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Abstract. Many natural and social systems are characterized by bursty dynamics, for which past events
trigger future activity. These systems can be modelled by so-called self-excited Hawkes conditional Poisson
processes. It is generally assumed that all events have similar triggering abilities. However, some systems
exhibit heterogeneity and clusters with possibly different intra- and inter-triggering, which can be accounted
for by generalization into the “multivariate” self-excited Hawkes conditional Poisson processes. We develop
the general formalism of the multivariate moment generating function for the cumulative number of first-
generation and of all generation events triggered by a given mother event (the “shock”) as a function of
the current time t. This corresponds to studying the response function of the process. A variety of different
systems have been analyzed. In particular, for systems in which triggering between events of different
types proceeds through a one-dimension directed or symmetric chain of influence in type space, we report
a novel hierarchy of intermediate asymptotic power law decays ∼ 1/t1−(m+1)θ of the rate of triggered
events as a function of the distance m of the events to the initial shock in the type space, where 0 < θ < 1
for the relevant long-memory processes characterizing many natural and social systems. The richness of
the generated time dynamics comes from the cascades of intermediate events of possibly different kinds,
unfolding via random changes of types genealogy.

1 Introduction

We study a class of point processes that was introduced
by Hawkes in 1971 [1–4]. It is much richer and relevant
to most natural and social systems than standard point
processes [5–10], because it describes “self-excited” pro-
cesses. This term means that the past events have the
ability to trigger future events, i.e., the intensity λ(t|Ht)
(conditional mean instantaneous rate) of the point pro-
cess is a function of past events, being therefore non-
markovian. Many works have been performed to char-
acterize the statistical and dynamical properties of this
class of models, with applications ranging from geophys-
ical [11–16], medical [17] to financial systems, with ap-
plications to Value-at-Risk modeling [18], high-frequency
price processes [19], portfolio credit risks [20], cascades of
corporate defaults [21], financial contagion [22], and yield
curve dynamics [23].

However, in reality, in many systems, events come in
different types with possibly different properties, while
keeping a degree of mutual inter-excitations. Indeed,
types of events and their triggering effects vary with
the conditions under which they have initiated: earth-
quakes and aftershocks are partitioned in different tectonic
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regions [24], financial volatility bursts occur at given time
periods on some particular classes of assets [25], with loose
or no influence on others, and information and memes
might percolate in social media and influence variously
online communities [26,27]. However, the widely studied
mono-variate approach does not capture the hierarchy
of different interactions between plates, assets and social
communities, because it assumes that all events are of the
same type.

To motivate the relevance of the multivariate version
of the self-excited Hawkes conditional Poisson processes,
we present a concrete example, namely the dynamics of
open source software developments. Open source software
(OSS) is a paramount and reproducible example of collec-
tive action [28] with lots of developers contributing source
code over generally very long time periods. As in many –
if not all – human systems, OSS exhibits bursty dynamics
of contributions at various coarse-grained levels. Figure 1
shows some example of the dynamics of contributions at
the developer level over approximately two years, which
reveals bursty as well as some partial synchronization of
actions between some developers.

It is essential to note that the community of each OSS
project is very heterogeneous. There exists a hierarchy of
clusters in such social networks [29] so that (i) developers
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Fig. 1. Typical time series of the activities of developers quan-
tified by the (normalized) number of commits per day taken
for the Eclipse Project. Each line shows the activity of one de-
veloper over approximately two years. Simple visual inspection
shows the presence of coherent dynamics, spiky dynamics and
clustering of activities between developers.

specialize horizontally and vertically [30] according to
their respective motivations [31]; and (ii) the modular
structure of source code [32,33] further constraints and
propagates interactions depending on the centrality of a
component [34,35].

Therefore, observed social networks in OSS are more
the result of various levels of interaction between develop-
ers constrained by their motivations, programming skills
and expertise, and the structure of the code itself. For
these reasons, two developers in a same project might
never interact. A contrario, one developer (resp. a group
of developers) might change the code in a way that obliges
all other developers to make changes to their own code.
Moreover, a developer might only make changes following
others changes (e.g. debugger).

