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Abstract. We propose a description for transient penetration simulations of miscible and immiscible fluid
mixtures into anisotropic porous media, using the lattice Boltzmann (LB) method. Our model incorporates
hydrodynamic flow, advection-diffusion, surface tension, and the possibility for global and local viscosity
variations to consider various types of hardening fluids. The miscible mixture consists of two fluids, one
governed by the hydrodynamic equations and one by advection-diffusion equations. We validate our model
on standard problems like Poiseuille flow, the collision of a drop with an impermeable, solid interface and
the deformation of the fluid due to surface tension forces. To demonstrate the applicability to complex
geometries, we simulate the invasion process of mixtures into wood spruce samples.

1 Introduction

Fluid invasion and flow in porous media are ubiquitous
phenomena in nature and technology. In principle, studies
on porous media can be classified by three length scales:
the pore scale, the representative volume element (RVE)
scale, and the domain scale [1]. Studies on the pore scale
directly model the pore space geometry and the fluid hy-
drodynamics [2]. The intermediate sized RVE is the mini-
mum volume required to characterize the flow through the
medium, e.g. with complex pore space geometry. Typical
examples are the Darcy, the Brinkman-extended Darcy,
and the Forchheimer-extended Darcy models [1]. The
flow in porous media can also be modeled via general-
ized Navier-Stokes equations [3–5], including all necessary
terms in one momentum conservation equation. Unfortu-
nately in the majority of cases, the analytical solution
becomes very difficult and is even more complicated for
anisotropic, structured porous media like wood. Therefore,
one depends on numerical methods in this field. The fluid
itself can be quite complicated as well. It can be a misci-
ble or immiscible mixture of different species, its viscosity
can change locally due to internal chemical reactions like
hardening and can depend on shear velocities in the case of
non-Newtonian fluids. Examples are adhesive penetration
at wood junctures or the impregnation or sealing of con-
crete for protective reasons. A practical model approach
for these phenomena is hydrodynamic dispersion [6] that
treats one fluid, e.g. a solvent, by the hydrodynamic the-
ory and the others, e.g. solutes, by advection-diffusion
equations. For complicated anisotropic porous media and
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fluids, coupling the advection-diffusion with the general-
ized Navier-Stokes equations makes analytical solutions
quite difficult. The motivation for the present work is ad-
hesive penetration in wood.

Wood constructions depend on good adhesive bond-
ings, that are the result of a gluing process, where hard-
ening liquids are pressed into a porous, anisotropic mi-
cro structure. Depending on the penetration and adhesive
hardening characteristics, preferrable interface morpholo-
gies can be obtained [7]. The penetration is dominated by
the strong anisotropy of the permeability tensor and the
viscosity evolution of the adhesive. Due to the difficulty of
the problem, penetration simulations with classical con-
tinuum mechanics are hardly feasible.

Over the last two decades, lattice Boltzmann (LB)
methods developed to be an alternative to the simula-
tion of partial differential equations (PDEs). Originally,
LB methods were developed as discrete realizations of ki-
netic models for fluids [8,9]. Extensions allow for the simu-
lation of advection-diffusion [10], waves [11,12], magneto-
hydrodynamics [13–15], quantum mechanics [16], and mul-
tiphase flows [17–22]. Tölke et al. [23] construct a three-
dimensional lattice Boltzmann model for immiscible bi-
nary fluids with variable viscosity and density ratio based
on the work by Gunstensen [22]. The authors consider two
immiscible fluids that evolve inside a pore scale system by
the Navier-Stokes equations with interaction terms. LB
models for incompressible flows through porous media on
the RVE scale were first addressed by Guo et al. [24], who
proposed a 2D model including a nonlinear Forchheimer
term, that can be used for isotropic, heterogeneous porous
media.
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We introduce a 3D LB model that recovers the gener-
alized Navier-Stokes equations in anisotropic porous me-
dia, extended by the advection-diffusion equation for the
solute concentration in fluid mixtures. Consequently, vis-
cosity changes appear that can be superimposed by lo-
cal hardening. Additionally, we incorporate the free sur-
face technique [25] to allow for immiscible fluids. In this
paper, sect. 2 first describes some LB fundamentals and
the numerical model details for fluid and diffusive parti-
cles. Section 3 shows a brief description of the free surface
technique, while sect. 4 addresses the implementation of
the algorithm and sect. 5 demonstrates the validity of our
model and its application to diverse physical systems.

