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Abstract It is shown that among the different techniques
for particle image velocimetry subpixel interpolation, only
the ‘‘sinc’’-kernel creates an optimal result in that it
completely suppresses spurious spectral sidelobes. An
efficient method is introduced for the computation of the
subpixel-accurate correlation peak position without any
systematic errors. A connection is made with the kernel-
dependent observation of the peak-locking phenomenon.

1
Introduction
The accuracy of the velocity estimate in particle image
velocimetry (PIV) depends on the successful control or
elimination of a number of error sources. Typical areas of
concern are the under-resolved optical sampling of the
particle images, the presence of velocity gradients in the
subwindow being analyzed, and inaccurate interpolation
of the correlation peak at the subpixel level. Here, a
procedure will be introduced that eliminates errors
associated with the last problem area.

2
Interpolation and convolution
The interpolation procedure of a sampled data sequence
can be split up into two separate steps, the interleaving of
the original data with zero values (‘‘zero padding’’) and the
subsequent convolution with a suitable kernel. The Fourier
transform of the zero-padded data replicates the original
data spectrum at integer multiples of the sampling
frequency (Alexander and Ng 1991). The interpolating
convolution kernel is multiplied onto this extended spec-
trum and performs a low-pass filtering operation. Care has
to be taken in the choice of the kernel to avoid errors
caused by the inclusion of the extraneous high-frequency
information. Figure 1 demonstrates this procedure with a
one-dimensional example. A Gaussian pulse is to be
interpolated to increase the resolution by a factor of five.
The original data (sampled with a rate D) is zero-padded
with a sequence of four zeros following each sample. The

resulting spectrum is shown in Fig. 1a, with the fivefold
replication of the original Fourier spectrum. In addition,
the spectral response of two simple interpolation kernels
(nearest neighbor, linear) is depicted whose (continuous)
spatial profile is given in Eq. (1), based on a sampling
interval D,
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Nearest-neighbor interpolation is performed with a top
hat kernel, resulting in a ‘‘sinc’’ function in the Fourier
domain. Similarly, linear interpolation implies a triangu-
lar kernel and a ‘‘sinc2’’ spectrum. Neither kernel
completely suppresses the high-frequency replicas of the
original spectrum and thus will introduce interpolation
errors due to ‘‘spectral leakage". Another source of error is
the low pass filtering effect introduced in the pass-band
p=Dj j < 1.

In Fig. 1b, three other filter kernels are introduced
which perform better, since their Fourier coefficients
decay rapidly in the stop-band. The ‘‘M¢4’’ kernel
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is often used in numerical simulations involving particles,
where irregular data have to be resampled onto a regular
grid. This kernel is (nearly) optimal in that it has a cutoff
at half the sampling frequency, almost no sidelobes and a
finite support in the data domain.

In the same spirit, Lourenco and Krothapalli (1995)
introduced a truncated ‘‘sinc’’-interpolation (‘‘Whittaker’’)
kernel that creates a similar, albeit oscillatory, spectral
response:

kWhittaker xð Þ¼ sin px=Dð Þ= px=Dð Þ x=Dj j62
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If there is no constraint on the spatial (support) size,
the optimum interpolator has a ‘‘sinc’’ shape in space and
a ‘‘top hat’’ spectrum with the cutoff at half the sampling
frequency:

koptimal xð Þ ¼ sin px=Dð Þ= px=Dð Þ �1 < x <1ð Þ ð4Þ
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Looking at the effect of this kernel on the zero-padded
spectrum, it is clear that it completely eliminates the influ-
ence of the unwanted higher spectral replicas while it does
not introduce any additional weighting/distortion inside the
pass band. The full ‘‘sinc’’ kernel is thus proposed as the
optimal function for use in PIV subpixel interpolation.

In many PIV interpolation schemes, another paramet-
ric approach is followed in that the local peak shape is
approximated by a Gaussian or quadratic function. While
no fixed, explicit kernel can be formulated beforehand in
these cases, the operation can still be understood as a
convolution: a Dirac delta function at the exact position of
the correlation peak is convolved with the parametric
shape function. The impact of these heuristic interpolation
schemes will be included in the discussion of the observed
peak locking errors (Sect. 4).

3
Fast peak search
Looking for an implementation of the ‘‘sinc’’-interpolation
scheme, a first choice might be a direct summation formula
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where c(x,y) is the interpolated result and c(mD,nD) the
original, sampled data. This formula, however, will not
work very well because of the finite-size data set. Problems
become visible especially at the edge of the original data
interval, where the interpolation becomes increasingly
asymmetric and inaccurate because of the missing data
points. In applying Eq. (5), one implicitly multiplies the

discrete data set with a finite-width windowing function.
This corresponds to a convolution of the spectrum with
a blurring kernel which will lead again to interpolation
errors due to spectral leakage, as discussed above.

