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Abstract. Due to their axiomatic foundation and their favorable computational properties convex risk mea-
sures are becoming a powerful tool in financial risk management. In this paper we will review the fundamental
structural concepts of convex risk measures within the framework of convex analysis. Then we will exploit
it for deriving strong duality relations in a generic portfolio optimization context. In particular, the duality
relationship can be used for designing new, efficient approximation algorithms based on Nesterov’s smoothing
techniques for non-smooth convex optimization. Furthermore, the presented concepts enable us to formalize
the notion of flexibility as the (marginal) risk absorption capacity of a technology or (available) resources.

1. Introduction

In their seminal paper Artzner et.al. [ADEH99] presented an axiomatic foundation of
coherent risk measures to quantify and compare uncertain future cash-flows within
financial institutions. Recently, Föllmer et.al. [FS02a] extended the notion of coher-
ent risk measures to convex risk measures. It is evident from the axiomatic structure
referred above that convex analysis plays a crucial role. Indeed, as we will outline in this
paper, convex optimization with its embedded duality is the underlying operational and
computational technique for its applications. This was implicitly addressed by Artzner
et.al. [ADEH99], Delbaen [De00] and Föllmer et.al. [FS02a] in their proofs of the
fundamental representation theorems. But to our knowledge, the fundamental concepts
have never been presented explicitly under, at least from a computational point of view,
“natural" perspective of convex optimization as we will do in this paper for the restricted
but important finite dimensional case. Independently Ruszczyński et.al. [RS04] studied
the intimate relation between convex risk functions and duality structure in topological
vector spaces of measurable functions. Indeed, the spirit of their work is very similar to
ours but they use advanced theory of convex analysis of measurable functions. Restrict-
ing the analysis to the finite dimesional case, the representation results can be derived
by applying elementary concepts of convex analysis based on the impressive work of
R. T. Rockafellar. At the same time, this perspective opens up the computational aspects
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of convex risk measures in portfolio optimization and incidentally, leads to an attractive
economical concept, namely the valuation of flexibility.

In section 2 the axiomatic foundation with the associated representation theorems
due to Artzner et.al. [ADEH99] and Föllmer et.al. [FS02a] will be reviewed in a self
contained manner. From the elementary proofs, which are given in an appendix, one
observes that duality theory of convex optimization is the essence of the representation
theorems of any convex or coherent risk measures. In particular, it enlightens the nontriv-
ial computational task associated with any such risk measure.As prominent examples we
present a convex, generalized version of the popular Conditional Value-at-Risk (CVaR)
(see Rockafellar et.al. [RU02]) with its dual linear programming representation and
discuss the family of entropy-based risk measures.

Having re-established these fundamental representation theorems of risk measures
for the finite dimensional case, we will exploit the revealed duality structure to indicate
computational effective schemes for portfolio optimization in section 3. Our contribu-
tions focuses on a duality analysis of a generic portfolio optimization model. We will
establish a strong duality relationship for the model which incidentally shows that the
generic model falls into a limited but attractive class of optimization models algorithmi-
cally investigated in a recent paper by Nesterov [Ne03a]. As an important example, to
compute CVaR-efficient portfolios in the sense of Markowitz [Ma52], the strong dual-
ity representation can be used to design attractive approximation algorithms which can
handle very large, specially structured problem instances.

On the conceptual side, the generic model built upon the axiomatic framework of
convex risk measures supports the introduction of a novel notion, namely the value of
flexibility, which in this context is defined by the (marginal) risk absorption capacity of a
technology or certain types of (available) resources. This economic topic is addressed in
section 4 and is the applied contribution of our paper. For a real world example, we refer to
electricity production management where this concept was fundamental for establishing
the value of flexibility for a system of hydro power plants (see Doege et.al. [DLSU03]).

2. Convex Risk Measures - An Optimization View

The notion of convex risk measures was introduced by Föllmer et.al. [FS02a]. This sec-
tion contains a review of their fundamental work from an optimization point of view.
Indeed, as already mentioned, we use elementary techniques from convex analysis to
derive the dual representation theorems.

2.1. Convex Risk Measures in Short

Let X denote the set of random variables X : � �→ R of future (discounted) net worth
of a portfolio defined on the probability space (�, F, P). Moreover we define � as a
set of possible scenarios, where we will assume throughout the paper that |�| is finite 1.
One can think of X(ω) as the value of the portfolio given scenario ω ∈ �. Eventually,
only one of the possible scenarios will take place and hence at the outset one is faced

1 W.L.o.G. we will assume P(ω) > 0 for all ω ∈ �.
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with the uncertainty of the outcome. In order to measure and control its associated risk
Artzner et.al. [ADEH99] introduced an axiomatic framework of coherent risk measures
which recently was "generalized" by Föllmer et.al. [FS02a]) to convex risk measures as
follows:

Definition 2.1 (Convex Risk Measures). A mapping ρ : X �→ R is called a convex
risk measure, if and only if it is

– convex: ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ) for λ ∈ [0, 1].
– monotone: X ≤ Y then ρ(X) ≥ ρ(Y ), where X ≤ Y ⇔ X(ω) ≤ Y (ω) for all

ω ∈ �

– translation invariant: if a is constant then ρ(a1 + X) = −a + ρ(X)

Adding to these properties positive homogeneity one obtains:

Definition 2.2 (Coherent Risk Measures). A convex risk measure ρ is called coherent
if in addition

– positive homogeneity: if λ ≥ 0 then ρ(λ · X) = λ · ρ(X)

holds.