2 Lattice-Boltzmann model for 3D
anisotropic porous media

The generalized Navier-Stokes equations [1] for incom-
pressible fluids and low Reynolds numbers are the starting
point, expressing mass conservation

∇ · V = 0, (1)

and momentum conservation

∂V
∂t

+ (V · ∇)
(

V
ε

)
= −1

ρ
∇(εP ) + νe∇2V + εG

−ενK−1 · V − ε

ρ
∇ · S. (2)

Here ρ denotes fluid density, ν the viscosity, V the volume-
averaged velocity and P the pressure. ε stands for the
porosity of the medium, K for the (anisotropic) perme-
ability tensor, and G represents an external force field.
Note that the effective viscosity νe is not expected to be
the same as the viscosity of the fluid due to tortuosity ef-
fects and dispersion of viscous advection-diffusion flux [1].
The hydrostatic pressure P is related to the density via
P = ρc2

s/ε, with the speed of sound of the fluid cs. In order
to control the surface tension at the liquid-gas interface,
we add the last term in eq. (2), based on the diffusive
interface method proposed by Korteweg [26]. Originally,
this method was not applied to a liquid-gas interface in-
side a porous medium, however in our model it minimizes
the surface area of the interface quite well. The surface
tension tensor S can be expressed in terms of the density
gradient F = ∇ρ as [27,28]

S ≈ B
(
|F|2I − F ⊗ F

)
, (3)

where B denotes a gradient energy coefficient [28], which
is usually taken as constant, I is the identity matrix and ⊗
represents the outer product. To consider wetting proper-
ties in terms of the contact angle θ, we need to calculate
the surface tension σlg for a liquid-gas interface. σlg is
related to the constant B and the density gradient by

σlg = B

∫
|F|2dl ∼ B

|Δρ|2
Δl

, (4)

Fig. 1. Cubic lattice D3Q19 discretization. The arrows rep-
resent the velocity vectors vp

i , where p indicates the plane of
location. Note that by including the rest vector located in the
center of the cell, totally 19 directions are defined.

where l is a coordinate normal to the interface and Δl
denotes the diffusive interface thickness. To calculate wet-
tability properties of a solid substrate by the liquid, we
have to consider the solid-liquid interface energy via the
surface tension σsl. This interaction should be included in
the surface tension tensor S. According to the literature,
the contact angle θ is defined by

cos(θ) =
σsg − σsl

σlg
, (5)

with the surface tension σsg of the solid-gas interface.
However, for simplicity, we include the wettability only
by considering the surface tension σlg and the difference
σs = σsl − σsg, and calculate the contact angle

cos(θ) = − σs

σlg
. (6)

It is important to note that if we know the contact angle
for a given system and its surface tension σlg, the quantity
σs is determined by using eq. (6).

In the following we demonstrate how Navier-Stokes
equations are reproduced by LB methods, and how ex-
tensions like external forces, Darcy flow, and surface ten-
sion can be added to the framework. Advection-diffusion,
however, is treated in a separate section.

2.1 Model description for the generalized
Navier-Stokes equations

The basic idea of LB models is that Navier-Stokes equa-
tions are not solved directly on a grid of cells, but via
a strongly simplified particle micro dynamics with dis-
crete Boltzmann equations and collision rules such as the
Bhatnagar-Gross-Krook (BGK) [29]. The two ingredients
particle streaming and collision are calculated along a cer-
tain number of fixed orientations in each cubic cell with
lattice constant δx = δt (19 in our case as illustrated in
fig. 1). The velocity vectors are denoted by vp

i , where
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i = 1, . . . , 6, indicates their orientation and p = 0, 1, 2
their reference plane (see fig. 1). Each velocity vector vp

i

comes along with one assigned distribution function fp
i .

The density ρ in a cell is the sum over its distribution
functions

ρ =
6∑

i=1

2∑
p=0

fp
i . (7)

We obtain continuum properties for V and F via

ρV =
6∑

i=1

2∑
p=0

fp
i vp

i , F =
6∑

i=1

2∑
p=0

ρ(x + vp
i )vp

i . (8)

In order to include the influence of the porous me-
dia, of external forces, and of surface tension on the mo-
mentum equation (eq. (2)), we need to include additional
force terms in the LB model. Following the work of Guo
et al. [30], we add two force terms, T0 for the zero velocity,
and T p

i for the remaining 18 non-zero velocities as follows:

fp
i (x + vp

i , t + 1) − fp
i (x, t) = Ωp

i (x, t) + T p
i ,

f0(x, t + 1) − f0(x, t) = Ω0(x, t) + T0. (9)

The second ingredient of LB are the BGK collision terms
Ωp

i and Ω0 [29], namely,

Ωp
i = −1

τ
(fp

i (x, t) − fp,eq
i (x, t)),

and
Ω0 = −1

τ
(f0(x, t) − feq

0 (x, t)), (10)

with the characteristic relaxation time τ , that is fixed by
the effective viscosity νe = 1

3 (τ − 1
2 ), in lattice units.