Figure 2 illustrates the dynamics of interaction be-
tween developers for a file in Mozilla, which has been
changed regularly over time. The scatter plot shows the
number of commits per 14 days (disk area) by devel-
oper (ordered by seniority on the ordinate axis) and as
a function of time (on the abscissa). Figure 2 clearly ex-
hibits clustering in these different dimensions: commits
are bursty over time as a result of long memory pro-
cesses [36–38], and developers coordinate to change source
code files. Moreover, it appears that developers cluster
by seniority. Similarly, Figure 3 presents the dynamics of
changes for one developer in multiple files. While the pat-
terns are slightly different in details, clustering and long
memory processes occur as well.

Fig. 2. (Color online) Scatter plot of the activities of devel-
opers over time for one single file in the Mozilla Project. This
example is similar to thousands of files found in many open
source projects. On the ordinate axis, developers are indexed
by their level of seniority (developer #1 is the most senior).
The area of each circle shows the number of times this file
has been modified by a single developer over a given period
(here time is binned by periods of 14 days). The green squares
show the commits of the most active developer for this file. On
the one hand, commit activity exhibits (i) long memory pro-
cesses; (ii) triggering within developer’s activity; (iii) between
developers; and (iv) between groups of developers (generally
clustered by seniority). On the other hand, many developers
remain marginally or completely absent from the development
of a specific part of the source code.

Figures 1–3 illustrate that the dynamics of open source
software development occurs by interactions between de-
velopers at many different levels with various interaction
strengths that result from different levels of involvement,
programming skills, areas of expertise and interest, and
the degree of advancement of the project. Also, as a re-
sult of the structure of the system itself, building blocks
(modules) are either highly central with critical implica-
tions when changed, or peripheral with less implications.
These categories form clusters of developers, which inter-
act with various triggering characteristics. While trigger-
ing within one cluster might be high due to homogene-
ity (e.g. people talk the same language, know each other,
trust between actors has developed), triggering between
clusters might be smaller or higher, mono-directional or
bi-directional, etc. These observations are summarized in
the conceptual cartoon shown in Figure 4 in which the
tent-like patterns represent the same-developer endoge-
nous triggering while the arrows indicate the possibility
for mutual triggering between different developers. This is
precisely the co-existence of the triggering of the coding
activities at the intra-developer and inter-developer lev-
els that the present multivariate Hawkes process aims at
modeling. This co-existence of intra- and inter-excitations
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Fig. 3. (Color online) Scatter plot of the activities of files over
time for the developer who contributed the most for the file
used in Figure 2 (presented as blue squares here). This example
is similar to the behaviors observed for hundreds of developers
in many open source projects. On the ordinate axis, files are
indexed by their creation date (file #1 is the oldest). The area
of each circle shows the number of times a file has been modified
over a given period (here time is binned by periods of 14 days).
Similarly to Figure 2, the activities of developers exhibit clear
clustering and memory effects.

illustrated in Figure 4 is generic to the many systems men-
tioned above and many more.

These observations suggest that multivariate self-
excited point processes, which extend the class of mono-
variate self-excited point processes, provide an adequate
class of models to describe the self-excitation (or intra-
triggering) as well as the mutual influences or triggering
between different types of events that occur in many nat-
ural and social systems. Indeed, they capture exogenous
shocks, inter- and intra-triggering endogenous shocks with
memory, as usually observed. Actually, the generalization
to multivariate self-excited point processes was mentioned
by Hawkes himself in his first paper [1], but the full rele-
vance of this class of models has only been recently appre-
ciated [22,39]. In the context of open source software, but
not only there, multivariate self-excited point processes
offer a convenient tool to reconstruct and to predict so-
cial and technical interactions between developers over the
course of OSS projects.

The organization of the paper proceeds as follows. Sec-
tion 2 first recalls the definition of the monovariate Hawkes
process and then presents the general multivariate self-
exciting Hawkes processes. Section 3 develops the formal-
ism of the multivariate moment generating function for the
cumulative number of first-generation and of all genera-
tion events triggered by a given mother event as a function
of the current time t. It also provides the general relations
to obtain the mean numbers of events triggered over all
generations by a given event as a function of time. Sec-
tion 4 analyzes a system in which the intra-type triggering

Fig. 4. (Color online) Conceptual representation of intra-
developer and inter-developer activity triggering. The tent-like
patterns represent the same-developer endogenous triggering
while the arrows indicate the possibility for mutual triggering
between different developers.

