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It has been suggested that proteins serve as major salivary buffers below pH5. It remains unclear, however, which
salivary proteins are responsible for these buffering properties. The aim of this pilot study was to evaluate the
correlation between salivary concentration of total protein, amylase, mucin, immunoglobulin A (IgA), albumin and
total salivary protein buffering capacity at a pH range of 4–5. In addition, the buffering capacity and the number of
carboxylic acid moieties of single proteins were assessed.

Stimulated saliva samples were collected at 9:00, 13:00 and 17:00 from 4 healthy volunteers on 3 successive days.
The buffering capacities were measured for total salivary protein or for specific proteins. Also, the concentration of
total protein, amylase, mucin, IgA and albumin were analysed.

Within the limits of the current study, it was found that salivary protein buffering capacity was highly positively
correlated with total protein, amylase and IgA concentrations. A weak correlation was observed for both albumin and
mucin individually. Furthermore, the results suggest that amylase contributed to 35% of the salivary protein buffering
capacity in the pH range of 4–5.
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1. Introduction

Buffering systems control the body’s acid–base balance at
levels suitable for life. Most hydrogen ions originate from
cellular metabolism, but they can also enter the body through
ingested foods. Three lines of defence against acidic attack
operate to maintain the pH of body fluids at a constant level:
the chemical buffer systems, the respiratory center, and the
renal mechanism of pH control (Sherwood 2006). The most
important and widely operating buffers in body fluids are
proteins, including intracellular and extracellular proteins.
Proteins are referred to as chemical buffer systems in the
human body (Sherwood 2006). They include haemoglobin
(Hb) and human albumin in the blood, protein-bound histidine
in skeletal muscle, and various protein fractions in tears
(Carney et al. 1989; Sherwood 2006; Bishop et al. 2009).
Protein buffer systems include basic and acidic groups, which
act as hydrogen ion acceptors or donors, respectively.
Carboxylic and amine groups acting as side chains or terminal

ends contribute to the buffering capacity of the entire mole-
cule. The buffering properties of proteins, however, are mostly
determined by their amino acid composition.

Saliva contains three buffer systems: carbonate, phosphate
and protein buffers. Carbonic anhydrase VI helps to maintain a
high bicarbonate level in saliva. Thus, it catalyses the revers-
ible reaction CO2 + H2O⇌ HCO3

− + H+ (Kivelä et al. 1999).
While the optimal buffering range for phosphate and carbonate
systems occurs at pH7.2 and 6.3, respectively (25°C), buffer-
ing below pH5 is based on the protein system (Bardow et al.
2000). It has been shown that proteins in concentrations such
as those found in human saliva exhibit a measurable buffering
capacity (Lamanda et al. 2007). However, the buffering com-
ponents of the salivary proteome are still unknown.

Some of the most frequent and important pathological
conditions of teeth and the oral cavity are strongly dependent
on pH changes (Ericsson 1959). The dissolution of tooth
mineral starts if the pH drops below a critical level; it de-
pends on the activities of the mineral constituents in the fluid
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or solution adjacent to the tooth mineral, e.g. calcium,
phosphate and fluoride ions (Lussi and Jaeggi 2006). At
any given pH, the concentration of these ions determines
the degree of saturation of the tooth mineral in the
solution. The calcium and phosphate concentrations in
the plaque fluid are rather constant for a certain person,
but have inter-individual variability. This explains differ-
ent ‘critical’ pH values for caries, which are around pH
5.5 in the case of enamel (Dawes 2003). Dental erosion
is the dissolution of tooth mineral in the absence of
plaque (Attin et al. 2003). In the case of erosion, the
acidic solution adjacent to the tooth mineral may have
higher concentrations of calcium and phosphate com-
pared to the plaque fluid and may, therefore, not be
able to dissolve tooth mineral even at lower pH values,
including the ‘critical’ pH for caries. Typically, erosive
beverages have a pH below 5 (Lussi and Jaeggi 2006).
Therefore, the present authors hypothesize that buffering
in a low pH range based on the protein buffer system is
important for the erosion process. The other buffers also
play a prominent role, especially bicarbonate, which re-
mains the buffer component of primary interest. Previous
studies have shown that low salivary buffering capacity
is typically associated with dental erosion (Lussi and
Schaffner 2000; Holbrook et al. 2009).

