
Introduction

Flow induced crystallization (FIC) experiments differ
from each other with respect to (1) the polymer system,
(2) the molecular weight distribution (MWD) of the
melt, (3) the temperature T, at which the experiment is
performed, (4) the flow type (shear, extensional or a

mixed flow), and finally (5) the flow rate and total
deformation applied on the sample. As a result of the
large variation of experimental parameters it is difficult,
first, to perform a fair comparison between different
experiments and, second, to identify general trends
and physical processes governing the FIC dynamics.
The latter is important for the development of sound

Jan van Meerveld

Gerrit W. M. Peters

Markus Hütter

Towards a rheological classification
of flow induced crystallization
experiments of polymer melts

Received: 1 December 2003
Accepted: 22 April 2004
Published online: 27 August 2004
� Springer-Verlag 2004

Abstract Departing from molecular
based rheology and rubber theory,
four different flow regimes are iden-
tified associated to (1) the equilib-
rium configuration of the chains,
(2) orientation of the contour path,
(3) stretching of the contour path,
and (4) rotational isomerization and
a deviation from the Gaussian
configuration of the polymer chain
under strong stretching conditions.
The influence of the ordering of the
polymer chains on the enhanced
point nucleation, from which
spherulites grow, and on fibrous
nucleation, from which the
shish-kebab structure develops, is
discussed in terms of kinetic and
thermodynamic processes. The
transitions between the different flow
regimes, and the associated physical
processes governing the flow induced
crystallization process, are defined
by Deborah numbers based on the
reptation and stretching time of the
chain, respectively, as well as a
critical chain stretch. An evaluation

of flow induced crystallization
experiments reported in the
literature performed in shear,
uniaxial and planar elongational
flows quantitatively illustrates that
the transition from an enhanced
nucleation rate of spherulites
towards the development of the
shish-kebab structure correlates with
the transition from the orientation
of the chain segments to the rota-
tional isomerization of the high
molecular weight chains in the melt.
For one particular case this
correlation is quantified by coupling
the wide angle X-ray diffraction and
birefringence measurements of the
crystallization process to numerical
simulations of the chain stretch of
the high molecular weight chains
using the extended Pom-Pom model
in a cross-slot flow.
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physical FIC models and their validation against
experiments. These difficulties are illustrated in two
examples.

In the first example we discuss the validation of the
models developed by Coppola et al. (2001) and Zuidema
et al. (2001) against the experimental results of Lagasse
and Maxwell (1976). The following three features of the
model of Coppola et al. (2001) are of relevance here.
First, a single average relaxation time is considered for
the entire melt, second, only the average orientational
order of the contour path (not the stretch) of the chains
enhances the thermodynamic driving force, and finally,
the reciprocal of the enhanced homogeneous nucleation
rate of spherulites is used as a measure for the reduced
induction time. In the model of Zuidema et al. (2001) the
important model features are different. First, the for-
mation of the shish-kebab structure is considered besides
the heterogeneous nucleation of spherulites. Second, the
critical parameter describing the formation of the shish
is related to the recoverable strain and depends on both
the orientation and the stretch of the chains. Third, the
time needed to reach a critical crystallinity is considered
to correlate to the induction time. Fourth, a multi-mode
approach is taken for the rheological description.
Anticipating that the high molecular weight (HMW)
chains of the melt dominate the FIC only the mode with
the longest relaxation times drives the formation of the
shish-kebab structure. Finally, nuclei are assumed to act
as physical cross-links which further increase the relax-
ation times of the HMW chains. Despite the relevant
features in the models of Coppola et al. (2001) and
Zuidema et al. (2001) differing in almost any aspect, the
same experiment of Lagasse and Maxwell (1976) can still
be described successfully. (The model of Zuidema et al.
2001 has also been confronted with other experimental
protocols in simple shear, duct and cross-slot flows;
Zuidema et al. 2001; Zuidema 2000; Peters et al. 2002;
Swartjes 2001; Swartjes et al. 2003.) This indicates that
the validation of these models against the experiment of
Lagasse and Maxwell (1976) is still inconclusive with
respect to the physical process governing the FIC
dynamics.

As a second example we consider the generally
assumed correlation between the development of the
shish-kebab morphology and ‘strong’ chain stretching
conditions (Mackley and Keller 1973; Keller and Kol-
naar 1997) without quantifying the difference between
‘weak’ and ‘strong’ chain stretching. Nevertheless the
shish-kebab morphology develops in both extensional
and shear flows (Keller and Kolnaar 1997; Eder and
Janeschitz-Kriegl 1997) although the latter is generally
referred to as a ‘weak’ flow, as stretching of the chain is
more difficult (Astarita 1979; Larson 1988). Recent
molecular dynamic simulations show that the shish
structure develops provided the PE chain is in the
all-trans (zig-zag) conformation (Dukovski and

Muthukumar 2003; Lavine et al. 2003). The latter im-
plies that the chain is (locally) stretched to the maximum
extend, but does not resolve the quantitative difference
between ‘weakly’ and ‘strongly’ stretched chains.

The purpose of this paper is to identify different flow
regimes associated to specific degrees of ordering of the
polymer chains with the goal of gaining a general
understanding (classification) of which physical pro-
cesses govern the FIC dynamics. The influence of
the different chemical structures of polymer systems, the
tacticity and the stereoregularity of the chains on the
crystallization dynamics is not addressed or analyzed.
The paper is organized as follows. First, the different flow
regimes are identified. Second, the influence of a specific
flow regime on the FIC dynamics is discussed. Third, the
correlation between the different flow regimes and the
changes in the crystallization dynamics is illustrated for
FIC experiments in shear and extensional flows. Fourth,
the different procedures to characterize the flow regimes
are evaluated, given the importance in the analysis of a
given experiment. Finally, conclusions are drawn.

Molecular based rheological modeling

In molecular based rheological models, such as the Doi-
Edwards model (Doi and Edwards 1986) and its exten-
sions, see for example Mead and Leal (1995), Mead et al.
(1998), Fang et al. (2000), Watanabe (1999), and
McLeish (2002)], a flexible polymer chain is represented
by the contour path. This contour path is a smoothed
curve through the actual atomistic configuration of the
backbone of a particular polymer chain; see Fig. 1.
Dynamic equations are formulated for the orientation
vector of unit length, u, along the contour path and the
stretch ratio, k. The stretch ratio is defined as the ratio of
the current length of the contour path, L, to the equi-
librium value, L0, k=L/L0. For the rheological
description it is important to distinguish two timescales.
First, the reptation time, srep, associated with the rep-
tation process and the orientation vector u and, second,
the time scale ss for the faster chain retraction and the
stretch ratio k. For monodisperse melts these two time
scales are related to each other via the relationship

srep
�
ss ¼ 3Z 1� 1:51

� ffiffiffi
Z
p� �2

(Doi and Edwards 1986;
Ketzmerick and Öttinger 1989) with Z the number of
entanglements per chain. As Z>100 for typical polymer
melts the magnitude of srep and ss are separated by at
least two orders of magnitude. This observation directly
implies that the contour path can be orientated at much
lower flow rates compared to those required to stretch it.
This is conveniently expressed by two Deborah numbers
for shear and extensional flow, De, based on srep and ss,
defined as

Derep ¼ assrep _c; assrep _e ð1Þ
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Des ¼ asss _c; asss _e ð2Þ

with _c the shear rate, _e the extension rate and as the
time-temperature shift factor (Macosko 1996), respec-
tively.