processes are all of the same efficiency while all inter-type
triggering processes have themselves the same efficiency
between themselves but in general weaker than the intra-
type triggering processes. We derive the time-dependence
of the rates of events triggered from a given shock for dis-
tributions of waiting times of first-generation events that
have either exponential or power law tails. Section 5 ana-
lyzes a system in which triggering between events of dif-
ferent types proceeds through a one-dimension directed
chain of influence in type space. We uncover a novel hi-
erarchy of intermediate asymptotic power law decays of
the rate of triggered events as a function of the distance
of the events to the initial shock in the space of types.
Section 6 generalizes the results of Section 5 by studying
a system in which triggering between events of different
types proceeds through a one-dimension symmetric chain
of influences in type space. Section 7 concludes and two
Appendices give proofs and details of the key results of
the paper.

2 Definitions and notations
for the multivariate Hawkes processes

2.1 Monovariate Hawkes processes

Self-excited conditional Poisson processes generalize the
cluster models by allowing each event, including cluster
members, i.e., aftershocks, to trigger their own events
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according to some memory kernel h(t − ti):

λ(t|Ht, Θ) = λc(t) +
∑

i|ti<t

f(t − ti), (1)

where the history Ht = {ti}1≤i≤it, tit≤t<tit+1 includes all
events that occurred before the present time t and the
sum in expression (1) runs over all past triggered events.
The set of parameters is denoted by the symbol Θ. The
term λc(t) means that there are some external background
sources occurring according to a Poisson process with in-
tensity λc(t), which may be a function of time, but all
other events can be both triggered by previous events and
can themselves trigger their offsprings. This gives rise to
the existence of many generations of events.

Introducing “marks” or characteristics for each event
leads to a first multidimensional extension of the self-
excited process (1). The generalization consists in asso-
ciating with each event some marks (possible multiple
traits), drawn from some distribution p(m), usually cho-
sen invariant as a function of time:

λ(t, M |Ht, Θ) = p(M)

⎛

⎝λc(t) +
∑

i|ti<t

f(t − ti, Mi)

⎞

⎠, (2)

where the mark Mi of a given previous event now controls
the shape and properties of the triggering kernel describ-
ing the future offsprings of that event i. The history now
consists in the set of occurrence times of each triggered
event and their marks: Ht = {ti, Mi}1≤i≤it, tit≤t<tit+1 .
The first factor p(M) in the r.h.s. of expression (2)
writes that the marks of triggered events are drawn from
the distribution p(M), independently of their generation
and waiting times. This is a simplifying specification,
which can be relaxed. Inclusion of a spatial kernel to
describe how distance impacts triggering efficiency is
straightforward.

A particularly well-studied specification of this
class of marked self-excited point process is the
so-called Epidemic-Type-Aftershock-Sequence (ETAS)
model [12,40]1:

λ(t, M |Ht, Θ) = p(M)

⎛

⎝λc +
∑

i|ti<t

kea(Mi−M0)

(t − ti + c)1+θ

⎞

⎠, (3)

1 This paper offers a continuum-state critical branching pro-
cess which develops along the time axis. The continuum-state
means that earthquake events are infinitesimal and to obtain
‘real’ earthquakes, each realization is processed through a spe-
cial filter. This paper can however be considered as an ancestor
to Ogata’s ETAS model [12], because it has the same branching
structure of jumps and power law triggering function. Apart
from being used differently (Kagan and Knopoff [40] to gen-
erate one complex earthquake and Ogata [12] to generate a
complex sequence of aftershocks triggered by a main earth-
quake), the only real difference between the two models is the
regularization of the memory kernel at short times, which has
no significant impact.

where p(m) is given by the Gutenberg-Richter law, which
describes the probability density function (pdf) of earth-
quakes of a given energy E, as being a power law, which
translates into an exponential function p(M) ∼ e−bM of
the log-energy scales inscribed in magnitudes M ’s. The
memory kernel is often chosen as the power law (called the
Omori law) with exponent 1 + θ and usually 0 ≤ θ < 1.
The time constant c ensures finiteness of the triggering
rate immediately following any event. Other forms with
shorter memory, as the exponential, are also common.
Each event (of magnitude M � M0) triggers other events
with a rate ∼eaM , which defines the so-called fertility or
productivity law. The lower magnitude cut-off M0 is such
that events with marks smaller than M0 do not generate
offsprings. This is necessary to make the theory conver-
gent and well-defined, otherwise the crowd of small events
may actually dominate [41,42]. The constant k controls
the overall productivity law and thus the average branch-
ing ratio defined by expression (4) below. The set of pa-
rameters is Θ = {b, λc, k, a, M0, c, θ}.