Positive homogeneity assumes that the risk grows proportional to the volume of the
portfolio X. Indeed, if liquidity cannot be assured in the market, then the exposure might
grow faster than linear in the volume, a phenomena which among others motivated the
relaxed notion of convex risk measures.

Coherent risk measures received much attention in the quantitative risk management
community partially due to the fact that the most popular risk measure, the so-called
Value-at-Risk (VaR)2, is not coherent (nor convex) which has been shown by Del-
baen [De00]. It is important to note that violating the convexity in this case means that
the subadditivity property

ρ(X + Y ) ≤ ρ(X) + ρ(Y ) (2.1)

does not hold. Hence, if (2.1) is violated, then controlling the risk of subsidies by ρ and
adding them up might not lead to an upper estimate of the total exposures measured
in ρ. (See Acerbi et.al. [AT02a] or Frey et.al. [FM02] for examples of VaR violating
subadditivity.)

The property of translation invariance has been questioned and banked by many
researcher despite its explanation byArtzner et.al. [ADEH99]. Rockafellar et.al. [RUZ02]
stipulated an alternative class of risk functionals, called deviation measures, which are
axiomatically based on X − E(X), and hence cannot be translation invariant. In the
domain of applications of interest to us, we argue that the translation invariance repre-
sents a numeraire for risk capital which leads to important economical interpretations
and hence translation invariance is a crucial requirement.

2 For a definition see equation (2.9) or JP Morgan’s Risk Metrics [JP94]. An excellent overview about the
different risk measures is given by Szegö [Sz02].
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Recently, Artzner et.al. [ADEHK04] extended the axiomatic framework from a one-
period model to a multi-period model wherein the notion of time-consistency is intro-
duced as an additional property to relate risk measures consistently in time (see Cheridito
et.al. [CDK04]).

In what follows, we will restrict to one-period measures and we call a position X

acceptable if it has no risk at all at the end of the time horizon:

Definition 2.3 (Acceptance Set). The acceptance set for any risk measure ρ : X �→ R

is defined by

Aρ := {X ∈ X |ρ(X) ≤ 0}.

Obviously (see Föllmer et.al. [FS02a]), the axioms of ρ imply

Aρ closed, convex, and non-empty (2.2)

X ∈ Aρ, Y ≥ X then Y ∈ Aρ. (2.3)

Conversely, any convex set A �= ∅ that satisfies properties (2.2) and (2.3) induces a
convex risk measure, namely

ρA(X) := inf{ m | m · 1 + X ∈ A},

where one assumes that ρA(0) is bounded from below.

2.2. Representation Theorems and Duality

The famous representation theorem in Artzner et.al. [ADEH99] states that any coherent
risk measure ρ is a worst case over a non-empty convex set of probability measures Q,
called generalized scenarios or test probabilities. Hence, one can compute a coherent
risk measure for a position X by

– calculating, under each test probability Q ∈ Q , the average of the future net worth
−X (loss!) of the position: EQ[−X],

– and taking the maximum of all numbers found ρ(X) = supQ∈Q EQ[−X].

In the finite case this representation theorem follows either from a direct application of
corollary 12.2.1 in Rockafellar [Ro70] or as a corollary of

Theorem 2.1 (Representation Theorem due to Föllmer et.al. [FS02a]). Denote P
the set of all probability measures over �, where we assume |�| to be finite. Any convex
risk measure ρ : X �→ R can be represented in the form

ρ(X) = sup
Q∈P

(EQ[(−X) − α(Q)]) (2.4)

where the “penalty function” α : P �→ (−∞, ∞] is convex and closed.
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The proof, given in Appendix 6, relies on conjugate functions. In particular, from
(6.7)

α(Q) := ρ∗(−Q) ∀Q ∈ P, (2.5)

where ρ∗ denotes the conjugate function of ρ in R
|�|

ρ∗(u) = sup
X∈X

{〈u, X〉 − ρ(X)}, (2.6)

where 〈., .〉 denotes the standard scalar product3. Recently, Ruszczyński et.al. [see theo-
rem 2 in [RS04]] proved a very general version of this dual characterization in topological
vector spaces of measurable functions using convex analysis results from the space of
measurable functions.

From the definition 2.3 of the acceptance set and the dual representation (2.5) one
obtains a characterization of α:

Corollary 2.1 (Penalty Term [FS02b]). Given the acceptance set Aρ the correspond-
ing “penalty term” α in the representation theorem 2.1 is given by

α(Q) = sup
X∈Aρ

{ EQ[−X]}. (2.7)

Again we refer to appendix 6 for the details of the proof.