In the flow regime 1
�
srep\_c; _e\1=ss the relaxation

dynamics known as convective constraint release, CCR
(Marrucci 1996; Ianniruberto and Marrucci 1996) is
essential in the understanding and prediction of the
rheological behavior of a polymer melt: see, for example,
Mead et al. (1998) and Fang et al. (2000). The effect of
CCR enhances the orientational relaxation dynamics in
an approximately linear fashion with the strain rate. As
a consequence the orientational ordering of the chain is
arrested to a specific magnitude. This is confirmed
experimentally in shear flows, where it is observed that
the orientation angle is approximately equal to about 20
degrees (depending on the number of entanglements per
chain) for 1

�
srep\_c; _e\1=ss (Islam and Archer 2001;

Islam et al. 2003; Oberhauser et al. 1996).
If the chain is stretched, two different regimes can be

identified based on the global configuration of the chain
and the rotational isomerization (RI) at temperatures
well above the melting temperature, Tm (Abe and Flory
1970; Treloar 1975; Flory 1989). For small k, the chain
maintains a Gaussian configuration (Treloar 1975; Flory
1989) and the amount of RI is small (Abe and Flory
1970). At large k, the influence of the finite extensibility
of the chain sets in and the chain configuration becomes
non-Gaussian (Treloar 1975; Flory 1989) and the
amount of RI is large (Taylor et al. 1999; Cail et al.
2000). The parameter k* denotes the transition between

the two chain stretching regimes, which may be identi-
fied as weak and strong stretching conditions respec-
tively. For T>Tm the approximate magnitude of k* may
be obtained from the relationship (Treloar 1975)

k�=kmax ¼ a ð3Þ

Values of a are discussed below and kmax is the
maximum extension ratio. Assuming a Gaussian con-
figuration of the chain at equilibrium, the magnitude of
kmax equals (Flory 1989; Fang et al. 2000)

kmax ¼
ffiffiffiffiffiffi
NK
p

¼ b
lK
¼ b

l C1 þ 1ð Þ ð4Þ

with NK the average number of Kuhn segments per
entanglement, b the tube diameter, lK the Kuhn length, l
the bond length, and C¥ the characteristic ratio repre-
senting the stiffness of the polymer chain (Flory 1989).
The universal behavior suggested by Eq. (3), which is
directly related to the universal behavior of the inverse
Langevin probability of the chain, is only valid in the
limit of a large number of Kuhn segments, NK fi ¥
(Treloar 1975; Flory 1989). In real polymer systems the
magnitude of NK is small and the exact probability
distribution shows that the deviation from the Gaussian
configuration has a non-universal dependency on NK

(Sect. 6.6 of Treloar 1975); Chap. 8 of Flory 1989). As a
result, the parameter a is a decreasing function of NK

and reaches the magnitude of about 1/3 in the limit of
NK fi ¥ to indicate a deviation from the Gaussian
configuration of the chain. Reducing the temperature T
towards Tm gives an increase of the chain stiffness, i.e.,
C¥ increases for decreasing T (Flory 1989; Dressler
2000). In addition, a homogeneous distribution of the
conformations can be questioned for T<Tm (Flory
1989; Lavine et al. 2003). This has two consequences.
First, the magnitude of k* is temperature dependent,
k*=k*(T), and decreases with decreasing T. Second, the
connection between k and the conformation of the chain
segments is, for T<Tm, less direct compared to T>Tm

(as the conformation is affected by both the T and chain
stretching for T<Tm). From the difficulties in quanti-
fying the influence of NK and T on the magnitude k*, the
expression k*/kmax=a(NK,T) should (perhaps) be
regarded as a (semi-)empirical relationship, serving to
indicate qualitative trends on the change of the config-
uration and conformation of the chain upon chain
stretching at a given temperature. Nevertheless, for
small undercooling it is assumed that the two chain
stretching regimes can be identified, just as for T>Tm,
and will be used hereafter.

It is important to distinguish between the orientation
of the contour path, as used in the formulation of the
rheological models, and the orientation of the Kuhn
segments. The latter can be obtained using birefringence
or FTIR measurements and is often used to explain the

Fig. 1 a Sketch of the contour path of a chain and the physical
meaning of the orientation vector u of a segment on the contour
path and the average chain stretch k. b–d Sketch of the contour
path (smoothed curve) and the Kuhn chain at equilibrium; (b) Derep,
Des<1, k=1, for an oriented but non-stretched contour path; (c)
Derep>1, Des<1, k=1, for an oriented and stretched contour path;
(d) Derep,Des>1, k>1
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influence of the flow on the crystallization. In uniaxial
elongation flows the Hermans orientation factor of the
Kuhn segments, P2, is often analyzed, which is the ratio
of the current to the maximum birefringence of the melt.
In that case P2 can be expressed in terms of k and u as
(Mead and Leal 1995; Strobl 1997)

P2 ¼
3

5

k
kmax

� �2

þ 1

5

k
kmax

� �4
"

þ 1

5

k
kmax

� �6
#

uuh ixx � uuh iyy
� � ð5Þ

with Æuuæ the average second order orientation tensor of
the contour path and x and y denote the component
parallel and perpendicular to the elongation direction.
The expression for P2 directly shows that the orientation
of the Kuhn segments is enhanced due to both the ori-
entation and stretch of the contour path and hence
governed by both the magnitude of Derep and Des. This
is illustrated in Fig. 1 where it should be noted that the
fluctuation of the Kuhn chain around the contour path
remains identical to equilibrium for Des<1.

In the above, a monodisperse melt is implicitly con-
sidered despite the fact that polydisperse melts are used
in most experimental investigations. Moreover, there is
strong experimental evidence that the HMW tail of the
MWD dominates the FIC dynamics (Vleeshouwers and
Meijer 1996; Nogales et al. 2001; Kumaraswamy et al.
2002; Seki et al. 2002; Kornfield et al. 2003). Conse-
quently, the question arises if the different flow regimes
identified above can be applied directly to the HMW tail
or does the polydispersity of the particular polymer melt
influence the ordering of the chains in, and the transi-
tions between, the different regimes in the weak shear
and strong uniaxial flows? A molecular based rheologi-
cal model for polydisperse melts is developed to address
this question from a theoretical viewpoint (van Meerveld
2004a). For further details the reader is referred to the
original paper. Here, only the influence of the mass
fraction of the HMW chains, /, and the ratio of the
molecular weight of the HMW chains, MHMW, to the
weight averaged molecular weight of the melt, MW, i.e.,
MHMW/MW, on the orientation and stretch of the con-
tour path of the HMW chains is summarized. In this
setting the polydisperse melt is crudely modeled as a
bidisperse system of chains with a HMW and an average
molecular weight respectively. For /<0.1 a variation of
/ on the orientation and chain stretch is small as the
‘tube’ around the HMW chains is primarily formed by
the LMW chains. Keeping MHMW fixed, i.e., Derep and
Des of the HMW chains remain constant, and increasing
MHMW/MW changes the ordering of the HMW chains
from two aspects. First, it becomes more difficult to
orient the HMW chains into the flow direction of both
shear and uniaxial flows. Second, the chain stretching in

shear flows is affected by the MWD, due to the sensitive
coupling of the chain stretching dynamics with the ori-
entation of the chains in the flow field. (For a more
detailed discussed the reader is referred to van Meerveld
2004a.) For ‘moderate’ values of MHMW/MW the
reduced orientational ordering of the chain results into
an increased ability to stretch the HMW chain. Conse-
quently, the chains are stretched to a larger extend for a
given Des with increasing MHMW/MW. Hence, the
requirement k>k*(T) is fulfilled more easily with
increasing MHMW/MW. For ‘large’ MHMW/MW one may
reach the condition that the HMW chains become ‘too’
weakly aligned into the flow field and the ability to
stretch the HMW chain reduces with a further increase
of MHMW/MW. For a given Des the HMW chain stretch
can be larger compared to MHMW/MW=1, but may be
smaller compared to that of a melt of ‘moderate’
MHMW/MW. Due to the influence of the MWD on the
chain stretching dynamics in shear flows the condition
k>k*(T) cannot be related to a single universal magni-
tude for Des, but depends on the particular MWD of the
melt in hand. A quantitative definition of ‘moderate’ and
‘large’MHMW/MW cannot be identified based on the
analysis in van Meerveld (2004a). Stretching of the
HMW chains in uniaxial flows is primarily dominated
by MHMW and weakly influenced by MHMW/MW and
the condition Des>1 indicates the relative sharp tran-
sition towards k>k*(T).