The subscript eq denotes the equilibrium states for the
distribution functions, which we must find such that the
model reproduces correctly the hydrodynamic equations.
The force terms T p

i and T0 are given by [30]

T p
i =

(
1 − 1

2τ

)(
3(vp

i · Fext)

+
9
ε
(vp

i · V′)(vp
i · Fext) − 3

ε
(V′ · Fext)

)
,

T0 =
(

1 − 1
2τ

)(
− 3

ε
V′ · Fext

)
, (11)

with the external force Fext which is in our case

Fext = −ενK−1 · V′ + εG. (12)

Due to the external forces, the velocity V needs to be
corrected to obtain V′ by

V′ = V +
1
2
Fext . (13)

Unfortunately, Fext depends on V′. By inserting eq. (12)
into eq. (13), we obtain

V′ = Λ−1 ·
(
V +

1
2
G

)
, (14)

where we define Λ = I + εν
2 K−1 with the identity matrix I.

The final equilibrium functions for our system are:

fp,eq
i (x, t) = wiρ

[
1 + 3(vp

i · V′) +
9
2ε

(vp
i · V′)2

− 3
2ε

V′2 +
Aετ

ρ

(
(vp

i · F)2

|F| − |F|
)]

, (15)

f eq
0 (x, t) = w0ρ

[
1 − 3

2ε
V′2

]
+ Aετw0|F|, (16)

with the known weights w0 = 1/3, w1,2,3,4 = 1/36, and
w5,6 = 1/18 for the D3Q19 cells [31]. To consider surface
tension in the momentum conservation equation (eq. (2)),
we have to express the tensor S by

S =
2Aτ

9|F| ·

⎛
⎜⎝
−F 2

y − F 2
z FxFy FxFz

FxFy −F 2
x − F 2

z FyFz

FzFx FzFy −F 2
x − F 2

y

⎞
⎟⎠ , (17)

with the density gradient F = ∇ρ, a parameter A that
fixes the strength of the surface tension, and the charac-
teristic relaxation time τ . To describe the correct wetting
properties of both, liquid-gas and solid-gas interfaces, we
have to set the values for A, for the liquid-gas interface
A = Ag using the relation Ag = 9B|F|

2τ and eq. (4), while
for the liquid-solid interface A = As with

As = −Ag cos(θ). (18)

Therefore, we must distinguish between cells with a liquid-
solid interface, and the ones with a liquid-gas interface.

Via Chapman-Enskog expansion it can be shown that
the surface tension tensor S is reproduced in the contin-
uum limit (not shown). Also it can be shown analyti-
cally [32] that this LB-BGK model recovers the general-
ized Navier-Stokes equations eqs. (1), (2) in the isothermal
and incompressible limit including surface tension.

2.2 Lattice Boltzmann model for solute
advection-diffusion

To consider advection-diffusion in an LB framework for so-
lute concentration in fluid mixtures, we can either define
an additional set of velocity vectors and include their diffu-
sive terms directly into the equilibrium function (eq. (15)),
or define additional equilibrium distribution functions for
the advection-diffusion but work on the same velocity vec-
tors as proposed by Hiorth et al. [33] on a D2Q9 cell con-
figuration. In this work, the second approach was chosen,
to simplify a later extension to various fluid species and we
recover the advection-diffusion equation in porous media
based on ref. [33], but extend it to heterogeneous porous
media. Starting from the advection-diffusion equation

∂C

∂t
+ ∇ · (CU) = ∇ · [D∇C], (19)

with the concentration C, the diffusivity D, and the veloc-
ity of the mixture U, Hiorth et al. [33] define a distribution
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function hi for each velocity vector. The concentration is
calculated via C =