Remark 2.1. From equation (6.10) we observe that α(Q) is the “normalized” support
function of Aρ . Hence it can be used to reconstruct Aρ using the duality of support and
indicator functions (see theorem 13.2 in Rockafellar [Ro70]).

In the special case of coherent measures, α is, due to homogeneity, an indicator
function (see [FS02b]):

Corollary 2.2 (Representation of Coherent Risk Measure ). ρ is coherent if and only
if the “penalty term” in theorem 2.1 is an indicator function

α(Q) =
{

0, if Q ∈ Q ⊂ P, for Q nonempty, closed and convex
∞, else.

Note that given the dual representation theorem 2.1 the subgradients of ρ are obtained
by solving an optimization problem

∂ρ(X) = conv(−Q|Q ∈ argmax
Q∈P

{EQ[−X] − α(Q)}), (2.8)

where conv denotes the convex hull operator. Certainly, there are instances where due
to the simplicity of α the right term in (2.8) is easy computable as it is the case for the
measures discussed below. But in general, to compute a subgradient of ρ one needs to
solve a (simple) convex optimization problem. This observation will be taken up again
in section 3.

3 Indeed, as a referee pointed out, a general definition of a conjugate in the context of random variables
would use 〈u, X〉 := EP(uT X) instead.
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2.3. Examples of Convex Risk Measures

By theorem 2.1 any convex function defined on P induces a convex risk measure. Hence,
to make this concept meaningful an underlying ecomomic interpretation is needed.
Futhermore, an analytic expression for the penalty term α will enable efficient compu-
tational methods for portfolio optimization as outlined in section 3. Therefore, we will
restrict to those examples with an explicit analytic expression for α4.

The most popular and widely used coherent risk measure is the Conditional Value-
at-Risk (CVaR) as discussed in Rockafellar et.al. [RU02]:

Example 2.1 (Conditional Value at Risk). The Value-at-Risk with confidence level 1 >

β > 0 is defined by

V aRβ = inf {m | P [X + m < 0] ≤ β}. (2.9)

Note: VaR is the (1 − β)-quantile5 of the (loss) distribution (−X).
Given the fact that Conditional Value-at-Risk is defined as the expected tail loss

and based on equation (2.9) one would intuitively define CVaR with confidence level
1 > β > 0 as

CV aRβ(X) = EP[(−X)|(−X) ≥ V aRβ ].

This popular definition of CVaR will in general not result in a coherent measure6. In
order to make CVaR coherent, one needs to care about splitting atoms in discrete dis-
tributions. The following definition based on corollary 2.2 yields not only a coherent
measure but also relates CVaR directly to its computational ease (see Delbaen [De00])

CV aRβ(X) = sup
Q∈Q̂

{EQ[−X]}, (2.10)

where

Q̂ = {Q ∈ P|Q ≤ P

β
}. (2.11)

which is called risk envelope in Rockafellar et.al. [RUZ02].
Hence CVaR is defined by a linear program (2.10) which is efficiently solvable by

ordering the variables according to their efficencies.
By duality of linear programming we obtain the well kown representation of CVaR,

namely

CV aRβ(X) = inf
η

[η + 1

β
EP[(−X − η)+], (2.12)

where (a)+ = max{0, a}7. In the sequel denote ηV aR the optimal solution to (2.12).

4 Alternatively, Föllmer et.al. [FS02a] derive relevant examples of convex risk measures from the accep-
tance set using corollary 2.1.

5 β has to be small in our case.
6 A fact that has been noted by many authors (see e.g. Acerbi et.al. [AT02a], Artzner et.al. [ADEH99],

Rockafellar et.al. [RU00] [RU02]).
7 In Rockafellar et.al. [RU02] the mathematical properties of CVaR have been investigated in a more general

setting - resulting in a coherent CVaR definition as in (2.12) but for general probability measures.
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Due to its economical foundation and its computational ease, CVaR has been applied
in many real world applications - even though it fails to differentiate among the sever-
ity of risky outcomes. To partially overcome this issue, Acerbi [AT02b] introduced a
quantile weighted measure, called spectral measure. Similar in spirit but restricted to
the β-quantile we will now introduce a generalization of CVaR as a convex risk mea-
sure, which partially can cope with extreme risky outcomes and yet keeps the attractive
computational features of CVaR.

Example 2.2 (Generalized CVaR). A slight change of the underlying penalty term in the
definition of CVaR to

αL(Q) = max
ω∈�

{L[Q(ω) − P(ω)

β
]+ },

where L ≥ 0 is a fixed paramter results in an interesting family of convex risk measures.
First one notes that for Q ∈ Q̂, where Q̂ is defined in (2.11), αL(Q) = 0. The

generalized CVaR is defined as

GCV aRβ,L(X) = sup
Q∈P

{EQ[−X] − αL(Q)}. (2.13)

Note that (2.13) is a LP, and by duality of linear programming, the generalized CVaR is
alternatively characterized by its dual

GCV aRβ,L(X) = inf
η

[η + 1

β
EP[(−X − η)+], (2.14)

where η satisfies ∑
ω∈�

(−X(ω) − η)+ ≤ L. (2.15)

Referring to (2.12), one immediately observes, that for L ≥ L∗ := ∑
ω∈�(−X(ω)−

ηV aR)+:

GCV aRβ,L(X) = CV aRβ(X),

where ηV aR is determined by (2.12). On the other hand, for L = 0

GCV aRβ,0(X) = min
ω∈�

[−X(ω)] = MaxLoss(X) (2.16)

and in general, for 0 < L < L∗:

GCV aRβ,L(X) = η(L) + 1

β
EP[(−X − η(L))+], (2.17)

where η(L) is the unique solution to∑
ω∈�

(−X(ω) − η)+ = L.