Summarizing the above, the influence of the flow can
be separated into four regimes. For Derep, Des<1 the
chains are at equilibrium, i.e., the contour path is ran-
domly oriented and not stretched. Subsequently three
transitions are identified corresponding to increasing
orientational order of the contour path with Derep>1,
the onset of chain stretching with Des>1, and finally the
onset of RI affecting the conformation as well as a
deviation from the Gaussian configuration of the poly-
mer chain, k>k*(T). The MWD of the melt influences
the ordering of the HMW chains in two aspects. For a
given MHMW of the HMW chains and increasing
MHMW/MW, first, the orientation order of the HMW
chains reduces for Derep>1, Des<1 in shear and uni-
axial flows, and, second, in shear flows the condition
k>k*(T) cannot be related to a single value of Des, as
the chain stretching dynamics are influenced by the
MWD.

Phase change dynamics

The change in order between the amorphous melt at
T>Tm and the crystalline phase can be specified by
means of order parameters associated to (1) the density,
(2) the periodic, crystallographic, ordering of the seg-
ments, (3) the orientational order of the chain segments,
similar to P2, and (4) the change in conformational order
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of the chain segments. From the previous section it is
expected that the application of the flow field will pri-
marily affect the last two order parameters, i.e., the
orientation and the conformation of the chain segments.
As a consequence of the four different order parameters
the nucleation process is expected to be of substantial
complexity and not amenable to models based on a
single pathway.

In discussing the influence of the applied flow field on
the FIC we distinguish between the kinetic and the
thermodynamic processes as reflected, for example, in
the classical nucleation theory (Oxtoby 1992; Debened-
etti 1996; Gunton 1999). The kinetic contribution rep-
resents the time scale for nucleation, the ‘prefactor’, and
the thermodynamic contribution is associated to the
position of the system in the (dynamic) phase diagram.

First the kinetic contribution is discussed. Under
quiescent conditions, Derep, Des<1, a nucleus is formed
after a critical fluctuation in one, or more, order para-
meters. The nucleation process is purely stochastic in
nature under these conditions. For Derep>1, Des<1, the
chain segments become more uniformly oriented in the
flow direction but the conformation remains unaffected.
Hence, only a fluctuation in the conformation can be
sufficient for the development of a nucleus. It should be
noted that due to the CCR mechanism, as well as the
polydisperse nature of the melt, the orientational
ordering of the (HMW) chains is arrested to a specific
magnitude (as reflected by an approximately constant
orientation angle for 1

�
srep\_c\1=ss as discussed above).

This argument is supported by SANS measurement in
shear flow (Muller and Picot 1992; Muller et al. 1993),
which reveal that the deviation from the spherical coil
conformation is rather weak and limited to a certain
extent for 1

�
srep\_c\1=ss. The latter is in agreement with

model predictions (McLeish 2002). The deviation from
the spherical coil configuration is proposed to be the
primary mechanism to drive flow induced crystallization
by Nogales et al. (2001). In view of the arrested orien-
tational order forDes<1 this mechanism is rather limited
in this flow regime. Under fast flowing conditions, Derep,
Des>1, k>k*(T), one reaches the condition where the
chain segments are strongly oriented and the chain con-
formation becomes similar to that of the crystalline state.
As a consequence, critical fluctuations in the orientation
and conformation of the chain segments are no longer
required as these conditions are fulfilled, in a determin-
istic manner, during the flow. The application of the flow
field therefore shifts the nucleation dynamics from a
stochastic to a more deterministic process, resulting in an
increase of the observed nucleation rate.

Second, the change in the thermodynamic contribu-
tion is discussed. Following the pioneering work of
Flory (1947), the thermodynamic driving force can be
enhanced by the flow field, which is reflected by an
effective increase in Tm. Under quiescent conditions the

temperature governs the thermodynamic driving force,
which is then enhanced due to the orientational and
stretching of the (HMW) chains depending on the par-
ticular flow regime. This is an essential feature in the
model of Coppola et al. (2001) and strain induced
crystallization models of rubbers (Flory 1947), although
the importance, based on a description of the chains on
a macroscopic level, is questioned by McHugh et al.
(1993) and Janeschitz-Kriegl et al. (2003).

For a number of polymers the Kuhn length is larger
than the tube diameter, lK‡b, e.g., PET and PEEK
(Haward 1993) and the chain configuration between two
entanglements is essentially a stiff rod instead of a ran-
dom coil (Strobl 1997). The discussion regarding chain
stretching is therefore not applicable to these polymer
systems. Actually, the nucleation dynamics of PET is
similar to the phase transition observed in liquid crys-
talline polymers under quiescent (Imai et al. 1992, 1993,
1995) and flowing conditions (Welsh et al. 1998, 2000).
Smectic ordering is also suggested to be of importance
for the nucleation of iPP by Li and de Jeu (2003).

Finally, attention is given to the development of the
shish-kebab structure, which is generally believed to
develop under strong chain stretching conditions, i.e.,
Des>1, k>k*(T). The strong RI may be important from
the thermodynamic aspect. However, several kinetic
effects may also be of relevance. First, the RI and,
second, the transition from intra- to intermolecular
interactions between the chain segments for k>k*(T)
(Mavrantzas and Theodorou 1998). It is interesting to
note that bundle like structures (shish) also develop in
systems of associative polymers provided the flow rate
exceeds the reciprocal of the characteristic time scale for
the chain diffusion (Khalatur et al. 1998; Power et al.
1998). Anticipating the diffusivity on an entanglement
lengthscale is more important than that of the entire
chain this implies that the shish form for Des>1 (de
Gennes 1982). The proposal that the ‘precursor’ of the
shish results from the coalescence of athermal nuclei due
to the applied flow field (Janeschitz-Kriegl et al. 1999) is
similar in spirit, but disregards the role of the HMW
chains. Experimental evidence for the importance of
kinetic processes on the formation of the shish-kebab
structure in iPP is given by Kumaraswamy et al. (2002)
and a possible kinetic mechanism is proposed in Seki
et al. (2002). On the other hand, molecular dynamic
simulations on PE (Lavine et al. 2003) and experimental
results on PET (Blundell et al. 1999) indicate that the
nucleation is arrested during fast chain retraction, thus
limiting the kinetic effects for Des>1, k>k*(T).