∑9
i=1 hi and the equilibrium equations

are defined by

heq
i (x, t) = wiC[1 + 3(vp

i · U)], heq
0 (x, t) = w0C, (20)

with the weights w0 = 4/9, w1,2,3,4 = 1/9, and w5,6,7,8 =
1/36 [33]. To make the extension to 3D and to include the
porous medium, we propose modified equilibrium distri-
bution functions on a D3Q19 cell configuration (see fig. 1)

hp,eq
i (x, t) = wiεC[1 + 3(vp

i · V∗)], heq
0 (x, t) = w0εC,

(21)
where V∗ = V′ + D∇ε

ε . With the correct weights w0,i for
the D3Q19 cell, we evolve eq. (21) according to the Boltz-
mann equation with the BGK collision term Ωp

Di(x, t) [29]:

hp
i (x + vi, t + 1) − hp

i (x, t) = Ωp
Di(x, t),

(22)
ΩDi(x, t) = − 1

τD
(hp

i (x, t) − hp,eq
i (x, t)).

Now τD defines the relaxation time for the advection-
diffusion model with the diffusivity, D = 1

3 (τD − 1
2 ). We

can prove via a Chapmann-Enskog expansion that the
model reproduces

∂(εC)
∂t

+ ∇ · (εCV′) = ∇ · [εD∇C] (23)

in the continuum limit.
The full model can now reproduce the general-

ized Navier-Stokes equations in the continuum limit for
anisotropic porous media, including surface tension and
the diffusion-advection of the solute. To complete the de-
scription of the model, we will briefly summarize the free
surface technique [25] used to describe the movement of
the fluid with a fluid-gas interface.

3 The free surface technique

If a fluid penetrates an unsaturated porous medium, free
surfaces form. That needs to be included in our LB scheme
via the free surface technique [25]. Although it was not
intended to model the liquid-gas interface inside porous
media, we can extend the free surface technique to be
applicable to our model. This is possible since the aim of
the technique is to ensure the pressure balance across the
interface independent of the underlying pore space. If a
cell is only filled by gas with a negligible density, eqs. (15)
and (16) lead to vanishing equilibrium functions and the
simulation becomes unstable. This problem can be solved
by classifying fluid cells into three types: the liquid cells,
totally filled by liquid fluid, the empty cells entirely filled
by gas, and the interface cells that contain both, liquid
and gas. The purely liquid-filled cells were discussed in
the previous section, while gas-filled cells can be excluded
from the further calculation due to the high-density ratio
between fluid and gas. However, the interface cells need
further attention.

Interface cells consist partially of liquid and of gas,
determined by the fluid fraction λ(x, t) = m(x, t)/ρ(x, t)
with the mass m of liquid in the cell located in x at time t.
Using a normalized cell volume, the mass for the fluid cell
is equal to the density of the liquid, and for gas cells equal
to zero. Analogous to eq. (7), we obtain the macroscopic
mass m(x, t) by summing the mass functions mp

i over all
directions

m(x, t) =
6∑

i=1

2∑
p=0

mp
i . (24)

The mass functions mp
i evolve according to

mp
i (x, t + 1) = mp

i (x, t) +
6∑

i=1

2∑
p=0

Δmp
i (x, t + 1), (25)

with

Δmp
i (x, t + 1) = fp

j (x + vp
i , t)

λ(x + vp
i , t) + λ(x, t)

2

−fp
i (x, t)

λ(x + vp
i , t) + λ(x, t)

2
, (26)

where the index j stands for the vector with opposite di-
rection to the vector with index i. The interface cells also
have associated distribution functions that evolve via the
discrete Boltzmann eq. (9) identical to those in the fluid
cells. These distribution functions are used to calculate
the density and the updated fluid fraction λ.

Nevertheless, we still obtain zero distribution functions
in the interface cells from eq. (9), due to empty neighbor-
ing cells. To avoid this problem, we calculate the evolution
of distribution functions of interface cells originating from
empty neighboring cells with the modified function

fp
j (x, t + 1) = fp,eq

i (x, t) + fp,eq
j (x, t) − fp

i (x, t). (27)

During the system evolution, the interface moves, leading
to changes in the fluid fraction λ. If λ becomes unity, the
cell changes to a liquid cell, while λ → 0 leads to gas or
empty cells. To complete the picture all cells neighboring
new liquid cells are set to interface cells. Note that pres-
sure balance on the gas-liquid interface is a consequence
of the surface tension. However, when the liquid-gas den-
sity ratio is larger than say 100, surface tension techniques
fail to balance the pressure difference in lattice Boltzmann
methods. As a consequence, to minimize the surface area
and equilibrate the pressure difference on the liquid-gas
interface, including the wettability properties of solid ma-
terials, we use a combination of the free surface and sur-
face tension techniques.