Amylase and mucin are major components of the salivary
proteome (Zakowski et al. 1984; Meyer-Lueckel et al.
2006). In addition, immunoglobulin A (IgA) represents
60% of the total immunoglobulin in the saliva (Mestecky
1993). It has been suggested that the albumin present in
saliva is due to contamination by either traces of blood or
gingival fluid (Selby et al. 1988). Moreover, albumin con-
centration varies considerably from person to person
(Niswander et al. 1963). Considering the importance of
buffer systems, particularly with regard to the potential as-
sociation of salivary buffering capacity with dental erosion,
the purpose of this research was to gain a better knowledge
of the origin of saliva protein buffering capacity. Therefore,
the aim of the present pilot study was to investigate whether
the protein buffering capacity is correlated with the concen-
tration levels of total protein, amylase, mucin, IgA and
albumin in saliva. Furthermore, a comparison between the
buffering capacity of single salivary protein models (amy-
lase, mucin, IgA, and albumin) was performed to character-
ize and gain a better understanding of the salivary protein
buffer system.

2. Materials and methods

2.1 Sample collection

The present study was approved by the Ethics Committee of
Bern University (No. 012/07). Human paraffin-stimulated

saliva samples were collected at 9:00, 13:00 and 17:00 from
4 healthy individuals with no clinical symptoms of caries or
periodontitis on 3 successive days. All participants gave
written informed consent. The subjects were given instruc-
tions regarding saliva collection, including exclusion of
food, drink or smoking for 2 h before sampling at 9:00 and
17:00. The saliva collection at 13:00 took place 10 min after
lunch. In addition, the subjects were asked to act in the same
manner throughout the day. Saliva samples were collected
on ice in a restful and quiet area in the laboratory. The saliva
collection period was 10 min. Saliva secreted during the first
30 s was discarded. Collected saliva samples were then
centrifuged at 3000g for 20 min.

2.2 Protein precipitation

All salivary samples were subjected to protein precipitation.
Ammonium sulphate was added to 10 mL of fresh collected
stimulated saliva at 4°C until 75% saturation, where maxi-
mum protein precipitation occurred (data not shown). The
solution was centrifuged at 29,000g on a Hicen 21 centrifuge
(Jepson Bolton, Watford, UK) for 30 min at 4°C. The
obtained precipitate was dissolved in 5 mL of deionized
water. The solution was dialyzed (MW cut-off of 12 kDa,
Sigma dialysis sacks D6191–25EA, Sigma-Aldrich, Buchs,
Switzerland) overnight at 4°C in 50 mM aqueous NaCl. The
dialysis solution was changed 5 times. After dialysis, the
volume of the dialyzed fraction was adjusted to 10 mL with
50 mM NaCl to produce a 100 mOsmol/L solution repre-
sentative of human saliva.

2.3 Single-protein solutions (0.1%)

A sample of 0.01 g of alpha amylase (α-amylase) from
human saliva (Lee BioSolutions Inc., St. Louis, MO,
USA), 0.01 g of mucin from bovine submaxillary gland
(Sigma-Aldrich), 0.01 g of IgA from human colostrum
(Sigma-Aldrich) or 0.01 g of albumin from human serum
(Sigma-Aldrich) was dissolved in 10 mL of 50 mM NaCl
aqueous solution.

2.4 Protein solutions at physiological concentration

The mean protein concentrations obtained in this study were
used as representative values of the physiological situation
(table 1). Therefore, 3.6 mg of α-amylase from human saliva,
2.6 mg of mucin from bovine submaxillary gland, 0.32 mg
of IgA from human colostrum or 0.11 mg of albumin from
human serum was dissolved in 10 mL of 50 mM NaCl
aqueous solution.
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2.5 Acid/base titrations

After adjusting the pH to 7, prepared purified saliva proteins
or artificial protein solutions were placed in a vessel fixed in
a water bath and stirred at 37°C. Then, 5 mL of 0.01 M
NaOH was added followed by 15 mL of 0.01 M HCl in 50
μL increments.