In the above it is argued that the increase of the
nucleation rate due to the applied flow field can be
understood from both kinetic and thermodynamic
arguments. However, it is difficult to separate the indi-
vidual contributions as the transitions in these processes
occur at approximately identical flow conditions.
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Application to flow induced crystallization experiments

In the present section the above classification of chain
ordering in the different flow regimes is applied to
evaluate experimental results reported in the literature.
The major task is to obtain an accurate estimate of the
relaxation times srep and ss of the HMW tail in order to
verify quantitatively which process governs the FIC
dynamics. However, it turns out that it is not straight-
forward to identify a single, universal, procedure to
determine srep and ss of the chains in the HMW tail.
Actually, one can propose four different procedures to
do so, as discussed below. In applying these procedures
one is faced with the problem that either the estimated
magnitude of srep and ss is not related to the HMW tail
or one needs to make somewhat arbitrary assumptions
to establish this relationship. (Both problems are, how-
ever, inherent to polydisperse polymer melts.) Moreover,
as is shown below, the magnitudes of Derep and Des
differ considerable, depending on the procedure taken,
and consequently the associated mechanism which
drives the FIC. This is an unsatisfactory situation and
poses the major problem to be resolved in order to
obtain a quantitative indication from experiments about
which physical process drives FIC. In the current section
different procedures are introduced to estimate srep and
ss, which are subsequently applied to classify FIC
experiments. In the next section we discuss the advan-
tages and disadvantages of the procedures in more
detail, making use of the additional knowledge how it
affects the classification of FIC experiments.

Determination of the flow regimes

Depending on the characterization of the melt with
respect to the linear viscoelastic behavior or the MWD,
four different procedures can be applied to estimate srep
and ss, which may be related to different parts of the
MWD.

First, from the zero shear rate viscosity, g0, the
reptation time sg

rep follows from the relationship
g0 ¼ G0

Nsg
rep with G0

N the plateau modulus. The g0 is
known to be weakly dependent on the MWD and pri-
marily depends on MW (Struglinski and Graessley 1985;
Berger and Meissner 1992; Aguliar et al. 2003; Vega
et al. 2003; Pattamaprom and Larson 2001). Hence, the
sg
rep indicates an average reptation time of the melt.
It is also possible to represent the relaxation time

spectrum of the melt by a discrete spectrum of Maxwell
modes (Larson 1988; Macosko 1996; Winter 1997).
Despite lacking a direct relation with the MWD and the
determination of the set of shear moduli Gi and repta-
tion times si

rep of the modes is non-unique, it gives an
indication of the reptation times present in the melt
(Winter 1997). Second, an average reptation time, �srep;

can be obtained from the relaxation time spectrum,

which is defined as �srep ¼
P

i
Gisi

rep
2
=

P

i
Gisi

rep

(Schoonen 1998). Third, the largest reptation time of the
relaxation time spectrum, sHMW

rep , can be taken which
may be regarded as a measure for the HMW tail.

For the previous three procedures the magnitude of ss
is estimated according to the relationship (Doi and
Edwards 1986):

ss ¼ srep
�
3Z ð6Þ

As sg
rep, �srep and sHMW

rep are not directly related to a par-
ticular chain, the magnitude of Z is somewhat arbitrary
and can be taken identical to the value following from
MW, ZW=Mw/Me, or that following from the longest
chains of the MWD, ZHMW=MHMW/Me. For the pro-
cedures based on sg

rep; �srep and sHMW
rep Z ¼ ZW is taken,

despite Z=ZHMW possibly being a more natural choice
to calculate sHMW

s from sHMW
rep .

For the final, fourth, procedure the MWD is required
to obtain Z for all chains present in the melt. Subse-
quently, the magnitudes of sMWD

rep and sMWD
s follow from

the relationships (Doi and Edwards 1986; Ketzmerick
and Öttinger 1989)

sMWD
rep ¼ 3seZ3 1� 1:51

. ffiffiffi
Z
p� �2

ð7Þ

sMWD
s ¼ seZ2 ð8Þ

with se the equilibration time which is independent of the
molecular weight of the chain (Doi and Edwards 1986;
Watanabe 1999; McLeish 2002; Larson et al. 2003). This
procedure is applied to estimate srep and ss of the longest
chains of the MWD in the next Subsection. Hence,
Z=ZHMW=MHMW/Me with MHMW the largest molec-
ular weight of the MWD reported, which is considered to
be a representative measure for the molecular weight in
the HMW tail. Doing so, the effect of tube dilation and
fast Rouse relaxation modes on sMWD

rep are disregarded for
simplicity, although this is likely of importance for the
HMW chains (Milner 1996; Watanabe 1999; McLeish
2002). For iPP se=3.54·10)8 s and Me=4400 g/mol at
T=463 K (van Meerveld 2004b) and time-temperature
superposition is applied to correct for the variation of se
with temperature. Similar to aPP, the magnitude of Me

varies for iPP from Me=4400 g/mol to Me=5500 g/mol
at T=463 K. ForMe=5500 g/mol, se=9.87·10)8 s (van
Meerveld 2004b). Finally, the differences in Me and se
result in a difference of sHMW

s of about a factor 1.8.
However, this difference does not affect the conclusions
of this paper.

The different relaxation times may be related to the
melt on average, sg

rep and �srep and, or to the HMW tail,
sHMW
rep and sMWD

rep . A quantitative definition of the HMW
tail is not reported in the literature but a lower bound
may be estimated as follows. Comparing the nuclei
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density of iPP under quiescent conditions, 1010 m)3, and
flowing conditions, 1016 m)3 (van Krevelen 1978;
Stadlbauer 2001; Janeschitz-Kriegl et al. 2003) with the
number density of polymers, 1021 m)3, or entangle-
ments, 1023 m)3, one finds that a small percentage of the
MWD is sufficient to enhance the nucleation rate dras-
tically, which is confirmed experimentally (Seki et al.
2002; Kornfield et al. 2003). (An estimate based on the
observation that gelation occurs during early stages of
the crystallization process (Schwittay et al. 1995;
Pogodina and Winter 1998) gives a larger magnitude of
the HMW tail, but this is still a small quantity of the
total MWD.) These small quantities are difficult to trace
down in gel permeation chromatography measurements
as well as in the linear and non-linear viscoelastic regime
(Eder et al. 1989; Eder and Janeschitz-Kriegl 1997;
Graham et al. 2001; Seki et al. 2002; Hepperle 2002; van
Meerveld 2004a). For the application of sg

rep;�srep, and
sHMW
rep two aspects are of relevance. First, the magnitude
of sg

rep; �srep, and sHMW
rep is affected by the MWD of the

melt. Second, in order to determine ss via the relation-
ship srep/ss=3Z one is faced with the, arbitrary, choice
to take Z equal to ZW or ZHMW, as discussed in more
detail below. In view of these difficulties a direct rela-
tionship between the experimentally determined repta-
tion times sg

rep; �srep, sHMW
rep , as well as the stretching times

following from Eq. (6), and the HMW chains in the
high-end tail cannot be established. The advantage of
the procedure based on the MWD is that these inherent
problems for polydisperse melts are resolved for the
estimate of sMWD

s from Eq. (8). The assumption to
neglect the effect of tube dilation and fast Rouse relax-
ation modes on sMWD

rep , Eq. (7), may not be justified
(Milner 1996; Watanabe 1999; McLeish 2002) and the
magnitude of Derep is expected to be overestimated.