From a theoretical point of view, the Hawkes mod-
els with marks has been studied in essentially two
directions: (i) statistical estimations of its parameters
with corresponding residual analysis as goodness of
fits [43–52]; (ii) statistical properties of its space-time
dynamics [11,16,53–62].

The advantage of the self-excited conditional Hawkes
process is to provide a very parsimonious description of
the complex spatio-temporal organization of systems char-
acterized by self-excited bursts of events, without the
need to invoke ingredients other than the generally well-
documented stylized facts on the distribution of event
sizes, the temporal “Omori law” for the waiting time be-
fore excitation of a new event and the productivity law
controlling the number of triggered events per initiator.

Self-excited models of point processes with additive
structure of their intensity on past events as in (2)
and (3) [4] make them part of the general family of branch-
ing processes [63]. The crucial parameter is then the av-
erage branching ratio n, defined as the mean number of
events of first generation triggered per event. Using the
notation of expression (3), the average branching ratio is
given by

n =
k

θcθ

b

b − a
. (4)

Depending on applications, the branching ratio n can vary
with time, from location to location and from type to type
(as we shall see below for the multivariate generalization).
The branching ratio provides a diagnostic of the suscepti-
bility of the system to trigger activity in the presence of
some exogenous nucleating events.

Precise analytical results and numerical simulations
show the existence of three time-dependent regimes, de-
pending on the “branching ratio” n and on the sign of θ.
This classification is valid for the range of parameters
a < b. When the productivity exponent a is larger than the
exponent b of the Gutenberg-Richter law, formula (4) does
not make sense anymore, which reflects the existence of
an explosive regime associated with stochastic finite-time
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singularities [61], a regime that we do not consider further
below, but which is relevant to describe the accelerated
damage processes leading to global systemic failures in
possibly many different types of systems [64].

1. For n < 1 (sub-critical regime), the rate of events trig-
gered by a given shock decays according to an effective
Omori power law ∼1/tp, characterized by a crossover
from an Omori exponent p = 1−θ for t < t∗ to a larger
exponent p = 1 + θ for t > t∗ [11], where t∗ is a char-
acteristic time t∗ � c/(1 − n)1/θ, which is controlled
by the distance of n to 1.

2. For n > 1 and θ > 0 (super-critical regime), one finds
a transition from an Omori decay law with exponent
p = 1 − θ at early times since the mainshock to an
explosive exponential increase of the activity rate at
times t > t∗ � c/(n − 1)1/θ [11,65].

3. In the case θ < 0, there is a transition from an Omori
law with exponent 1 − |θ| similar to the local law, to
an exponential increase at large times, with a crossover
time τ different from the characteristic time t∗ found
in the case θ > 0.

We refer in particular to reference [17] for a short review
of the main results concerning the statistical properties
of the space-time dynamics of self-excited marked Hawkes
conditional Poisson processes.

2.2 Multivariate Hawkes processes

The Multivariate Hawkes Process generalizes expres-
sions (2) and (3) into the following general form for the
conditional Poisson intensity for an event of type j among
a set of m possible types (see the document [66] for an
extensive review):

λj(t|Ht) =

λ0
j (t) +

m∑

k=1

Λkj

∫

(−∞,t)×R
fk,j(t − s)gk(x)Nk(ds × dx),

(5)

where Ht denotes the whole past history up to time t, λ0
j

is the rate of spontaneous (exogenous) events of type j,
i.e., the sources or immigrants of type j, Λkj is the (k, j)’s
element of the matrix of coupling between the different
types which quantifies the ability of a type k-event to
trigger a type j-event. Specifically, the value of an ele-
ment Λkj is just the average number of first-generation
events of type j triggered by an event of type k. This gen-
eralizes the branching ratio n defined by (4). The mem-
ory kernel fk,j(t − s) gives the probability that an event
of type k that occurred at time s < t will trigger an
event of type j at time t. The function fk,j(t − s) is
nothing but the distribution of waiting times t − s be-
tween the impulse of event k which impacted the sys-
tem at some time s and the occurrence of an event of
type j at time t. The fertility (or productivity) law gk(x)
of events of type k with mark x quantifies the total average

number of first-generation events of any type triggered by
an event of type k. We have used the standard notation∫
(−∞,t)×R f(t, x)N(ds × dx) :=

∑
i|ti<t f(ti, xi).