The pH was measured with a combined micro-glass pH
electrode (DG 101-SC, 3 mm diameter, Mettler Toledo,
Schwerzenbach, Switzerland). The buffer value in the range of
4–5 in mmol/(l×pH) was used to quantify the buffering capac-
ity. Buffer values β were calculated as β ¼ �ΔC ΔpH= (Van
Slyke 1922), where ΔC is the amount of the titrator used (acid/
base) andΔpH is the change in pH caused by the addition of the
titrator.

2.6 Saliva protein analysis

All salivary samples (36 observations) were subjected to
protein analysis as indicated in the following.

2.6.1 Total protein concentration: Total protein concentration
was determined by amino acid analysis. Briefly, salivary
samples were hydrolysed in the gas phase with 6 M
HCl containing 0.1% phenol for 24 h at 115°C under
N2 vacuum (Chang and Knecht 1991). The liberated
amino acids reacted with phenylisothiocyanate; the
resulting phenylthiocarbamyl amino acids were analysed
by RP-HPLC on a NovaPak C18 column (3.9×150 mm,
4 μm, Waters, Baden-Dättwil, Switzerland) in a Dionex
HPLC (Dionex, Olten, Switzerland) with an automated
injection system (Bidlingmeyer et al. 1984).

2.6.2 Mucin concentration: A periodic acid/Schiff (PAS)
colorimetric method reported by Mantle and Allen (Mantle
and Allen 1978) was used to measure the mucin concentration.
An α1-acid glycoprotein was used for calibration due to its
carbohydrate content and glycan composition being similar to
that of salivary mucins MG1 and MG2. Saliva was diluted

1:10, and the standard calibration curves were prepared from
1mL of α1-acid glycoprotein standard solutions (0.012, 0.025,
0.05, 0.075 and 0.1 mg/mL). After adding 0.1 mL of periodic
acid reagent (0.1 mL of a 0.6 mg/mL solution in 7% acetic
acid), the samples were incubated at 37°C for 2 h. Then,
0.1 mL of Schiff reagent was added at room temperature.
Schiff reagent was prepared as follows. First, 20 mL of 1 M
HCl was added to 100mL of 1% pararosaniline hydrochloride.
Second, sodium metabisulphite was added to a final concen-
tration 1.6% before use and incubated at 37°C until it became
pale yellow. After 15 min of incubation, the absorbance of the
solution was recorded at 555 nm in the UV spectrophotometer.

2.6.3 α-Amylase, albumin, and IgA concentrations: The
activity of salivary α-amylase was determined by the quanti-
tative kinetic determination kit (salimetric kit). Under the same
experimental conditions, amylase concentration was estimated
by comparing the amylase activity with the activity of a sample
of human salivary amylase (Lee BioSolutions Inc.). Salivary
albumin and IgA were measured using ELISA kits
(Immunology Consultants Laboratories).

The amino acid composition of the selected proteins was
determined with the ProtParam analysis tool at http://
www.expasy.org/ or from the literature data (Infante and
Putnam 1979; Eiffert et al. 1984; Gasteiger et al. 2005).
Then, the number of carboxylic acid moieties was deter-
mined per protein sequence followed by the carboxylic acid
concentration expressed as mmol/L of a 0.1% single protein
solution (table 2).

Table 1. Summary of stimulated whole saliva protein concentrations, flow rate and salivary protein buffering capacity

Mean Std Dev Median Minimum Maximum

Flow rate (mL/min) 1.75 0.63 1.5 1 3.1

Buffering capacity (mmol/(l×pH)) 0.85 0.31 0.87 0.4 1.5

Total protein (mg/mL) 1.78 1.14 1.57 0.44 4.48

α-Amylase (mg/mL) 0.36 0.34 0.2 0.05 1.21

Mucin (mg/mL) 0.26 0.12 0.22 0.06 0.55

IgA (μg/mL) 32.97 11.61 32.54 18.25 72.78

Albumin (μg/mL) 11.62 5.97 9.55 6.68 32.99

Nine saliva samples were collected from every subject (n04; 36 total observations).