Shear flows

For a number of experiments, reported in the literature,
performed in shear flows the estimated magnitude of
Derep and Des using the four procedures discussed in the
previous Subsection are given in Table 1. The range of
Deborah numbers reflects the range of shear rates cov-
ered in the experiments. It is noted that all experiments
are performed, first, on iPP (although the stereoregu-
larity is not identical), and second, at or close to a
temperature of T=413 K and therefore suitable to
illustrate the influence of a flow field on the FIC.
Time-temperature superposition is applied according to
the Williams-Landel-Ferry equation specified in
Swartjes (2001) for the variation of srep and ss with T. In
general, sg

rep\�srep\sHMW
rep \sMWD

rep and the associated
magnitudes of Derep and Des of a flow differ by one or
several orders of magnitude; see Table 1. From sg

rep the
magnitude of Derep is in the range 0.1–10, suggesting

only orientational ordering of the chain segments
governs the FIC process. This equally holds for �srep;
Derep=50–1000, where, moreover, weak chain stretch-
ing may be important as Des=0.5–10. The magnitude of
Derep becomes very large for sHMW

rep , Derep=103–104 and
sMWD
rep , Derep=104–106, suggesting the contour path is
strongly oriented. In addition (strong) chain stretching
of the HMW chains can be expected as Des>1. The
magnitudes of Des following from sg

rep and �srep do not
indicate chain stretching.

The results in Table 1 reveal that the magnitude of
Des is approximately identical for the procedures based
on sHMW

rep and sMWD
rep . It should be noted that for the

calculation of sHMW
s the number of entanglements fol-

lowing from Mw, ZW=Mw/Me, is taken whereas for
sMWD
s that of the HMW chains, ZHMW=MHMW/Me, is
considered. Despite ZHMW/ZW=10–30, see Table 1, the
magnitudes of sHMW

s and sMWD
s are approximately

identical. This observation may be explained as follows.
The difference in Derep based on sHMW

rep and sMWD
rep may

indicate that the magnitude of sMWD
rep reduces under the

influence of tube dilation and fast Rouse relaxation
modes by an order of magnitude. Hence, in reality the
srep of the HMW chains may be closer to sHMW

rep than
sMWD
rep . In principle, one is faced with the non-trivial
task to account for the effect of tube dilation and
fast Rouse relaxation modes in order to estimate sHMW

s
from sHMW

rep . Taking Z=ZW, instead of the more
natural choice Z=ZHMW, in the relationship
sMWD
s ¼ sMWD

rep

.
3Z appears to be a crude, empirical,

first order correction for the effect of tube dilation,
which is the reason for the approximately identical
values of sHMW

s and sMWD
s . As the procedure to esti-

mate sMWD
s has a clear physical background and is not

affected by the MWD, only the magnitude of Des fol-
lowing from sMWD

s is correlated with experimental
observations below.

As indicated above in shear flows the HMW chains
may also reach the condition k>k*(T) for Des>1 in
polydisperse melts. Hence, the magnitude of Des
following from sMWD

s suggests that the condition
k>k*(T) can be reached by the HMW chains present
in the melt in the experiments of Liedauer et al. (1993),
Vleeshouwers and Meijer (1996), Somani et al. (2000,
2001), and Nogales et al. (2001), which are discussed
now in more detail. In the experiments of Nogales et al.
(2001), two melts with ‘short’ and ‘long’ HMW chains,
resin I and A, respectively, and blends of resin I and A
are investigated at a constant shear rate and total
strain. For resin I the lamellae are randomly oriented.
However for the blends of resin I and A and resin A
itself the lamellae are strongly oriented in the flow
direction. The observation that Des<1 for resin I and
Des>1 for resin A and the blends indicates quantita-
tively that the transition towards a strong orientation
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of the lamellae in the flow direction correlates with the
transition towards (strong) chain stretching conditions
of the HMW chains.

The induction time of the DSM13E10 melt investi-
gated by Vleeshouwers and Meijer (1996) is found to
saturate to a constant magnitude with increasing the

shear rate while maintaining the total strain fixed. The
saturation of the induction time corresponds to the
condition that Des>9.0. This finding is in good quan-
titative agreement with the experiments of Somani et al.
(2000, 2001) for a different melt, subjected to a similar
flow protocol, where the ‘half-time for crystallization’

The symbols are Mw: weight averaged molecular weight in kg/mol,
PI: polydispersity index, ZW: the number of entanglements per
chain based on Mw, ZHMW: number of entanglements of the HMW
chains, Derep: the Deborah number for the reptation process, Des:
the Deborah number for chain stretching, T: the absolute tem-
perature in degrees Kelvin. The index in last column indicates if
Derep and Des are determined with srep and ss according to: g0: the
zero shear rate viscosity sg

rep, ARTS: average of the relaxation time

spectrum, �srep; HMW: the longest time scale of the relaxation time

spectrum, sHMW
rep , and MWD: based on longest chains in the MWD,

sMWD
rep . The index in braces in the second column indicates the
material investigated in the corresponding investigation: (1)

DSM13E10, (2) DSM15E10, (3) Dalphen KS10, (I) Resin I,
(A) Resin A. S01: Swartjes (2001), VM96, Vleeshouwers and Meijer
(1996), LM76, Lagasse and Maxwell (1976), NL98, Niehand and
Lee (1998), PWS99, Pogadina et al. (1999), PLSW01, Pogodina
et al. (2001), Nea01, Nogales et al. (2001), Sea00/01, Somani et al.
(2000, 2001), Lea93, Liedauer et al. (1993), KF02, Koscher and
Fulchiron (2002), EWWF03: Elmoumni et al. (2003). The range of
Deborah numbers reflects the range of shear rates covered in the
experiments. For the experiments of Liedauer et al. (1993) the shear
rate at the wall of the duct is taken to estimate Derep and Des and
the small variation in magnitudes of Derep and Des for different T is
expected. n/a: not available, n/c: not calculated

Table 1 Characteristics of experiments as reported in the literature using Me=4400 g/mol and se=3.54·10)8 s at T=463 K

Reference Mw PI ZW ZHMW T Derep Des Proc.