The matrix Λkj embodies both the topology of the
network of interactions between different types, and the
coupling strength between elements. In particular, Λkj in-
cludes the information contained on the adjacency matrix
of the underlying network. Analogous to the condition
n < 1 (subcritical regime) for the stability and station-
arity of the monovariate Hawkes process, the condition
for the existence and stationarity of the process defined
by (5) is that the spectral radius of the matrix Λkj be
less than 1. Recall that the spectral radius of a matrix is
nothing but its largest eigenvalue.

To our knowledge, all existing works on the multi-
variate Hawkes processes assume that the first moment
of the memory kernel fk,j(t − s) exists. In the notations
analogous to those of equation (3), if the memory kernels
have an Omori like power law tail ∼1/t1+θ, this first-order
moment condition imposes that θ > 1. But, this is not
the correct regime of parameters for earthquakes as well
as for other social epidemic processes, which have been
shown to be characterized by long-memory processes with
0 < θ < 1 [67–70]. This regime 0 < θ < 1 leading to
infinite first-order moments leads to very rich new scal-
ing behaviors in the multivariable case, as we are going to
show below. Actually, we will derive the remarkable results
that multivariate Hawkes processes can be characterized
by a hierarchy of dynamics with different exponents, all
related to the fundamental Omori law for first generation
waiting times.

3 Temporal multivariate moment
generating function (MGF)

While the technology of moment generating functions is
well-known for general branching processes [7,63], the con-
tribution of this section is to make explicit how to apply
it for the temporal properties of the multivariate Hawkes
process.

3.1 Moment generating function for the cumulative
number of first-generation events triggered
until time t

Among the m types of events, consider the kth
type and its first generation offsprings. Let us denote
Rk,1

1 (t), Rk,2
1 (t), . . . , Rk,m

1 (t), the cumulative number of
“daughter” events of first generation of type 1, 2, . . . , m
generated by this “mother” event of type k from time 0
until time t. With these notations, the moment generating
function (MGF) of all events of first generation that are
triggered by a mother event of type k until time t reads

Ak
1(y; t) := E

[
m∏

s=1

y
Rk,s

1 (t)
s

]
, (6)
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where E [X ] denotes the average of X over all possible sta-
tistical realizations. We have introduced the vector nota-
tion y ≡ (y1, y2, . . . , ym). We shall also need the definition
of the MGF Ak

1(y) defined by

Ak
1(y) := E

[
m∏

s=1

y
Rk,s

1
s

]
, (7)

where

Rk,1
1 = limt→+∞Rk,1

1 (t),

Rk,2
1 = limt→+∞Rk,2

1 (t), . . . , Rk,m
1 = limt→+∞Rk,m

1 (t)

are the cumulative number of “daughter” events of first
generation of type 1, 2, . . . , m generated by the “mother”
event of type k over all times. One may rewrite this func-
tion in probabilistic form

Ak
1(y) :=

∞∑

r1=0

. . .

∞∑

rm=0

Pk(r1, . . . , rm)
m∏

s=1

yrs
s , (8)

where Pk(r1, . . . , rm) is the probability that the mother
event of type k generates Rk,1 = r1 first-generation events
of type 1, Rk,2 = r2 first-generation events of type 2, and
so on.