Furthermore, GCV aRβ,L(·) is a convex, monotone decreasing function in L. In partic-
ular:
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Let L = λ L∗ for some 0 ≤ λ ≤ 1, then

CV aRβ(X) ≤ GCV aRβ,L(X) ≤ CV aRβ(λX) + (1 − λ) MaxLoss(X). (2.18)

λ in (2.18) can be interpreted as the fraction of the acceptable, accumulated capital
at risk in the β-tail of the underlying distribution P . GCVaR encompasses CVaR, yet
eventually, it penalizes large losses in the tail in accordance with L relatively small, i.e.
for λ → 0. Certainly, the strength of discrimination depends on the difference between
MaxLoss(X) and CV aRβ(X).

The next class of convex risk measures shares with GCVaR the property of control-
ling the risk tolerance by a parameter while simplifying its computation. Furthermore,
it generalizes the exponential risk measure introduced by Föllmer et.al.( Example 12 in
[FS02a]).

Example 2.3 (Entropy-based Risk Measures). Let us take for the penalty term the well
known entropy function defined on P by

αµ(Q) =
∑
ω∈�

µ(ω)
Q(ω)

P(ω)
ln

(
Q(ω)

P(ω)

)
. (2.19)

Then, depending on the choice of the weights µ(ω) ≥ 0 interesting families of convex
risk measures are defined by

ρµ = max
Q∈P

[EQ(−X) − (αµ(Q) − αµ(Q0))], (2.20)

where the normalization term αµ(Q0) is specified by

αµ(Q0) = min
Q∈P

αµ(Q). (2.21)

The Karush-Kuhn-Tucker conditions for (2.20) have the form

−P(ω)X(ω) − µ(ω)[1 + ln(Q̃(ω))] = τP(ω), for ω ∈ � (2.22)∑
ω∈�

P(ω)Q̃(ω) = 1, (2.23)

where we have set Q(ω) := P(ω)Q̃(ω).

For any fixed τ the equalities (2.22) are satisfied by the following values:

Q̃(ω, τ) = exp[
−P(ω)[X(ω) + τ ]

µ(ω)
− 1]. (2.24)

Thus, to satisfy the equation (2.23) we have to appropriately choose τ in (2.24):
Existence and uniqueness of such a τ are due to the fact that the left hand side in (2.24)
is larger than 1 for τ small enough and decreases monotonically in τ , eventually for
τ → ∞ it converges to e−1.

We now consider some particular choices of the weights µ:
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– Expected Exponential Loss
Choosing the weights µ(ω) = P(ω) results (see Föllmer et. al. [FS02a]) in

ρE
1 (X) = ln EP[e−X],

as an elementary computation will reveal. Furthermore, multiplying µ by a positive
constant γ yields

ρE
γ (X) = γ ln EP[e− X

γ ] ≥ EP[−X].

This measure is called “entropic risk measure” by Barrieu et.al. [BK04]. In particular,
for γ → 0 the risk goes to MaxLoss(X) and for γ → ∞ to EP[−X] . Futhermore,
ρE

γ (·) is convex in γ ≥ 0 for X fixed and monotone decreasing: For 0 ≤ γ1 ≤ γ2

MaxLoss(X) ≥ ρE
γ1

(X) ≥ ρE
γ2

(X) ≥ EP[−X].

Indeed, the monotonicity in γ is strict unless for the trivial case where X(ω) = c

for all ω ∈ �.
– Risk Adapted Probability

Alternatively, one can choose the weights in (2.19) constant, i.e. µ(ω) = γ . Then,
(2.24) becomes

Q̃
∗(ω) = e

[ −P(ω)[X(ω)+τ∗(γ )]
γ

−1]
, (2.25)

where τ ∗(γ ) is determined by equation (2.23).
It is easy to see from (2.22) and (2.23), that τ ∗(γ ) is a strictly monotone decreasing
function in γ .
Recall that Q

∗(ω) = P(ω)Q̃∗(ω), hence we can see from (2.25) that depending on
the threshold τ ∗(γ ), the probability of high losses are reinforced whenever

P(ω)[−X(ω) − τ ∗(γ )] ≥ γ,

whereas the probability of high gains are exponentially decreased, eventually. As a
matter of fact, without giving the details, we remark that the risk measure defined in
(2.20), now denoted by ργ , becomes for γ = 0:

ρ0(X) = MaxLoss(X)

and for γ → ∞
ρ∞ = EQ0 [−X]

where Q
0 is given in (2.21).