Table 2. Buffering values in the pH range of 4–5 and carboxylic acid
concentrations for a solution of 0.1% albumin, α-amylase, IgA andmucin

Albumin α-Amylase IgA Mucin

Buffering capacity
(mmol/(l×pH))

0.6 0.7 0.25 0.2

Carboxylic acid
(mmol/L)

1.4 0.96 0.8 0.2
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2.7 Statistical analysis

The correlations between the salivary protein buffering ca-
pacity and flow rate as well as protein type/content were
analysed using Spearman’s rank correlation. It was assumed
that measurements were independent of the collection time
and day. The level of significance was set at α00.001. As
this is a preliminary study and due to the assumption of
independence, p-values should be interpreted carefully.

3. Results

3.1 Human saliva samples

The mean, standard deviation, median, minimum, and max-
imum of α-amylase, mucin, IgA, albumin, and total protein
concentrations in salivary samples, and salivary buffering
capacity are shown in table 1. Correlations were calculated
on the basis of observed salivary data at different collection
times. Significant positive correlations were found between
the salivary protein buffering capacity and the total protein
concentration (ρ00.9), the amylase concentration (ρ00.81),
and the IgA concentration (ρ00.67). A weak correlation was
observed for both albumin (ρ00.3) and mucin (ρ00.07)
individually.

The intra-individual variability of salivary protein buffer-
ing capacity is shown in figure 1. The median values were

0.9 (mmol/(l×pH)) in the morning, 0.73 (mmol/(l×pH)) after
lunch, and 0.93 (mmol/(l×pH)) in the evening. There seemed
to be a tendency for salivary buffering capacity values to be
lower after lunch compared to the morning and evening
values. However, there were some observations following a
contrary pattern.

3.2 Single protein solutions

The specific buffering capacities and the carboxylic acid
concentrations for commercially purchased proteins are
listed in table 2. The highest buffering capacity value ob-
served was for amylase, while the lowest value was observed
for mucin. On the other hand, the highest carboxylic acid
number was for albumin and the lowest value for mucin.

4. Discussion

The present pilot study aimed to investigate a possible rela-
tionship between specific or total protein concentrations in
saliva and the salivary protein buffering capacity assessed in
the pH range of 4–5, as erosive substances often have a pH
value in this range. Circadian rhythm, diet and salivary flow
rate influence the intra-individual protein concentration and
composition of collected salivary samples (Dawes 1984).
Therefore, stimulated saliva was collected 3 times a day: in

Figure 1. Intra-subject variability of salivary protein buffering capacity measured at different collection times: in the morning, after lunch
and in the evening.
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the morning, after lunch and in the evening. Stimulated
saliva plays a prominent role in clearing and neutralizing
acidic food (Lussi and Jaeggi 2008). The impact of the
buffering capacity and clearance of resting saliva might be
limited during acid attack. However, resting saliva plays a
more important role in the remineralization process.

The salivary buffering capacity was positively correlated
with the amylase concentration. However, a correlation with
mucin content was not detected. These observations are con-
sistent with the fact that buffering capacity is not dependent on
the carbohydrate fraction of salivary glycoproteins, as this part
has no measurable buffering value. Thus, the fact that the
carbohydrate composition of the salivary mucins can be as
high as 80%, whereas it is less than 5% in the case of amylase
(Becerra et al. 2003), may explain the lack of a correlation.
There are many published reports on the concentration levels
of salivary proteins. The present results for total protein con-
centration, amylase, mucin and IgA are in agreement with
previous findings in stimulated human saliva (Aufricht et al.
1992; Bernfeld 1951; Rayment et al. 2000). However, a low
baseline concentration of albumin was observed. The concen-
tration of albumin is low in subjects with a healthy
periodontium (Henskens et al. 1996). Salivary mucin was
measured by the PAS colour reaction, which is based on the
detection of the carbohydrate fraction. Saliva contains other
glycoproteins that could interfere with mucin detection. The
measurement error, however, was assumed to be small, as
these glycoproteins contain small carbohydrate fractions or
exist at a low concentration in saliva (Becerra et al. 2003).
The salivary protein concentration of human saliva depends on
the measurement technique and the protein standard. In this
study, the total protein concentration was measured by amino
acid analysis, which showed consistent values compared to the
biuret reaction (Jenzano et al. 1986).