The events are assumed to occur after waiting times
between the mother event and their occurrences that are
mutually statistically independent and characterized by
the probability density functions (pdf) {fk,s(t)}, where all
fk,s(t) ≡ 0 for t < 0. Let us denote Pk(d1, d2, . . . , dm; t)
the probability that the cumulative numbers {Rk,s

1 (t)} up
to time t of first-generation events that have been trig-
gered by the mother event of type k are equal to

Rk,1
1 (t) = d1, Rk,2

1 (t) = d2, . . . , Rk,m
1 (t) = dm. (9)

Let us relate this probability Pk(d1, d2, . . . , dm; t) to that,
denoted Pk(d1, d2, . . . , dm; t|r1, r2, . . . , rm), obtained un-
der the additional condition that the total numbers of
first-generation events that have been triggered by the
mother event of type k over the whole time interval
t → ∞ are fixed at the values {r1, r2, . . . , rm}. Obviously,
Pk(d1, d2, . . . , dm; t|r1, r2, . . . , rm) is given by a product of
binomial distributions

Pk(d1, d2, . . . , dm; t|r1, r2, . . . , rm) =
m∏

s=1

(
rs

ds

)
μds

k,s(t)[1 − μk,s(t)]rs−ds ,

0 � d1 � r1, . . . , 0 � dm � rm, (10)

where

μk,s(t) =
∫ t

0

fk,s(t′)dt′. (11)

Knowing the conditional probabilities Pk(d1, d2, . . . , dm;
t|r1, r2, . . . , rm) (10), one can calculate their unconditional

counterparts using the following relation:

Pk(d1, d2, . . . , dm; t) =
∞∑

r1=d1

. . .

∞∑

rm=dm

Pk(d1, d2, . . . , dm; t|r1, r2, . . . , rm)

× Pk(r1, r2, . . . , rm), (12)

where Pk(r1, r2, . . . , rm) is the probability that the total
numbers of first-generation events that have been trig-
gered by the mother event of type k over the whole time
interval t → ∞ take the values {r1, r2, . . . , rm}.

Substituting the relations (10) in (12) yields

Pk(d1, d2, . . . , dm; t) =
∞∑

r1=d1

. . .

∞∑

rm=dm

Pk(r1, . . . , rm)

×
m∏

s=1

(
rs

ds

)
μds

k,s(t)[1−μk,s(t)]rs−ds .

(13)

The interest in this expression (13) is that the MGF
Ak

1(y1, y2, . . . , ym; t) defined by expression (6) can be
rewritten in probabilistic form as

Ak
1(y; t) =

∞∑

d1=0

. . .

∞∑

dm=0

Pk(d1, . . . , dm; t)
m∏

s=1

yds
s . (14)

We are now prepared to state the following theorem, which
is essential for our subsequent derivations.

Theorem 3.1. The MGF Ak
1(y1, y2, . . . , ym; t) defined by

expression (6) can be represented in the form

Ak
1(y1, y2, . . . , ym; t) =

Qk[μk,1(t)(y1 − 1), . . . , μk,m(t)(ym − 1)], (15)

where

Qk(z1, . . . , zm) := Ak
1(1 + z1, . . . , 1 + zm). (16)

The main result can thus be rephrased explicitly as

Ak
1(y1, y2, . . . , ym; t) =

Ak
1(1 + μk,1(t)(y1 − 1), . . . , 1 + μk,m(t)(ym − 1)). (17)

The proof is given in Appendix A.

3.2 MGF for the cumulative numbers of events
over all generation triggered until time t

Let us define the MGF

Ak(y; t) := E

[
m∏

s=1

yRk,s(t)
s

]
, (18)

where {Rk,s(t)} is the total number of events summed over
all generations of events of type s triggered by a mother
event of type k starting at time 0 up to time t.
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Due to the branching nature of the process, the equa-
tion determining the MGF {Ak(y; t)} is obtained by:

1. replacing in the left-hand-side of expression (15)
Ak

1(y; t) by Ak(y; t); this means that we deal with
events of all generations occurring till current time t;

2. replacing in the right-hand-side of expression (15) the
arguments ys by

ys ⇒ ys

∫ t

0

fk,s(t′|t)As(y; t − t′)dt′, (19)

where {fk,s(t′|t)} is the conditional pdf of the ran-
dom times {t′k,s} of occurrence of some first-generation
event of type s triggered by the mother event of type k,
under the condition that it occurred within the time
interval t′ ∈ (0, t). The conditional pdf {fk,s(t′|t)} is
given by

fk,s(t′|t) =
fk,s(t′)
μk,s(t)

, (20)

where μk,s(t) is defined by (11). The pdf fk,s(t′|t) in-
side the integral (19) takes into account that first-
generation events are occurring at random times t′ < t.
The other factor As(y1, . . . , ym; t − t′) takes into ac-
count all-generation events that are triggered by some
first-generation event from its appearance time t′ till
the current time t.