1 S01 (1) 500 6 113 3600 413 0.10–4.0 0.00030–0.012 g0
2 S01 (1) 500 6 113 3600 413 56–2230 0.16–6.6 ARTS
3 S01 (1) 500 6 113 3600 413 340–13600 1.0–40 HMW
4 S01(2) 350 5.6 79 2272 413 0.063–2.5 0.00027–0.011 g0
5 S01(2) 350 5.6 79 2272 413 12–490 0.051–2.0 ARTS
6 S01(2) 350 5.6 79 2272 413 113–4500 0.47–19 HMW
7 VM96(1) 500 6 113 3600 413 0.25–2.0 0.00073–0.0058 g0
8 VM96(1) 500 6 113 3600 413 140–1100 0.4–3.3 ARTS
9 VM96(1) 500 6 113 3600 413 850–6800 2.5–20 HMW
10 VM96(1) 500 6 113 3600 413 34000–270000 3.3–27 MWD
11 VM96(2) 350 5.6 79 2272 413 0.080–0.63 0.00033–0.0027 g0
12 VM96(2) 350 5.6 79 2272 413 15–120 0.064–0.51 ARTS
13 VM96(2) 350 5.6 79 2272 413 140–1100 0.59)4.7 HMW
14 VM96(2) 350 5.6 79 2272 413 8500–68000 1.3–11 MWD
15 Nea01(I) 148 4.7 34 227 423 170 0.3 MWD
16 Nea01(A) 309 7.1 70 718 423 5700 3.0 MWD
17 Sea00/01 368 4 83 1278 413 8100–83000 2.3–24 MWD
18 Lea93(3) 330 6 75 2860 416 2.1–5.1 0.011–0.023 g0
19 Lea93(3) 330 6 75 2860 416 1900–3800 8.2–17 ARTS
20 Lea93(3) 330 6 75 2860 416 8000–16600 36–74 HMW
21 Lea93(3) 330 6 75 2860 416 0.57–1.2·106 70–140 MWD
22 Lea93(3) 330 6 75 2860 423 2.5–5.2 0.011–0.023 g0
23 Lea93(3) 330 6 75 2860 423 1900–3900 8.5–17 ARTS
24 Lea93(3) 330 6 75 2860 423 8300–16900 37–75 HMW
25 Lea93(3) 330 6 75 2860 423 0.56–1.1·106 69–140 MWD
26 Lea93(3) 330 6 75 2860 430 3.9–5.2 0.017–0.022 g0
27 Lea93(3) 330 6 75 2860 430 2900–3800 13–17 ARTS
28 Lea93(3) 330 6 75 2860 430 12600–16300 56–73 HMW
29 Lea93(3) 330 6 75 2860 430 0.82–1.1·106 101–130 MWD
30 KF02 180 7.3 41 n/a 413 0.018–1.8 0.00015–0.015 g0
31 KF02 180 7.3 41 n/a 413 7.5–75.0 0.061–6.1 ARTS
32 KF02 180 7.3 41 n/a 413 90–9000 0.73–73 HMW
33 LM76 n/a n/a n/a n/a 394 1.0–8.0 n/c g0
34 NL98 n/a n/a n/a n/a 413 0.032–57 n/c g0
35 NL98 n/a n/a n/a n/a 415 0.029–52 n/c g0
36 NL98 n/a n/a n/a n/a 417 0.026–47 n/c g0
37 PWS99 344 4 78 n/a 413 1.2–24 0.0051–0.10 g0
38 PLSW01 350 4 80 n/a 421 22 0.092 g0
39 EWWF03 171 4.2 39 n/a 418 0.055–0.55 0.00047–0.0047 g0
40 EWWF03 300 5.8 68 n/a 418 0.22–2.2 0.0011–0.011 g0
41 EWWF03 350 4.1 79 n/a 418 0.63–6.3 0.0027–0.027 g0
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saturates for Des>13.1. The formation of the shish-ke-
bab morphology for Des>13.1 is revealed by small and
wide angle X-ray measurements in Somani et al. (2000,
2001).

The influence of the different flow regimes can also
be illustrated for FIC experiments in channel flows. As
_c is zero in the center and increases to a maximum at
the wall, one passes through the different flow regimes.
This qualitatively correlates with the characteristic
layered structure of different morphologies (Liedauer
et al. 1993; Jerschow and Janeschitz-Kriegl 1996, 1997;
Eder and Janeschitz-Kriegl 1997; Kumaraswamy et al.
2000), which is illustrated in Fig. 2. Based on the
profile of the shear rate in the duct and the estimated
sMWD
s of the Dalphen KS 10 melt the transition from
the spherulitic to fine grained morphology and the fine
grained to shish-kebab morphology corresponds to
Des>9.4 and Des>18, respectively, for MHMW=
106.9 g/mol, and Des>23.6 and Des>45.4, respectively,
for MHMW=107.1 g/mol; see Fig. 2. This indicates that

the shish-kebab morphology develops under strong
chain stretching conditions. (The variation of MHMW is
justified as the MWD of Dalphen KS 10 reported in
Stadlbauer 2001 is of a different batch compared to
that investigated in Jerschow and Janeschitz-Kriegl
1997.)

It should be noted that taking different procedures
to estimate srep positions the same experiment in
approximately one of the four different flow regimes.
More important is that it indicates that either the
orientational order or the RI of the chain segment
governs the FIC dynamics. This difference was already
encountered in the Introduction when comparing the
relevant features of the model of Coppola et al. (2001)
with that of Zuidema et al. (2001). Actually it is of
general interest since both the orientation (Ziabicki
1976; Coppola et al. 2001; Nogales et al. 2001; Joo
et al. 2002) and stretching of the chains (Flory 1947;
Brochard-Wyart and de Gennes 1988; Bushman and
McHugh 1996; Kulkarni and Beris 1998) play a key
role in FIC models.

The experimental observation of the development
of the shish-kebab structure in the experiments
of Vleeshouwers and Meijer (1996), Nogales et al.
(2001), Liedauer et al. (1993), and Jerschow and
Janeschitz-Kriegl (1997)] corresponds to the condition
Des>1–10 based on sMWD

s . This quantitatively indicates
that (strong) stretching of the HMW chains, and the
associated strong orientation and RI of the chain seg-
ments, governs the formation of the shish-kebab struc-
ture. This is in agreement with the observations in recent

Fig. 2 Left: morphology for the ‘outdated’ Dalphen KS 10 melt
after the flow in a duct of 1 mm width at T=4203 K with
_c=115 ms)1 at the wall, Fig. 7 (page 75) of Jerschow and
Janeschitz-Kriegl (1997). The distance from the center is indicated
as y. (y=0 in the center and y=5 mm at the wall.) Large
spherulites develop for y<0.3 mm, followed by a fine grained layer
0.3<y<0.4 mm and the shish-kebab morphology is present close
to the wall, y>0.4 mm (Jerschow and Janeschitz-Kriegl 1997).
These transitions are indicated by the horizontal dashed lines in the
right figure. Right: the magnitude of Des for different MHMW of the
HMW chains: (dash-dotted line), MHMW=107.0 g/mol (dashed
line),MHMW=107.1 g/mol (full line)
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molecular dynamics simulation of PE (Dukovski and
Muthukumar 2003; Lavine et al. 2003).

Extensional flows

The different flow regimes in extensional flows are
illustrated for a cross-slot flow and for uniaxial exten-
sion of rubber samples.

In a cross-slot flow, the majority of the flow field is a
transient or stationary shear flow. Only the fluid ele-
ments on streamlines which closely approach the stag-
nation point in the center of the cross-slot flow are
subjected to a large extensional deformation (Macosko
1996; Schoonen 1998; Verbeeten et al. 2002). Hence, the
requirements Des>1 and k>k*(T) are most easily ful-
filled by these fluid elements, being in qualitative
agreement with the position where the shish-kebab
morphology develops (Mackley and Keller 1973;
Janeschitz-Kriegl et al. 2001; Swartjes 2001; Peters et al.
2002; Swartjes et al. 2003). The iPP melt considered by
Swartjes (2001), Peters et al. (2002), and Swartjes et al.
(2003) is characterized in the non-linear rheological
regime, including chain stretching, and quantitatively
described by a multi-mode version of the extended Pom-
Pom model (Verbeeten et al. 2001, 2002; Verbeeten 2001;
Swartjes 2001; Swartjes et al. 2003). The reader is
referred to Verbeeten et al. (2001, 2002), Swartjes (2001),
and Swartjes et al. (2003) for details about the model
equations, the model parameters, the performance in
simple and complex flows, as well as the numerical

implementation of the extended Pom-Pom model.
Numerical simulation of the extended Pom-Pom model
for this particular experiment allows one to perform
a quantitative verification of the generally assumed
correlation between strong chain stretching conditions
of the HMW chains and the development of the
shish-kebab structure (Mackley and Keller 1973; Keller
and Kolnaar 1997). The chain stretch, k, of the mode
with the longest sHMW

rep and sHMW
s increases drastically

close to the stagnation point and remains large around
the centerline in the outflow channels; see Figs. 3 and 4.
The position where k is large is in agreement with the
position where the shish-kebab morphology develops as
revealed by birefringence; see Fig. 3. This holds equally
for the wide angle X-ray diffraction measurements as
presented in Fig. 5 of Peters et al. (2002) or Fig. 9 of
Swartjes et al. (2003). Hence this numerical-experimental
investigation provides quantitatively evidence for the
correlation between the development of the shish-kebab
structure and strong chain stretching conditions.

