ages reveals the incorporation of an old
lead component in the magma that produced the dome-like
body at Petrovden (Murgana) and the intrusive rocks at
Elatsite (Fig. 12). The old lead component can be
explained by assimilation of metamorphic basement rocks
by the magma, which is supported by inherited cores in
the zircons (Fig. 10d). The upper intercept in the
206Pb/238U vs 207Pb/235U concordia diagram (Fig. 11b′)
shows an age of 469.6+9.9/−9.6 Ma, which closely
corresponds to the age of the Paleozoic basement rocks
in the region (von Quadt et al. 2002). Nd isotopic data of
magmatic rocks agree with this interpretation, with ɛNd
(T=90 Ma) values of −0.03 and 2.27 at the Elatsite
porphyry–Cu deposit (von Quadt et al. 2002) and values
between −3.55 and −2.27 at Chelopech (Stoykov et al.
2004) revealing a higher mantle component in magmatic
rocks at Elatsite in comparison to Chelopech.

Our U–Pb geochronological results show that andesitic
rocks thrust over on the Chelopech deposit (sample V33-
00, Fig. 2c) have the same age as the Petrovden dacite
(V58-01, Fig. 2b) dated by Stoykov et al. (2004) and the
intrusive rocks hosting the Elatsite porphyry–Cu deposit
(Fig. 13). This reveals that the Murgana–Petrovden dacitic
dome-like body, intrusive activity at Elatsite, and early
andesitic volcanism at Chelopech were contemporaneous,
within resolution of radioisotopic age determinations. This
also indicates that two physically distinct upper crustal,
magmatic reservoirs with different compositions were
coexisting at about 92 Ma, with a mantle-dominated
magmatic source mixed with older crustal basement
material in the north, responsible for the magmatism at
Murgana–Petrovden and Elatsite, and a more homogeneous
source reservoir with both mantle and young crustal
material but without any assimilation of old crustal
basement material that generated the andesitic magmatism
at Chelopech in the south. Therefore, the north-to-south
(Elatsite to Chelopech) decrease in the mantle and old
crustal basement components cannot be simply explained by
a simple magma evolution over time of the same magmatic
reservoir. However, our data do not allow us to state whether
both coexisting upper crustal magma reservoirs were linked
to a single, large magmatic chamber at depth or whether they
were distinct magma systems. The regional geomagnetic
anomaly recognized below the Elatsite–Chelopech ore

deposit cluster by Popov et al. (2001) tends to support the
former interpretation, i.e. a single magmatic chamber at
depth, in which variable degrees of mixing may have
produced the compositional differences observed between
the magmatic rocks at Elatsite and Chelopech.

The latest magmatic stage is the Vozdol breccia, as dated
at 91.30±0.30 Ma by Stoykov et al. (2004, U–Pb age on
zircon) on an andesitic clast (sample CH10 in Fig. 2a),
which has a magmatic texture and chemical composition
corresponding to the AI clast type from the Vozdol syn-
volcanic breccia (Stoykov 2005, personal communication).
This age interpretation is consistent with all field studies,
whether one accepts the interpretation by Popov and
Kovachev (1996), Popov and Popov (2000), and Popov et
al. (2000) suggesting that this breccia is a late volcanic neck
or our interpretation suggesting that it is a resedimented and
syn-eruptive breccia as based on our recent field observa-
tions (see above; Fig. 3; Chambefort 2005). The U–Pb data
show that andesitic magmatism at Chelopech outlasted the
dacitic magmatism of the Murgana–Petrovden area
(Fig. 12).

Age of the Chelopech high-sulfidation epithermal deposit
and duration of the hydrothermal event

The hypabyssal andesitic body overprinted by hydrother-
mal alteration at Chelopech yields a U–Pb age of 91.45±
0.15 Ma (sample C16-01 in Figs. 2c, 5, and 13). Therefore,
its U–Pb zircon age defines a maximum age for the
Chelopech epithermal high-sulfidation deposit. The Vozdol
breccia constitutes the last magmatic event at Chelopech
dated at 91.30±0.30 Ma (Stoykov et al. 2004). If we accept
that the occasional altered volcanic clasts in the Vozdol
breccia belong to the same hydrothermal alteration event
associated with the Chelopech high-sulfidation deposit
(Georgieva et al. 2004), then the magmatic age of the Vozdol
breccia also defines a minimum age of Chelopech deposit
and permits us to bracket its genesis between 91.45±0.15
and 91.30±0.30 Ma. Therefore, given the analytical uncer-
tainties, ore formation took place between a maximum age of
91.6 Ma and a minimum age of 91.0 Ma (Fig. 13), which
narrows the maximum duration of ore formation at Chelo-
pech down to 600,000 years. However, the origin of the
altered clasts in the Vozdol breccia is not definitely solved
and cannot be attributed unambiguously to the Chelopech
alteration, as other alteration zones with unknown age
relationships, such as Petrovden, are also recognized
(Fig. 4a,b). Therefore, the presence of the altered clasts in
the Vozdol breccia described by Georgieva et al. (2004) must
still be viewed cautiously as evidence for a minimum age
limit of the Chelopech deposit.
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Relationship of the Chelopech epithermal and Elatsite
porphyry–Cu deposits during the evolution of the northern
Panagyurishte district