To summarize, by classifying cell types and corre-
sponding distribution functions, according to fluid type,
we can capture the evolution of free surfaces. A more de-
tailed description can be found in ref. [25]. Finally this
technique extends our model to simulations of fluid pen-
etration with gas/liquid interface. Before validation ex-
amples are shown, we outline the implementation of the
algorithm.
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Set initial fields: ρ, V , C (eqs. (7), (8))

Define fluid, interface and empty cells (free sur-
face technique [25]) and set the mass of each cell.

Calculate: f p, eqi and hp, eqi from fields,
f pi = f

p, eq
i and hpi = h

p, eq
i (eqs. (15), (16), (21))

t = t + 1.

Stream from all cells to neighbor-
ing cells: f pi (x+ v

p
i , t+1)= f̃

p
i (x , t ) and

hpi (x+ v
p
i , t+1)= h̃

p
i (x , t ) (eqs. (9), (22))

Stream of the mass in all cells to neighboring
cells (free surface technique) [25] (eq. (25))

Calculate fields taking moments of
f pi and h

p
i in all cells (eqs. (7), (8))

Calculate the density gradient F (eq. (8))

Apply collision in all cells:
f̃ pi (x , t+1)= f

p
i (x , t )− Ω

p
i (x , t )+ T

p
i and

h̃ pi (x , t+1)= h
p
i (x , t )− Ω

p
Di (x , t ) (eqs. (9), (22))

Redefine fluid, interface and empty
cells (free surface technique) accord-
ing to the mass in each cell [25].

Fig. 2. Computational procedure of the LB simulation of flow
of mixtures through anisotropic porous media including free
surface and tension effects.

4 Algorithm implementation

To obtain a transparent, portable simulation code, we im-
plemented it object-oriented. The general framework of a
simulation is given in fig. 2. First, we set all initial field
values like the density ρ, the velocity V, the external force
field Fext (eqs. (7), (8)), and the solvent concentration C
inside the mixture. To completely define the system, the
porosity field, the permeability fields, and relaxation times
are set. Also the initial saturation and boundary condi-
tions like periodicity, pressures, flow rate, or impermeabil-
ity are imposed. We can define three types of cells: fluid,
interface and empty, depending on the problem. With
these quantities set, we can start calculating the distri-
bution functions fp

i , hp
i from the equilibrium distribution

functions fp,eq
i and hp,eq

i (eqs. (15), (16), (21)). Now, the
time step can be incremented and the system is ready to
evolve (see fig. 2).

To follow the evolution of the system, we first solve
the stream to all neighboring cells, stream their mass and
calculate the macroscopic variables. Then the density gra-
dient F is calculated. Finally, we have to update the type
of cells and increment the time to prepare the system for
the next time step. These steps are looped over all cells in

27

Fig. 3. Velocity profile for a generalized Poiseuille flow in a
homogeneous, isotropic porous medium for various Darcy num-
bers. The generalized Poiseuille flow is obtained when the fluid
moves through a channel between two walls driven by a con-
stant body force through the porous medium (shaded zone).

the system. We stop the simulation, when a stable state
is reached.

5 Model validation and application examples

To validate our LB model implementation, we simulate
systems with known analytical solutions that address each
term from the generalized Navier-Stokes equations. In par-
ticular we simulate Poiseuille flow through isotropic and
anisotropic porous media, droplet formation, and fluid sur-
face smoothening. Finally, we show an application for the
penetration of hardening mixtures into an anisotropic,
heterogeneous porous medium, demonstrating the capa-
bility of the model to represent adhesive penetration in
complex materials like wood.

5.1 Single fluid in homogeneous, isotropic porous
media

To show the capability of the model to reproduce the
Darcy law in a simple case, we simulate a generalized
Poiseuille flow driven by a constant force in an isotropic,
homogeneous medium between two infinite plates at dis-
tance L (see fig. 3). For this case, we need neither the sur-
face tension tensor nor the free surface technique. There-
fore just the force terms from the Darcy law, body force
and the viscosity terms on the right-hand side of eq. (2)
are active. We impose periodic boundary conditions on all
velocity vectors and zero velocity at y = 0, L of our 3D
system. We only consider movements in the x-direction,
so the velocity has the form V = (Vx, 0, 0) with boundary
values of Vx(x, 0) = Vx(x,L) = 0. The analytical solution
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of this problem is well known [1] by a Brinkman-extended
Darcy equation, and has the form,

Vx(y) =
GK

ν

(
1 − cosh[r(y − L/2)]

cosh[rL/2]

)
, (28)

where r =
√

νε
Kνe

.