As before, convexity and monotonicity in γ ≥ 0 for X fixed still hold.
For general γ we conclude from (2.22) and (2.23)

ργ (X) = τ ∗ + γ [
∑
ω∈�

Q̃
∗(ω) + α1(Q

0)]

where τ ∗ and Q̃
∗ are defined in (2.25) and Q

0 as above.
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For the standard setting where all scenarios are equally likely, i.e. P(ω) = 1/|�|,
we get an explicit expression for ρ:

ργ (X) = |�|γ ln[
∑
ω∈�

1

|�|e
− X(ω)

|�|γ ]

and Q
0 = P, i.e. ργ (X) = ρE

γ |�|(X).

3. Portfolio Optimization: Some Duality-Relations

In a finite dimensional case α determines the conjugate function of ρ as outlined in
(6.7). If we assume α(Q) to be known, then we can exploit the conjugate property in an
obvious (dual) portfolio optimization framework given below. The specific model used
will yield a strong duality relation which can be exploited in an algorithmic setting for
portfolio optimization. Indeed we argue that for special structured instances Nesterov’s
smoothing method (see [Ne03a]) can be very powerful in this context. Furthermore, the
generic model allows to react specifically on each outcome ω ∈ � by an appropriate
design of actions. It is in this particular framework where we will model the concept of
flexibility in section 4.

3.1. Generic Optimization Models

In the generic portfolio optimization model (3.1) we assume ρ to be any convex risk
measure specified by α as in the representation theorem 2.1. Moreover, we assume that
by a set of variables s, representing the decision variables, one can steer and control the
underlying risky portfolio X in order to minimize its risk:

inf
X∈X ,s∈Rm

ρ(X)

s.t. X ≤ As + b,

s ∈ S

where A ∈ R
|�|×m, b ∈ R

|�|
and S ⊂ R

m nonempty, convex, compact.

(3.1)

Due to the monotonicity of ρ one can assume equality in (3.1). Hence As + b models
explicitly the impact of decision s on the outcome X in the scenario space � and at the
same time stipulates the separation (independence) of S from the space of scenarios.
But note that s impacts each outcome ω ∈ � directly, i.e. one can think of s of being a
policy or strategy designed to react contingent on the outcomes.

Furthermore, the formulation is very general and it encompasses the case X ≤ h(s),
where hi(s) : S �→ R is concave for i = 1, . . . , |�| by introducing |�| auxiliary
variables.

We will derive the Lagrange dual of (3.1) by making use of the conjugate function
ρ∗ as in the proof of theorem 2.1. A simple computation reveals that the Lagrange dual
function of (3.1) is defined on P and given by

g(Q) =
{−α(Q) + EQ[−b] + inf

s∈S
{EQ[−As]}, Q ∈ P

−∞, otherwise,
(3.2)



Convex risk measures for portfolio optimization and concepts of flexibility 551

where α(Q) is the “penalty function” of the convex risk measure ρ as specified in theorem
2.1.

Using the well established weak duality relations of convex optimization, we con-
clude

ρ(X̂) ≥ g(Q̂),

where X̂ is a feasible solution to the primal (3.1) and Q̂ ∈ P a feasible solution to the
dual (3.2).

In addition, under the compactness assumptions on S in the generic problem setting
(3.1) strong duality holds:

Theorem 3.1. Consider the Primal

f ∗ = inf
s∈S

{ sup
Q∈P

{−α(Q) + EQ[−As − b]}} of problem (3.1)

and its Dual

d∗ = sup
Q∈P

{−α(Q) + inf
s∈S

{EQ[−As − b]}}.

If S is nonempty, compact and convex then strong duality holds, i.e. f ∗ = d∗ (and the
optimal value is finite).

Proof. Define

f (s) = sup
Q∈P

{−α(Q) + EQ[−As − b]}, for s ∈ S, (3.3)

and

φ(Q) = −α(Q) + inf
s∈S

{EQ[−As − b]}, for Q ∈ P (3.4)

then we need to show

inf
s∈S

f (s) = sup
Q∈P

φ(Q). (3.5)

By construction weak duality holds, furthermore compactness assures that both optimal
values are finite and attained.

Now, let s∗ ∈ S be an optimal solution for the primal, then by optimality there exists
a subgradient ξ ∈ ∂f (s∗) such that

ξT (s − s∗) ≥ 0, for all s ∈ S. (3.6)

By definiton, equation (3.3) of f using the compactness of P:

ξ ∈ ∂f (s∗) ⇔ ξ = −AT
Q̂, (3.7)

where Q̂ ∈ argmax
Q∈P

{−α(Q) + EQ[−As∗ − b]} (see theorem 23. 2 in [Ro70]).
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Using (3.7) in (3.6) we get

s∗ ∈ argmin
s∈S

{E
Q̂

[−As − b]}. (3.8)

Hence

f (s∗) = −α(Q̂) + {E
Q̂

[−As∗ − b]}
= −α(Q̂) + min

s∈S
{E

Q̂
[−As − b]}, using (3.8)

= φ(Q̂).