Recent U–Pb zircon data on the Elatsite deposit (von Quadt
et al. 2002) demonstrate that the porphyry–Cu deposit was
formed between 92.10±0.30 and 91.84±0.31 Ma (Figs. 5
and 13). As discussed above, the Chelopech high-sulfidation
epithermal deposit is younger than 91.45±0.15 Ma, and the
hydrothermal activity related to this deposit ceased by 91.30
±0.30 Ma according to Stoykov et al. (2004) and Georgieva
et al. (2004). Thus, the high-sulfidation epithermal deposit is
slightly younger than the porphyry–Cu deposit; however,
both deposits have very close ages and were formed within
less than 1.4 Ma. Within the uncertainties of the individual
U–Pb ages, the early stages of ore formation at the
Chelopech high-sulfidation epithermal deposit may have
been contemporaneous with the waning ore formation stages
at the Elatsite porphyry–Cu deposit (Fig. 13).

Based on Hf isotope systematic, andesitic magmatic
rocks predating (underground andesite, sample C16-01 in
Figs. 12 and 13) and postdating (Vozdol breccia, sample
CH10 in Figs. 12 and 13) the emplacement of the
Chelopech epithermal deposit were sourced by a mixed
crustal–mantle reservoir, whereas the magmatic rocks
hosting the 6-km distant Elatsite porphyry–Cu deposit are
predominantly of mantle origin. U–Pb geochronology also
indicates that the two physically distinct magmatic reser-
voirs were coexisting (Fig. 13), arguing against an
evolution over time of a single magmatic reservoir.
Therefore, we conclude that the magmatic–hydrothermal
systems forming the Chelopech and Elatsite deposits were
related to distinct, shallow crustal intrusions. Although, as
stated earlier, they could both be related to a single
magmatic chamber at depth as Popov et al. (2001)
concluded based on geophysical data.

Genetic models typically suggest that paired porphyry–Cu
and high-sulfidation epithermal deposits form from a single
magmatic–hydrothermal system centered on the same, upper
crustal intrusion (e.g. Hedenquist and Lowenstern 1994;
Arribas et al. 1995; Heinrich et al. 1999). Thus, if the
above-mentioned interpretation is accepted, this may have
important implications for mineral exploration, as there
would still be open ground at depth at Chelopech for
exploration of a porphyry–Cu deposit expected to be
genetically paired with the epithermal high-sulfidation
deposit. By contrast, any high-sulfidation deposit that
would have been paired with the Elatsite porphyry–Cu
deposit would have been eroded. According to our
interpretation, the Elatsite porphyry–Chelopech epithermal
association would be comparable to the relationship
recognized for instance in the Collahuasi district, Chile,

where early porphyry–Cu formation and subsequent high-
sulfidation epithermal mineralization were related to two
adjacent but physically and temporally distinct shallow
level intrusions (see Fig. 21 in Masterman et al. 2005).
Such a genetic scenario is distinct from cases such as
Lepanto, Philippines (Arribas et al. 1995; Hedenquist et al.
1998), where the porphyry–Cu and high-sulfidation epi-
thermal deposits were formed within a single magmatic–
hydrothermal system, centered on a single, shallow mag-
matic intrusion.

The tight clustering of magmatism and ore formation in
the Chelopech–Elatsite area at about 91–92 Ma fits into the
regional north-to-south younging of magmatism and ore
formation in the Panagyurishte district, related to slab
rollback by von Quadt et al. (2005a). von Quadt et al.
(2005a) also argue, based on radiogenic isotopes, for an
evolution during slab rollback from a predominantly mixed
crust–mantle source in the northern Panagyurishte district
to magmas with a higher mantle component in the southern
part. Our study within the northern Panagyurishte district
shows that on a local, more detailed scale, both types of
magma sources can be present and can be coeval, within
analytical uncertainties. Thus, during the tectono–magmatic
evolution of the Panagyurishte district, petrogenesis was
certainly more complex, than within a simple slab rollback
setting, and other additional, more local processes must
have operated during magma formation.
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