We set up a system of 3 × 100 × 1 cells with porosity
ε = 0.3, relaxation time τ = 0.6, density ρ = 1.0, and the
body force G = (0.1, 0, 0). The permeability K is fixed
by the Darcy number Da = K/L2 to 10−3, 5× 10−3, and
10−4, respectively. We start with a flat profile and let the
system evolve. When the velocity profile reaches a steady
state, the simulation is stopped. Comparing the solution
to eq. (28) we find excellent agreement with the theory
(see fig. 3).

5.2 Anisotropic permeability validation

In order to validate the model for anisotropic porous me-
dia, we study Poiseuille flow like in sect. 5.1, but with
a diagonal permeability tensor K, that was fixed to K =
10−3δxx + 10−5δyy.

First, like before we let the fluid move inside the porous
medium in x-direction with Vx(y = 0, L) = 0 at the bot-
tom and top. In a second simulation the fluid moves in z-
direction with Vy(x = 0, L) = 0 at the vertical boundaries.
The velocity profiles can be calculated again by eq. (28).
In the simulation we used an array of 70 × 70 × 1 cells
with the identical porosity, relaxation time, and density
as previously. However, the body force is G = (0.1, 0, 0)
for the first case and G = (0, 0.1, 0) for the second one. We
use periodic boundary conditions as before, zero velocity
at y = 0, L for the first case, and x = 0, L in the second
case. We run the simulation until the system reaches a
steady state and measure the respective velocity profiles
(see fig. 4). The simulation results show that the model
reproduces the Darcy flow in anisotropic porous media
accurately.

5.3 Free surface model test

As a condition for a valid implementation of the free sur-
face technique, we have to assure that our model conserves
mass. This can be tested by simulating a freely falling
droplet followed by its collision against an impermeable,
solid wall.

The system consists of a grid of 140 × 140 × 1 cells.
Initially a droplet with a radius of 8 cells is placed in
the upper part of the system and an impermeable surface
avoids its penetration through the bottom of the simula-
tion zone at y = 0. The system parameters are the fluid
density ρ = 1.0, the relaxation time τ = 0.7, the external
gravitational force G = 1 · 10−6 · (0, 1, 0). The imperme-
able wall is modelled by setting the macroscopic velocity
in the respective cells to zero. The force terms from the
Darcy law and surface tension are neglected here. Again,
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Fig. 4. Velocity profiles for an anisotropic porous medium with
diagonal permeability tensor. Squares denote the velocity pro-
file of the x component and diamonds represent the simulation
with flow in y-direction (vx,max = 3 · 10−3, vy,max = 3 · 10−5).

Fig. 5. Evolution of the total mass of a falling droplet that
crashes against an impermeable and solid wall. Inset: snapshots
of the droplet at initial time (top) and after 20000 time steps
(bottom).

we impose periodic boundary conditions for all velocities
at the left and right boundary.

In fig. 5 we plot the droplet mass as function of time.
We can see that the mass is conserved with a small error of
less than 1%. Note also that this error is within the range
of common errors that go along with LB simulations. After
approximately 10600 time steps we find an abrupt peak
in the total mass due to the collision with the wall. Note
that due to numerical reasons, for a short time mass is
transferred to the boundary cells that represent the im-
permeable wall, but is returned in the next time steps,
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Fig. 6. Surface evolution due to surface tension from the ini-
tial shape (top panel) after 4500 time steps (center) and the
steady state after 20000 time steps (bottom panel). Intensi-
ties represent the quantity of fluid in each cell, black cells are
completely empty while white ones are completely filled.

so that the total mass recovers the value previous to the
collision. The initial and configurations after 20000 time
steps are shown in the inset of fig. 5. We clarify that the
final configuration is not an equilibrium state due to the
fact that there is no surface tension acting on the liquid
to keep the shape of the droplet, therefore it will flatten
in time.