The equation for the MGF {Ak(y; t)} is thus

Ak(y; t) = Qk

[
Bk,1(y; t), . . . , Bk,m(y; t)

]
, (21)

where

Bk,s(y; t) =
∫ t

0

fk,s(t − t′)[ysA
s(y; t′) − 1]dt′. (22)

3.3 General relations for the mean numbers of events
over all generation triggered up to time t

The set of equations (21) together with the relations (22)
provides the basis for a full description of the statis-
tical and temporal properties of multivariate branching
(Hawkes) processes. Here, we restrict our attention to the
average activities, by studying the temporal dependence
of the average number of events following the occurrence
of a mother event of a given type.

The mean number of events of type s over all genera-
tions counted until time t that are triggered by a mother
event of type k that occurred at time t = 0, defined by

R̄k,s(t) := E[Rk,s(t)], (23)

is given by the relation

R̄k,s(t) =
∂

∂ys
Ak(y; t)

∣∣
y1=...=ym=1

, (24)

where Ak(y; t) satisfies to the set of equations (21).
In order to derive the equations determining the set

{R̄k,s(t)}, we need to state the following properties exhib-
ited by the functions Qk(y) given by (16) and Bk,s(y; t)

given by (22), which are contributing to equation (21).
From the definition of the functions Bk,s(y; t) and of the
MGF Ak(y; t), we have

Bk,s(y; t)
∣∣
y1=...=ym=1

≡ 0 (25)

and

∂

∂ys
Bk,�(y; t, τ)

∣∣
y1=...=ym=1

= μk,s(t)δ�,s+fk,�(t)⊗R̄�,s(t).

(26)
The convolution operation is defined as usual by f(t) ⊗
g(t) :=

∫ t

0
f(t−t′)g(t′)dt′. Moreover, the following equality

holds
∂

∂ys
Qk(y; t, τ)

∣∣
y1=...=ym=0

= nk,s, (27)

where nk,s is the mean value of the total number of first-
generation events of type s triggered by a mother of type k.
The set {nk,s} for all k’s and s’s generalize the aver-
age branching ratio n defined by expression (4) above for
monovariate branching processes and are given by

nk,s =
∂

∂ys
Ak

1(y)
∣∣
y1=...=ym=1

(28)

where Ak
1(y) is defined in (7).

Using the above relations (25)–(27), the equality (24)
together with equation (21) yields

R̄k,s(t) = nk,s · μk,s(t) +
m∑

�=1

nk,�fk,�(t) ⊗ R̄�,s(t). (29)

Introducing the event rates, i.e., the number of events per
unit time,

ρk,s(t) =
dR̄k,s(t)

dt
, (30)

expression (29) transforms into

ρk,s(t) = nk,s(t) +
m∑

�=1

nk,�(t) ⊗ ρ�,s(t), (31)

where we have used the following notation

nk,s(t) := nk,s · fk,s(t). (32)

The set of equations (31) for all k’s and s’s constitute the
fundamental starting point of our analysis.

In order to make further progress, in view of the convo-
lution operator, it is convenient to work with the Laplace
transform of the event rates:

ρ̃k,s(u) =
∫ ∞

0

ρk,s(t)e−utdt. (33)

Introducing the matrices

Φ̃(u) = [ρ̃k,s(u)] and Ñ(u) = [ñk,s(u)], (34)

we obtain the following equation for the matrix Φ̃(u):

Î Φ̃(u) = Ñ(u) + Ñ(u) Φ̃(u), (35)
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whose solution is

Φ̃(u) =
Ñ(u)

Î − Ñ(u)
. (36)

The rest of the paper is devoted to the study of this
solution (36) for various system structures and memory
kernels.