Therefore, (3.5) follows now from weak duality.

3.2. Optimization Methods

The strong duality in theorem 3.1 is a special instance of Nesterov’s adjoint model for
applying smooth minimization techniques (see [Ne03a]). In particular, the primal func-
tion f (s) defined in (3.3) is continuously differentiable at any s ∈ S whenever α(Q) is
continuous and strongly convex on P and its gradient is given by

∇f (s) = −AT
Q

∗(s), (3.9)

where Q
∗(s) is the (unique) optimal solution of (3.3). Futhermore, as shown by Nesterov

(theorem 1 in [Ne03a]) the gradient is Lipschitz continuous. In this case, under the rea-
sonable assumptions, that projections onto S can efficiently be computed, the optimal
scheme for smooth optimization as described by Nesterov ( [Ne03a]) can be applied

with an efficency estimate of the order O(

√
L
ε
),where ε is the desired accuracy of the

approximate solution and L is the Lipschitz constant for the gradient. For example, this
assumptions are satisfied by the entropy-based risk measures discussed in section 2.3.

Furthermore, under the reasonable assumption, that the computation of f (s) in (3.3)
and of its dual φ(Q) in (3.4) is simple due to the simple structure of S, and which still
remains true by adding a so-called prox-function for S, then we can apply a smooth
minimization framework to the generally non-smooth function defined in (3.4) to effi-
cently approximate its optimal soution in O( 1

ε
),where ε is the desired accuracy of the

approximate solution (see Nesterov [Ne03a], [Ne03b]). The optimal scheme only needs
gradient computations of the form (3.9) and hence can be carried for very large sample
sizes |�|.

As an illustrative example, consider the computation of CVaR-efficient portfolios
for a simple set S: Assume we are given n financial instruments i, where L(i)(ω), i =
1, . . . , n represents the loss corresponding to instrument i under scenario ω ∈ �. Denote
L = (L(i), . . . , L(n)) ∈ R

|�|×n the corresponding loss-matrix.
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Now, consider the following simple, but not trivial, portfolio optimization problem8:

min
x∈S

CVaRβ(−Ls) (3.10)

where

S := {s ∈ R
n
+ :

n∑
i=1

si = 1, s ≤ s ≤ s̄},

and s and s̄ are respectively lower and upper bounds for the portfolio vector s.
Using the dual representation of CVaR given in (2.10) the optimization problem

(3.10) becomes

min
s∈S

max
Q∈Q̂

EQ[Ls] (3.11)

where Q̂ is defined in (2.11). Applying theorem 3.1, denote

f (s) := max
Q∈Q̂

{EQ[Ls]} and φ(Q) := min
s∈S

{EQ[Ls], } (3.12)

then we can write (3.11) in its primal form, as

min
s∈S

f (s) or its dual, as max
Q∈Q̂

φ(Q) (3.13)

Problem (3.11) has exactly the same structure as the “adjoint” class studied by Nesterov
in [Ne03a] and [Ne03b]. Note that the functions defined in (3.12) are both convex but
non-smooth in s and Q, respectively. Thus, we can apply the optimal gradient scheme for
smooth optimization as described by Nesterov in [Ne03a] to solve the portfolio optimi-
zation problem provided that the simplicity of S allows an efficient computation of the
gradient-projection steps. In particular, using the entropy distance for the prox-function
(see [Ne03a]) one can establish the following rate of convergence

4
√

ln n ln |�|
k + 1

· max
i,ω

|L(i)
ω | (3.14)

Therefore, an absolute accuracy of 1% of CV aRβ in terms of the maximal loss can be
achieved in no more than

400
√

ln n ln |�| (3.15)

gradient iterations.
Currently we are investigating its numerical efficiency in comparison with linear

programming techniques. Indeed, for a huge set of scenarios linear progamming might
fail to work at all. For a detailed description of the method we refer to [El04].

8 Whenever a coherent risk measure is specified by an indicator function over a polytope in P and further-
more the set S is polyhedral as well, then by duality of linear programming the primal (dual) is an instance
of a linear program, as shown for the CVaR in (2.12). In [RU00] a similar setting is used for approximating
CVaR-efficient portfolios in a general context of risk measures as defined in [ADEH99] using Monte-Carlo
sampling.
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4. Value of Flexibility

As mentioned before, the generic portfolio model (3.1) is formulated to encompass sit-
uations, where the particular choice of policy s has an effect on X(ω) for each scenario
ω ∈ �. Hence the model encompasses decision situations contingent to (uncertain)
outcomes. In other words, (3.1) models the ability of an economic system to react on
unexpected changes in order to limit the associated threat of losses. Such abilities are
summarized under the term system flexibility. In what follows we argue that the generic
portfolio model (3.1) is an appropriate setting for formalizing and quantifying this else-
where rather vague notion (see Vollert [Vo03] for a in-depth discussion).