The clean way to avoid this problem is to assume the
original data set is continued periodically beyond the
primary interval. Summing over an extended area of
support leads to additional computational complexity
which can be avoided by working directly in the Fourier
domain. The transform coefficients of the correlation map
are often available as part of the FFT-based computation of
the cross-correlation. They are defined as
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This definition implicitly assumes a periodic data set,
and no explicit extension is necessary. At the unknown
position (x0,y0) of the true correlation peak, one may write
for the peak value with the inverse Fourier transform
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The direct search for the peak position can be replaced
by a search for a set of phase factors

/kl x0; y0ð Þ ¼ exp j2p
kx0

MD
þ ly0

ND

� �� �

k ¼ 0 . . . M � 1; l ¼ 0 . . . N � 1ð Þ ð8Þ

Fig. 1. Spectral shape of
different subpixel inter-
polation kernels
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which maximizes the sum in Eq. (7). An iterative scheme
can be used to solve this nonlinear equation for (x0,y0).
Following Newton’s method, for example, successive
updates to the solution can be found as

x
nþ1ð Þ

0 ¼ x
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0 þ Dx nð Þ ¼ x
nð Þ

0 � r rc x
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0
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ð9Þ

The gradient rc x0; y0ð Þ and the Hessian r rc x
nð Þ

0

� �
can be approximated by finite differences or computed
explicitly from Eq. (7) to accelerate the convergence. A
good starting estimate is provided by the integer shift
coordinates as available from the non-interpolated cross-
correlation result. Using simulated data (see below), the

iteration (9) converges in about five steps in that it reduces

the length of the update vector DxðnÞ
��� ��� to less than

10)6 pixel.
It is important to remember that in the formulation of

Eq. (7), no approximations are made and that an ideal
interpolation is performed on a periodically continued
data set. The converged estimate for the peak position
contains no systematic errors caused by spectral leakage or
low-pass filtering.

The shape of function c( ) near its maximum, that is a
typical correlation peak, is shown in Fig. 2. The contour
plot expands the area around the map’s peak value. Syn-
thetic PIV data were used as provided by the Visualization
Society of Japan (http://www.vsj.or.jp/piv/). A FFT-based
cross-correlation algorithm was employed resulting in a

Fig. 2. Correlation map and
detailed shape of the correla-
tion peak, interpolated with
the optimal ‘‘sinc’’ function

Fig. 3. Subpixel interpolation
error for different interpola-
tion schemes
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13 · 13-pixel correlation map. One recognizes the fairly
regular, convex topology of the interpolated peak, justi-
fying the use of the simple nonlinear maximizer. The
trajectory plotted in Fig. 2 shows the descent path (three
steps) of the iterations in Newton’s algorithm.

The presented algorithm is in some respect similar to
the one described by Sjödahl (1994). The direct imple-
mentation in Fourier space, however, greatly simplifies the
processing.

4
Peak locking interpreted as interpolation error
In many publications dealing with PIV subpixel inter-
polation, a so-called ‘‘peak-locking’’ effect is discussed,
which is the tendency of peak position estimates to cluster
around integer values (Keane and Adrian 1992; Wester-
weel 1998; Fincham and Delerce 2000; Forliti et al. 2000;
Nogueira et al. 2001; Gui and Wereley 2002; Scarano
(2002). The empirical finding is that a Gaussian peak fit
performs better than linear or quadratic interpolation (see
e.g. Willert and Gharib 1991).

This observation is readily explained within the
framework of Sect. 2: The Gaussian filter kernel suppresses
the spurious spectral components quite efficiently. Still,
the implicit ‘‘sinc’’-interpolator does perform inherently
better, since it does not attenuate the pass-band data.

Figure 3 presents the results of performing the subpixel
interpolation with different interpolation kernels. The PIV
data set is again based on a simulated picture from the
source mentioned above (256 · 256-pixel resolution). The
second image in the PIV pair is created by a controlled
global horizontal image shift of the first image, using a
‘‘sinc’’-interpolator on the whole image. It is important to
keep in mind that the subpixel interpolation operates on

sub-images (32·32 pixels) so that the recovery of the
precise local image shifts is non-trivial. The correlation
maps (13·13 pixels) of 676 interrogations were averaged
to provide a good estimate of the shifted correlation peaks
(Meinhart et al. 2000). The peak position was then esti-
mated using parametric peak fits using local (3·3) qua-
dratic and Gaussian functions, as well as the M¢4 and full
‘‘sinc’’ interpolation kernels. The procedure was repeated
for horizontal shifts in the range )0.5<d<0.5 pixels (steps
size 0.02 pixel). The deviation from the expected linear
subpixel displacement is plotted and one recognizes the
minimal error signature of the ‘‘sinc’’ interpolator
compared to the other schemes.

The impact of the interpolator choice is further
visualized in Fig. 4, where the neighborhood around the
correlation peak (true displacement 0.25 pixels, 1-D pro-
jection along the direction of the pattern shift) is shown.
Again, the Gaussian fit provides the best results among the
established interpolators, only to be outperformed by the
‘‘sinc’’ interpolator. Note also that only the two proper
interpolation schemes generate curves which pass through
the original correlation map data point(s). The parametric
curve fits do not possess this property.

5
Summary
A fast, ideal ‘‘sinc’’ interpolator was introduced to com-
pute a bias-free subpixel estimate of the correlation peak
position in PIV. Using a direct computational scheme in
the Fourier domain, problems with the direct interpolation
of a finite data set are avoided. The claim is made that this
‘‘sinc’’-interpolation also suppresses the interpolation-
related part of the peak-locking error in the most efficient
manner. Any remaining systematic estimation errors will

Fig. 4. Detailed correlation
peak shape using different
interpolators
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be associated with the other causes mentioned in the
introduction: under-resolved particle images and unre-
solved spatial velocity gradients in the subwindows. The
first error source cannot be eliminated a posteriori,
whereas the second requires a different kind of pattern
matching such as continuous coordinate warping.
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