5.4 Validation of the surface tension implementation

Mass conservation alone is not sufficient to describe free
surfaces, rather surface tension needs to be considered. A
correct implementation can be for example tested by simu-
lating the shape evolution of an initially rectangular fluid
front to a circular shape. We implemented a simulation
using an array of 100×50×1 cells, with an initially filled,
square fluid zone of size 20×20 cells (see fig. 6). The den-
sity and relaxation time are identical to the droplet sim-
ulation, and a surface tension parameter of Ag = 0.003
was chosen (see eq. (16)). Periodic boundary conditions
at left and right, and free boundary conditions on top and
bottom are imposed. The force terms from the Darcy law,

Fig. 7. Final fluid front shapes with solid walls at x = 0
and x = 100 with different wetting properties such that the
contact angles are, respectively, from top to bottom panels:
60◦, 90◦ and 120◦. θ represents the analytical value. Intensities
are identical to fig. 6.

as well as external forces like gravity were switched off.
The time evolution of the system is shown in fig. 6. We
repeat the simulation with two solid walls at x = 0, 100
with different wettability properties such that the contact
angles are 60◦, 90◦ and 120◦. All boundaries have non-slip
conditions (all velocity components are zero) except the
free boundary at the bottom of the simulation zone. Af-
ter 30000 time steps the system reaches equilibrium and
the final profile of the fluid is shown in fig. 7. We obtain
errors around 5% between expected and obtained contact
angles.

To finalize the validation of our surface tension ap-
proach, we simulate a sessile drop with different wetta-
bility of the solid substrate. We use the same parameter
values as before and set the parameter As for expected
contact angles θt of 60◦, 90◦ and 120◦. The gravity is de-
creased to G = 1 · 10−7 · (0, 1, 0) to facilitate the mea-
surement of the contact angle during the simulation. The
boundary conditions are periodic at the top, left and right,
and non-slip at the bottom of the simulation zone. The
initial configuration is a droplet of radius R = 15 cells
located at (50, 25, 0). After 50000 time steps the system
reached the equilibrium state, shown in fig. 8. Between
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Fig. 8. Sessile drop simulation. The solid substrate is located
at z = 0 with different wettability such that the contact angles
are 60◦, 90◦ and 120◦. θt is the analytical value calculated by
setting the parameter As, and θe represents the equilibrium
contact angle obtained by the simulation.

the expected contact angles θt and the resulting ones θe

we find differences of 6%.
Summarizing, we showed that the model can repro-

duce the theory of single fluids in the case of anisotropic
porous media with surface tension effects and external
forces. Note that the free surface technique should be only
applied to liquids with low Reynold numbers.

5.5 Penetration of adhesives in wood

To demonstrate the applicability of our model, we describe
the simulation of the penetration of adhesives into wood
which is an anisotropic porous medium. The adhesives
can be treated like two fluids: a polymer (solute) and a
solvent, e.g. water. The polymer dynamics is governed by
the advection-diffusion equation and the solvent by the
generalized Navier-Stokes equations. To consider harden-
ing effects in the adhesive, we have to consider a local
change in time of the viscosity due to the change of con-
centration. An additional difficulty is the description of
the anisotropic porous medium wood. We need to obtain
the permeability tensor of wood and to implement a law
for the dependency of the viscosity with the concentration
and time.

Wood properties

In wood, the orthotropic permeability tensor and density
are local properties, depending mainly on the year ring
geometry, orientation, and position inside the year ring.
Following refs. [34,35] an empirical expression of the wood
density of the type

ρ(x) = ρ0[1 + 2axb exp(−cx)], (29)

with the parameters a, b, c, the position x, and the mini-
mum density ρ0 can be made with parameters depending
on the type of wood. For spruce we can take values of
ρ0 = 310 kg/m3, a = 24

Δ , b = 0.8, and c = 9.6
Δ , where

Δ = 2.9mm is the year ring width [34]. To represent sev-
eral parallel year rings, we use a periodic function of the
form of eq. (29) with periodic Δ. Since wood consists of
cell walls and lumen, we can estimate the porosity from
the density by

ε(x) = 1 − ρ(x)
ρmax

, (30)

where ρmax is the density of cell walls. Permeability and
porosity are related in the scalar case by [1]

K =
ε3

n(1 − ε)2
D2

p, (31)

with the characteristic pore size Dp and a constant n
that parametrizes the microscopic geometry of the ma-
terial taken as n = 150 in our case. In wood, the pore size
Dp must also depend on the wood density, and we propose
as a first approximation the relation

Dp(x) = C2

(
1 − ρ(x)

ρmax

) 1
3

, (32)

with a constant C2, that can consider the shape of the mi-
croscopic pores [36]. Inserting eqs. (30) and (32) in eq. (31)
we obtain the macroscopic permeability of a sample as a
function of the year ring coordinate x. C2 can now be
obtained by integrating eq. (31) over one year ring and
comparing it to literature values for the macroscopic per-
meability [37,38] of spruce in radial, longitudinal, and tan-
gential direction. We finally calculate the required local
permeability tensor in cylindrical coordinates (r, z, θ), as

K =
(

ρmax

ρ(x)

)2

ε(x)
11
3

⎛
⎝8.2 0 0

0 51470 0
0 0 0.82

⎞
⎠ × 10−10 mm2.