In the framework presented here, the notion of risk is specified in definition 2.1.
In this axiomatic foundation, risk reduction is postulated in the translation invariance
property of ρ, namely if a is constant then

ρ(a1 + X) = −a + ρ(X), (4.1)

i.e. by adding (risk-free capital) a to the cash-flow X, the risk is reduced by exactly
the same amount (see definition 2.1).

We will use property (4.1) of ρ to derive the value of system flexibility in the fol-
lowing way:

Consider the model (3.1) and interpret its feasibility set S (or part of it) as a domain
of flexibility to hedge against adverse outcomes X(ω). In this context we think of s of
being a policy or strategy designed to react contingent to the outcomes ω ∈ �, hence as
flexible as possible.

Let Ŝ ⊃ S, which we will interpret as enhancing the underlying system flexibility.
What is this enhancement worth?

Definition 4.1 (Value of Flexibility). Consider problem (3.1) and let Ŝ ⊃ S be given.
Then the reduction in the risk measure ρ will be called the value of flexibility of Ŝ at S:

V (Ŝ|S) := ρ̂(S) − ρ̂(Ŝ) (4.2)

where ρ̂(S), ρ̂(Ŝ) denote the “corresponding” optimal values of (3.1).

Note that in this definition we assume that the (additional) flexibility is optimally
exercised, i.e. that a change in strategy might take place.

In accordance with the translation invariance property (4.1) of convex risk measures,
the value of flexibility can directly be linked to capital or cash equivalent, thus, it is com-
parable to the amount of risk-free capital needed to reduce the risk by the same amount
V (Ŝ|S). Therefore, the value (4.2) has an attractive ecomomic interpretation which rests
on the axiomatic foundation of risk. In particular, if the investment capital needed to
enhance S to Ŝ is less than V (Ŝ|S) than such an investment is attractive, since it is more
profitable than an investment in the risk-free market.

In special settings such as

S(y) = {s ∈ S∗|wT s ≤ y}, where S∗ is closed and convex (4.3)

the marginal value of flexibility is given by the optimal dual variable (shadow price)
associated with the single constraint wT s ≤ y in its dual formulation: Without loss
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of generality, we will assume throughout that there exists y ∈ R with S(y) �= ∅ and
compact. Then we say y ∈ R is feasible if and only if S(y) �= ∅. For y feasible, denote

ρ̂(y) = inf
s∈S(y)

{ sup
Q∈P

{−α(Q) + EQ[−As − b]}} (4.4)

As it is well known, ρ̂(y) is a closed, convex function in y on its domain of feasibility
(which is an interval of the form [a, ∞)). Let y0 ∈ R be feasible and y > y0 then we
consider the directional derivative of ρ̂ at y0 in direction y − y0 denoted by

ρ̂′(y0; y − y0).

As is shown in Rockafellar (see theorem 23. 1 in [Ro70]) , directional derivatives always
exist and they are positive homogenous. We denote the normalized directional derivative
by

ρ̂′(y0; 1) = ρ̂′(y0; y − y0)

(y − y0)
,

which is independent on the particular choice of y > y0. Note that in this particular set-
ting, the directional derivatives coincide with the right derivative of the convex function
ρ̂(y) at y0 (see Rockafellar [Ro70]). This observation justifies the following definition:

Definition 4.2 (Marginal Value of Flexibility). Given y0 with S(y0) nonempty then the
marginal value of flexibility of S(.) at y0 is defined by

−ρ̂′(y0; 1) (4.5)

where ρ̂(.) is defined in (4.4).

Note that definition 4.2 assures that the marginal value of flexibility is always nonnega-
tive for y0 feasible.

Proposition 4.1 (Marginal Value of Flexibility). Assume the dual problem (3.4) given
S(y0) as specified in (4.3) is feasible and has a unique solution Q

∗, and denote ρ̂(y0)

the corresponding optimal primal value of (4.4). Consider the problem

inf
s∈S(y0)={s∈S∗|wT s≤y0}

{EQ∗ [−As]}. (4.6)

Then there exists a Kuhn-Tucker multiplier λ∗(y0) ≥ 0 with

inf
s∈S∗(EQ∗ [−As] + λ∗(y0)(w

T s − y0)) = inf
s∈S(y0)

{EQ∗ [−As]} (4.7)

If λ∗(y0) is unique, then λ∗(y0) corresponds to the marginal value of flexibility of
S(.) at y0.
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Proof. The existence of a Kuhn-Tucker vector for (4.7) given that y0 is feasible follows
from strong Lagrange-duality for the problem

inf
s∈S(y0)

{E∗
Q

[−As]]} = sup
λ≥0

{−λy0 + inf
s∈S∗{EQ∗ [−As] + λwT s}}, (4.8)

using the special partial affine structure of S(y0) and its compactness as specified in
(4.3). Denote ρ̂(y0) the corresponding optimal primal value of (4.4) then by theorem 3.1

ρ̂(y0) = sup
Q∈P, λ≥0

{−α(Q) − λy0 + inf
s∈S∗{EQ[−As] + λwT s}}. (4.9)

Using theorem 29.1 in Rockafellar [Ro70] and the fact that for y0 feasible the primal
is finite and Kuhn-Tucker multiplier exist,

∂ρ̂(y0) = {−λ | (Q, λ) ∈ argmax
Q∈P,λ≥0

{−α(Q) − λy0 + inf
s∈S∗{EQ[−As] + λwT s}}. (4.10)

Hence the second part of the statement follows from definition 4.2 and the assumed
uniqueness of the Kuhn-Tucker vector in (4.10).