In the FIC experiments of Stadlbauer (2001) the
morphology of the iPP samples remains spherulitic after
the applied extensional deformation. In view of the
above this may be expected as, regardless of the _e, the
total strain may be insufficient to reach the condition
k>k*(T).

For the uniaxial extension of rubbers the timescales
srep and ss are irrelevant and the k*(T) is directly related
to a critical Hencky strain, e*, for example using the
neo-Hookean theory via the relationship k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr Bð Þ=3

p

with B the Finger tensor (Macosko 1996). The Hencky

Fig. 3 Field-wise birefringence
of the DSM13E10 melt at 4 min
after cessation of the flow at
_e=0.4 ms)1at T=418 K from
Swartjes (2001). Inset: contour
plot of the predicted HMW
chain stretch by the extended
Pom-Pom model at T=473 K.
Inflow in the x-direction
(horizontal), and out flow in the
y direction (vertical). The
stagnation point is at x=0 mm,
y=0 mm which has slightly
shifted to the right after the
cessation of the flow
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strain is the natural logarithmic of the ratio of the
current length K of the sample to the reference value, K0,
e=ln(K/K0). From the analysis of strain induced
crystallization experiments on rubbers it follows that the
strain when the oriented crystalline structure first
appears in the WAXS signal, eFIC, is approximately
equal, or larger, than the magnitude of e* following
from k*(T)/kmax=1/3; see Table 2. This may indicate
that RI is of importance for the formation of the
crystallites in rubber. The variation in magnitudes of
kFIC/kmax for the different experiments is attributed to
the difference in detection limits and measurement time
of synchrotron radiation (Toki et al. 2002; Murakami
et al. 2002) and the device used by Toki et al. (2000).

Numerous experiments have been performed on the
crystallization dynamics during and after uniaxial

extension of PET samples at T=353–363K (which is just
above the glass transition temperature) after different
quenching protocols (Salem 1992a, 1992b, 1998; Gorlier
et al. 2001; Middleton et al. 2001; Marco et al. 2002a,
2002b). In general, the onset of flow induced crystalli-
zation occurs at ��2.5. However, this strain is not
identical to, first, the estimated magnitude from k*(T)
and, second, the strain corresponding to the experi-
mentally measured increase of the RI of the PET chains
(Middleton et al. 2001). This suggests that a critical
orientation of the chain segments initializes the nucle-
ation dynamics (Middleton et al. 2001). In addition to
the experiments mentioned before (Imai et al. 1992,
1993, 1995; Welsh et al. 1998, 2000) this indicates that
the crystallization dynamics of semi-flexible polymers
(PET, PEN, PEEK) may be fundamentally different
from that of flexible polymers (PE, iPP, PB).

Evaluation of the procedures to determine
the flow regime

In the previous section four different procedures have
been applied to determine srep and ss, which in turn have
been used to classify FIC experiments. However, the
final magnitude of srep and ss differ by one or multiple
orders of magnitude. Consequently, this indicates that
different physical processes govern the FIC dynamics.
The current section is solely devoted to a detailed dis-
cussion of the four different procedures to indicate
which one should be used in general.

Discussion of the different procedures to determine
the reptation time and the stretching time

The analysis of the different procedures is based on two
perspectives. First, are srep and ss following from a
specific procedure appropriate to characterize the
ordering of the chains in the HMW tail? Second, is the
magnitude of Derep and Des in quantitative agreement
with that expected from theory?

First we start with the procedure based on the zero
shear rate viscosity, sg

rep, sg
s . From experiments (see, for

example, Struglinski and Graessley 1985, Berger and

Table 2 Details of several experiments, regarding the absolute
Temperature T, NR: natural rubber, SR: synchrotron radiation,
estimated magnitude of the maximum molecular chain stretch kmax,

the Hencky strain eFIC when the crystallinity first appears in the
WAXS pattern and kFIC the associated chain stretch based on the
neo-Hookean theory

Reference Material SR T kmax eFIC kFIC kFIC/kmax

1 Toki et al. (2002) NR Yes 298 6.6 1.4 2.3 0.34
2 Murakami et al. (2002) NR Yes 298 6.6 1.2 2.0 0.30
3 Toki et al. (2000) NR No 298 6.6 1.7 3.2 0.49
4 Toki et al. (2000) IR2000 No 298 7.8 1.8 3.5 0.45
5 Toki et al. (2000) Cariflex No 298 8.1 2.0 4.2 0.52

Fig. 4 Surface plot of the predicted HMW chain stretch by the
extended Pom-Pom model at T=473K. Inflow in the x-direction
and out flow in the y direction and the stagnation point is at
x=0 mm, y=0 mm
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Meissner 1992, Aguliar et al. 2003, Vega et al. 2003) and
theory (Pattamaprom and Larson 2001) it is known that
the magnitude of g0 is primarily related to Mw. Hence,
the magnitude of sg

rep is an average reptation time and
not that of the HMW tail. In addition one is faced with
the somewhat arbitrary choice for Z to determine sg

s ,
using Eq. (6). Finally, the observation that Des<1 for
all shear rates is in disagreement with the argument
that chain stretching governs the formation of the
shish-kebab structure. Hence, this indicates that the
use of sg

rep and sg
s is inappropriate to classify a FIC

experiment.
Second consider the procedure using the average

reptation time from the spectrum of Maxwell modes,
�srep; �ss: Although the resulting magnitude of �srep and �ss
are larger than sg

rep and sg
s equal rheological consider-

ations apply as for sg
rep and sg

s . Hence this procedure
should also not be used to analyze an experiment.

Third, let us discuss the procedure based on the longest
relaxation time from a spectrum of Maxwell models,
sHMW
rep , sHMW

s . In order to determine sHMW
rep one encounters

the following experimental difficulties. First, sHMW
rep can

only be related to the HMW chains provided the storage,
G¢, and loss modulus, G00, are measured in the terminal
regime, where G0 / x2 and G00 / x: However, the termi-
nal regime can not always be reached for iPP (Swartjes
2001; Elmoumni et al. 2003) and PE melts (Kraft et al.
1999) containing long chains. (This problem can be re-
solved by performing creep experiments; Kraft et al. 1999;
Gabriel and Mündstedt 2002.) Second, the contribution
of theHMWtailmay be screened by the remaining part of
the melt (Eder et al. 1989; Suneel et al. 2003; Hepperle
2002). It should be noted that magnitude of srep of the
chains in theHMWtail is reduced through themechanism
of tube dilation and fast Rouse relaxation modes in a
complicated fashion depending of the MWD (Watanabe
1999; Pattamaprom et al. 2000; Pattamaprom andLarson
2001). All these contributions are incorporated, in some
way, in themagnitude of sHMW

rep and it is therefore expected
to be a good estimate for srep of the HMW tail. To
determine sHMW

s one should, in principle, take two steps.
First, correct for the effects of tube dilation and fastRouse
relaxation modes on sHMW

rep in order to determine the

intrinsic reptation time of the HMW tail, i.e., the magni-
tude which follows from Eq. (7). Next, sHMW