The stimulated salivary flow rates measured in the present
study were within the normal range (table 1) (Birkhed and
Heintze 1989). Furthermore, a significant negative correlation
was found between salivary flow rate and the concentration
level of IgA (ρ0−0.63), which is in agreement with previous
results in human saliva (Valdimarsdottir and Stone 1997). The
present results also showed a negative correlation between the
flow rate and protein buffering capacity (ρ0−0.61). However,
previous study reported a positive relationship between secre-
tion rate and total salivary buffer capacity (Birkhed and
Heintze 1989). The latter is based mostly on bicarbonate,
which could be differently regulated compared to proteins
involved in buffer. The role of proteins as a salivary buffer is
controversially discussed in the literature. The present prelim-
inary results support the hypothesis of Sellman regarding the
observation that proteins buffer at low pH. Bardow et al.
(2000) found that the protein buffer system governed the
buffering capacity in acidic pH, which corroborates the present
findings and previous published data (Lamanda et al. 2007).

However, Bardow et al. reported a low buffering capacity
for salivary protein. There might have been two reasons
why Lilienthal could not obtain a buffering capacity from
dialysed saliva. On one hand, a titration method with
relatively low sensitivity was applied. On the other hand,
a small amount of saliva (1 mL) was used for protein
preparation (Lilienthal 1955).

The buffering capacity of human amylase at physiological
concentration was approximately 35% of the total salivary
protein buffering capacity in the pH range of 4–5. Buffering
capacities of albumin, IgA and mucin were not detected.

The data presented here does not support the hypothesis
that protein buffering capacity is mainly a function of the
number of carboxylic acid residues (table 2). The accessibil-
ity of the carboxylic acid groups, which is defined by the
tertiary structure of the protein, could affect the buffering
capacity of the macromolecules.

In addition, it should be mentioned that the interactions of
ions with acid–base groups of proteins also affect their
buffering capacities. Harmsen et al. (Harmsen et al. 1971)
reported that the buffering capacity of bovine serum albumin
could be affected by calcium concentration. The authors
interpreted their results as a consequence of a change in
protein conformation. Since the pKa of titratable groups is
a function of ion concentration in the solution, 100 mOsmol/
L was used as a representative value for salivary proteins and
single-protein solutions (Surdacka et al. 2007).

The conclusions of the present study regarding the
salivary protein buffer system are limited by the small
number of subjects used and the resulting dependencies
among the observations. Nevertheless, it is clear that am-
ylase contributes to the buffering in the pH range of 4–5,
which was 35% of the total protein buffering capacity in
the present study.

Further studies with a larger number of participants
should be conducted to confirm these preliminary results.
For correlations with salivary buffering capacity, total pro-
tein concentration, amylase and IgA are meaningful to be
included. A correlation between total protein concentration
and protein buffer capacity would require 6 subjects for a
power of 80%. At least 9 and 15 subjects would be required
to detect a correlation (80% power) between buffering ca-
pacity and amylase as well as IgA, respectively.

Furthermore, additional research should focus on the re-
lationship between the concentration of amylase in saliva
and susceptibility to dental erosion. A prediction of the
accessibility of protein functional groups based on its 3-D
structure would be a step towards a better understanding of
the buffering properties of the macromolecules. In particular,
the relationship between buffering capacity and ratios of
buried and exposed glutamic acid/aspartic acid groups might
be analysed. pKa values could be compared with in silico
pKa prediction methods such as PROPKA.
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