(33)

Hardening process and viscosity model

To determine the viscosity evolution during the hardening
process, we have to take into account two main factors: the
chemical reactions that take place between the adhesive
molecules and the solute concentration. The first factor
causes a viscosity increment with time, while due to the
second one, viscosity changes with local solvent concentra-
tions. In order to describe these mechanisms, we choose a
viscosity model given by

ν(C, t) = νg[1 + a exp(αt)] exp(β[1 − C]), (34)

where νg, a, α, and β are parameters that can be obtained
from experimental hardening curves of adhesives with di-
verse solvent concentration.

Simulation of adhesive penetration into wood

Embedding the permeability tensor field and the hard-
ening function, our model is ready to simulate the pene-
tration of adhesives into the porous wood mesostructure.
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Fig. 9. Fluid profile during the penetration into the wood
structure. Intensities are identical to fig. 6. The wood sample
is located in the region y < 60 with a year ring inclination
of 45◦.

We use an array of 90 × 90 × 1 cells and locate the wood
sample in the zone y < 60. The year rings are inclined
by 45◦ to the horizontal plane. We take the fluid den-
sity ρ = 1.0, the parameters for the porosity, according to
eq. (29) with a = 0.62, b = 0.2, and c = −0.2, correspond-
ing to spruce wood [34], and a year ring distance Δ of 30
cells. The viscosity model uses the parameters νg = 0.15,
a = 2.05×10−9, and β = 10−3, obtained from viscosimet-
ric measurements with urea formaldehyde adhesive [39].
Additionally, we applied a constant external pressure of
Pext = 0.0441 that is equivalent to 0.9mN/mm2 in IS
units. In the simulation we use periodic boundary condi-
tions at the left and right edge, and free boundary condi-
tions at the bottom and top of the simulation zone.

The simulation was stopped when the adhesive could
not penetrate further due to hardening. Figure 9 shows
the penetration of the fluid into the wood sample. We can
see that the model can simulate complex materials like
wood. In some zones the adhesive penetrates with more
speed due to the higher local porosity and the direction of
the movement is correlated with the principal axis of the
permeability tensor.

6 Discussion and conclusions

We introduced a new lattice Boltzmann model to simulate
the dynamics of the flow of mixtures in anisotropic, het-
erogeneous porous media. Our 3D model can be applied
to many problems in material science and engineering. It
includes a free surface technique to simulate the invaded
fluid profile inside the material structure and a surface
tension term to control the interface dynamics, the cohe-
sion inside the fluid, and the wettability properties of solid
substrates.

The accuracy of the model was tested for a set of
simple cases, like generalized Poiseuille flow in isotropic
and anisotropic porous media, droplet formation, surface

smoothing for various boundary conditions and sessile
drop formation. We found excellent agreement with the
Darcy law for Poiseuille flow. The free surface technique
is validated in the simulation of a freely falling droplet
and its collision against an impermeable surface showed
negligible errors. The surface tension effects were tested
by simulating the smoothing of the fluid front, first with
periodic boundary conditions and then with vertical solid
walls with different wettability properties derived from dif-
ferent contact angles. Also we implemented simulations of
sessile droplets for different contact angles and found small
desviations of 6%. To demonstrate the applicability of the
model to real cases, we implemented a simulation of the
penetration of adhesives into a sample of spruce wood.
We showed that the model can reproduce the dynamics
of hardening fluids in complex materials even when the
media are anisotropic and heterogeneous.

The actual model has all the advantages known for the
lattice Boltzmann method like the minimal use of compu-
tational resources, fast algorithms that allow for real-time
simulations, and the ability for efficient parallelization.
Additionally, extensions of the model are rather straight-
forward. We hope that the proposed simulation approach
will be useful in order to model complex geometries in het-
erogeneous and anisotropic porous media even for compli-
cated fluids like mixtures of two components.

The authors are grateful for the financial support of the Swiss
National Science Foundation (SNF) under grant no. 116052.
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