Remark 4.1. Note that from (4.10) the value of flexibility in the degenerate case is given
by the smallest value of the Lagrange-multiplier λ specified in (4.10).

The reader is referred to Doege et.al. [DLSU03] for a real world application of this
concept in the energy market, where the value of flexibility for a (virtual) hydro storage
plant was established.

5. Conclusion

In this paper the recent axiomatic concepts of convex risk measures in finite dimensional
spaces were discussed in the framework of convex analysis and conjugate functions.
Indeed, exploiting the underlying structure for portfolio optimization reveals a strong
duality relationship which can be used in numerical methods. Furthermore, we showed
that the framework allows an operational definition of the value of flexibility, a hidden
issue which is present in many domains of portfolio optimization. In particular, under-
standing the price of flexibility might support the design and valuation of contracts where
flexibility is either bought or sold in order to actively manage risk.

6. Appendix

The appendix contains all proofs of section 2.2 in a self-contained manner using a con-
vex analysis in R

N . But we note, that most of the results can be stated in more abstract
spaces as has been done in [De00], and more recently in [RS04] using convex analysis
in topological vector spaces of measurable functions.

For our purposes, it suffices to concentrate on a finite dimensional scenario space �

where numerical computation takes place.
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Proof (Theorem 2.1). The proof relies on conjugate functions.
Given the representation (2.4) it is straightforward to show that ρ is a convex risk

measure.
Now assume ρ to be a convex risk measure. The conjugate function ρ∗ is defined

as

ρ∗(u) = sup
X∈X

{uT X − ρ(X)}. (6.1)

Making use of the translation invariance property of ρ, i. e. adding to a fixed portfolio
X a constant term a ∈ R leads to

ρ∗(u) ≥ sup
X̃∈X

{uT X̃ − ρ(X̃)}, (6.2)

where X̃ := X + a1:

ρ∗(u) ≥ sup
a

{uT (X + a1) − ρ(X + a1)} (6.3)

= sup
a

{a(uT 1 + 1)} + {uT X − ρ(X)}. (6.4)

The first addend is only bounded if uT 1 = −1, hence this gives a necessary condition
for ρ∗(u) to be finite.

Now, consider an arbitrary but fixed X ≥ 0, then for any λ ≥ 0 λX ≥ 0 and the
monotonicity property yields ρ(λX) ≤ ρ(0).

Therefore

ρ∗(u) ≥ sup
λ≥0

{uT (λX) − ρ(λX)} (6.5)

≥ sup
λ≥0

{uT (λX)} − ρ(0). (6.6)

Again the conjugate ρ∗(u) can only be finite if uT X ≤ 0, ∀X ≥ 0, therefore u ≤ 0.
Summing up: the conjugate ρ∗ reduces to

ρ∗(u) =
{

sup
X∈X

{uT X − ρ(X)} for uT 1 = −1 and u ≤ 0

∞ otherwise.

Now define

α(Q) := ρ∗(−Q) ∀Q ∈ P, (6.7)

and using the fact that the conjugate of the conjugate of a closed convex function is the
original function (see theorem 12.2 in [Ro70]) :

(ρ∗)∗(X) = ρ(X).

One obtains

(ρ∗)∗(X) = sup
u

{XT u − ρ∗(u)}. (6.8)
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Therefore (6.7) yields

ρ(X) = (ρ∗)∗(X) = sup
Q∈P

{EQ[−X] − α(Q)}. (6.9)

Proof (Corollary 2.1). Using equation (6.7) for the “penalty term” it remains to be shown
that for any u ≤ 0 with uT 1 = −1:

sup
X∈X

{uT X − ρ(X)} = sup
X∈Aρ

{uT X}. (6.10)

By definition 2.3 for all X ∈ Aρ : uT X − ρ(X) ≥ uT X and ρ(X) ≤ 0. Hence

ρ∗(u) ≥ sup
X∈Aρ

{uT X − ρ(X)} ≥ sup
X∈Aρ

{uT X}. (6.11)

To prove (6.10) we assume by contradiction that ∃u with uT 1 = −1 and u ≤ 0 such that

ρ∗(u) > sup
X∈Aρ

{uT X}. (6.12)

Hence there exists Y ∈ X such that

uT Y − ρ(Y ) > uT X for all X ∈ Aρ. (6.13)

Using the fact that (Y + ρ(Y )1) ∈ Aρ we obtain

uT Y − ρ(Y ) > uT [Y + 1ρ(Y )]

= uT Y + ρ(Y ) uT 1︸︷︷︸
=−1

= uT Y − ρ(Y )

which yields a contradiction.

References

[AT02a] Acerbi, C., Tasche, D.: On the coherence of expected shortfall. In: Szegö, G. (Ed.), “Beyond
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