s follows
from Eq. (6) for Z=ZHMWwith the knowledge of the
intrinsic reptation time. However, the first step is
difficult to make without the knowledge of the MWD
(Pattamaprom and Larson 2001). Instead, sHMW

s is
estimated directly from Eq. (6) by taking Z ¼ ZW, i.e.,

sHMW
rep

.
sHMW
s ¼ 3ZW . In view of the two steps which

should be taken according to theory one can certainly
question this approach. Alternatively, it can be reasoned
that the quantitative errors made in the individual steps
partly cancel, as discussed before. This is supported by the

observation that the magnitude of sHMW
s is in agreement

with sMWD
s . In summary the magnitude of sHMW

rep is ex-
pected to be a good estimate for srep of the chains in the
HMW tail. Although the procedure to determine sHMW

s is
not free of conceptual problems, they partly cancel in the
final result. Hence, at least for the experiments analyzed
here, it appears that the crude procedure to obtain sHMW

s
gives a reasonable estimate for ss of the HMW tail. This is
supported by the observation that, first, the transition
from the spherulitic to shish-kebab structure matches
with a magnitude of Des�1–10 and, second, that
sHMW
s � sMWD

s . However, whether this observation ap-
plies in general remains to be seen.

Finally, we consider the procedure based on the
MWD, sMWD

rep and sMWD
s . The major advantage is that

the procedure to estimate sMWD
s surpasses the assump-

tions and problems encountered to determine ss from
srep in the other procedures. This follows from the
observation that ss is not affected by the MWD of the
system and follows directly from Eq. (8), provided se
and ZHMW are known. A disadvantage is that the
magnitude of sMWD

rep is expected to be larger compared to

reality, as Eq. (7) does not account for tube dilation and
fast Rouse relaxation modes (Doi and Edwards 1986;
Ketzmerick and Öttinger 1989). Hence, the procedure
based on the MWD should be followed to obtain ss of
the chains in the HMW tail. The preference for sMWD

s is
also supported by the observation that the formation of
the shish-kebab structure correlates with a magnitude of
Des�1–10. This magnitude is in quantitative agreement
with the theoretical consideration, the generally accepted
argument that strong chain stretching governs the for-
mation of the shish-kebab structure as well as with
observations in molecular dynamic simulations (Lavine
et al. 2003).

In conclusion it appears that there is no single pro-
cedure to obtain an accurate estimate of both srep and ss
of the HMW tail. For srep it is most appropriate to take
sHMW
rep (where it should be noted that the contribution of
CCR is not included in the magnitude of sHMW

rep ),
whereas for ss taking sHMW

s is most suitable. Despite the
number of problems encountered in estimating srep and
ss it is encouraging that for Des ¼ sMWD

s _c the transition
from the spherulitic to shish-kebab structure occurs for
Des�1–10. A single value of Des may not be expected for
polydisperse melts in view of the observation that also
the chain stretching dynamics is affected by the MWD,
as discussed above.

‘Universal’ behavior for any procedure
for the reptation time?

In the previous Subsection the different procedures have
been discussed in detail in order to identify which one is
most appropriate to determine srep and ss of the HMW
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tail. However, observation of Table 1 reveals that the
transition from the spherulitic to shish-kebab morphol-
ogy is also observed at approximately identical values of
Derep when, consistently, using sg

rep;�srep; or sHMW
rep . This is

reported previously for a more limited set of three iPP
melts by Elmoumni et al. (2003) and four isotactic
poly(1-butene) melts by Acierno et al. (2003). Is this now
in contradiction with the general belief that the HMW
tail is essential for the FIC dynamics or is this a coin-
cidence? It appears to be a coincidence because of the
following.

The ‘universal’ behavior in terms of Derep following
from sg

rep;�srep or sHMW
rep can be understood from the

observation that for the investigated iPP melts Mw/Mn

is approximately constant and only Mw differs; see
Table 1. This suggests that the MWD of the different
iPP melts are similar in shape and the molecular
weight of all chains in the melt are shifted in magni-
tude. As a consequence the magnitudes of sg

rep;�srep; and
sHMW
rep shift with Mw, but the ratios of the different srep
remain approximately constant. Identical observations
apply to the isotactic poly(1-butene) melts investigated
by Acierno et al. (2003), where one observes that the
ratio of sg

rep

.
sHMW
rep is approximately constant. This

may explain why changes in the crystallization behav-
ior are observed at approximately identical values of
Derep when, consistently, applying sg

rep;�srep; or sHMW
rep .

This procedures may fail when, first, comparing melts
which have an identical Mw but a different shape of
the MWD, or secondly, in investigations where a small
HMW tail is added to a particular melt, as for example
in the experiments of Seki et al. (2002). The procedure
to determine sMWD

s based on the MWD is not sub-
jected to these problems and, in principle, applicable to
any system. In addition such experiments may reveal if
the magnitude of sHMW

s and sMWD
s still coincide, as is

the case for the experiments analyzed in the present
paper.

Conclusion

Four different flow regimes are identified based on the
orientation and stretch of the contour path and the RI of
the polymer segments, respectively, and the associated
influence on the kinetic and thermodynamic contribu-
tion to the flow induced crystallization (FIC) dynamics
is discussed. The analysis of FIC experiments in shear
and extensional flows reported in literature provides
quantitative indications that, first, the HMW chains
govern the FIC dynamics, second, the number density
of spherulites increases for Des<1–10 and, third, the

shish-kebab morphology develops for Des>1–10 based
on sMWD

s . In general, the latter also implies k>k*(T) for
the HMW chains in polydisperse melts, which may
indicate that RI of the chain segments governs the
formation of the shish. These findings are confirmed
quantitatively for different iPP melts analyzed in simple
shear flows, duct flows and by a numerical-experimental
investigation for one particular experiment performed in
a cross-slot flow. Based on the present analysis the
question if the shish-kebab morphology develops in a
complex flow thus reduces to the question if the HMW
chains are subjected to the condition Des>1, based on
sMWD
s , for a sufficiently long time in order to fulfill the
condition k>k*(T).

In the analysis of FIC experiments of polydisperse
melts the determination of srep and ss of the HMW tail
is required. However, different procedures have to be
employed to obtain an estimate of both srep and ss of the
HMW tail, which is an inherent problem for polydis-
perse melts. Nevertheless the observation that the
transition from the spherulitic to shish-kebab structure
corresponds to Des ¼ sMWD

s _c ¼ 1� 10 is encouraging,
given the findings from model predictions that the chain
stretching dynamics of the HMW tail chain is affected by
the MWD in shear flows. Contrary to shear flows the
chain stretching of the HMW tail appears to be less
subjected to the MWD in uniaxial flows. Therefore
experiments in uniaxial flows may have a higher poten-
tial to verify the correlation between chain stretching
and the formation of the shish-kebab structure. In
addition the exact magnitude of k*(T) is not yet resolved
for T close to and below the Tm. Also experiments on
melts with a different MWD may serve as a critical test
to verify the presented theory. In this respect the
knowledge of se and Me can assist to ‘design’ a partic-
ular MWD, or flow field, in order to resolve the influ-
ence of the HMW tail and MWD on the formation of
the shish-kebab structure experimentally.

In summary the primary advantage of the theory is
that it provides quantitative measures which separate the
degree of ordering of the chains in a particular flow field.
Despite difficulties in determining srep and ss of the
HMW tail the comparison with experiments indicate
that it captures the correct trends in a semi-quantitative
manner. Hence, the present theory may serve as a
helpful guideline to perform experiments in the future.
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