4 Symmetric mutual excitations

4.1 Definitions

Let us consider the case where the set {nk,s} defined by
expression (28) reduces to

nk,k = a; nk,s = b, k �= s. (37)

This form (37) means that the efficiency to generate an
event of a specific type depends only on whether the
‘mother’ and ‘daughter’ have the same type. As a con-
sequence, the mean number of first-generation events of
all kinds that are triggered by a mother event of some
type k,

nk =
m∑

s=1

nk,s, (38)

is independent of k and given by

nk = n = a + (m − 1)b, for all k. (39)

Introducing the factor

q =
b

a
(40)

comparing the inter-types with the intra-type triggering
efficiencies, we obtain

a =
n

1 + (m − 1)q
, b =

nq

1 + (m − 1)q
. (41)

In the time domain, we consider the case of symmetric
mutual excitations such that all pdf’s fk,s(t) ≡ f(t) are
independent of the indexes k and s and are all equal to
each other. There is no contradiction with this assump-
tion and the fact that there are two coefficients a and b
characterizing event triggering, since the time-dependent
functions fk,s(t) are normalized to 1.

4.2 General solution in terms of Laplace transforms

With the definitions of Section 4.1, it follows that
ñk,s(u) = nf̃(u) and one can show that all diagonal and
non-diagonal entries of the matrix Φ̃(u) given by (36) are

given, respectively by

ρ̃(u) := ρ̃k,k(u)

=
nf̃(u)

1 − nf̃(u)
1 + nf̃(u)(q − 1)

1 + nf̃(u)(q − 1) + q(m − 1)
,

g̃(u) := ρ̃k,s(u)

=
nf̃(u)

1 − nf̃(u)
q

1 + nf̃(u)(q − 1) + q(m − 1)
,

k �= s. (42)

Moreover, the Laplace transform

ρ̃k(u) =
m∑

s=1

ρ̃k,s(u) = ρ̃(u) + (m − 1)g̃(u) (43)

of the total rate of events of all types triggered by a mother
jump of type k defined by ρk(t) =

∑m
s=1 ρk,s(t) satisfies

the relation

ρ̃k(u) =
nf̃(u)

1 − nf̃(u)
. (44)

4.3 Exponential pdf of triggering times
of first-generation events

Let us first study the case where the pdf f(t) of the waiting
times to generate first-generation events is exponential:

f(t) = αe−αt ⇐⇒ f̃(u) =
α

α + u
. (45)

The inverse Laplace transforms of the solutions (42) are
then

ρ(t) := ρk,k(t) = α
n

m
e−(1−n)αt

(
1 + (m − 1)γe−n(1−γ)αt

)
,

g(t) := ρk,s(t) = α
n

m
e−(1−n)αt

(
1 − γe−n(1−γ)αt

)
, k �=s,

(46)

where
γ := γ(q, m) =

1 − q

1 + (m − 1)q
. (47)

Expressions (46) give the explicit time-dependence of two
functions ρ(t) and g(t):

– ρ(t) := ρk,k(t) is the rate of events over all generations
of some type k resulting from a given mother event of
the same type k. Notice that the term “over all gen-
erations” means that an event of type k occurring at
some time t > 0, and belonging to the descent of some
previous mother of the same type k that occurred at
time 0, may have been generated through a long cas-
cade of intermediate events of possibly different kinds,
via random changes of types along the genealogy.

– g(t) := ρk,s(t) is the rate of events over all generations
of some type s resulting from a given mother event of
a different type k. As for ρ(t), an event of type s occur-
ring at some time t > 0, and belonging to the descent
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Fig. 5. Time-dependence of ρ(t) := ρk,k(t), for m = 3,
n = 0.99, and q = 1; 0.1; 0.01. Time is in unit of 1/α.
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Fig. 6. Time-dependence of g(t) := ρk,s(t), for m = 3, n =
0.99 and q = 1; 0.1; 0.01. Time is in unit of 1/α.

of some previous mother of a different type k that oc-
curred at time 0, may have been generated through
a long cascade of intermediate events of possibly dif-
ferent kinds, via random changes of types along the
genealogy.

Figures 5 and 6 show, respectively, ρ(t) := ρk,k(t) and
g(t) := ρk,s(t) for the case of m = 3 types of events and
rather close to criticality (n = 0.99), for different coupling
amplitudes q = 1; 0.1; 0.01.

The case q = 1 of complete coupling is special in two
ways: (i) ρ(t) and g(t) are proportional to each other;
(ii) there is only one time scale τ1 = 1

α
1

1−n . In contrast,
as soon as q < 1, i.e., events of a given type tends to trig-
ger more events of the same type than events of different
types, one can observe that the time-dependence of ρ(t)
and g(t) become qualitatively different. The monotonous
decay of ρ(t) can be contrasted with the non-monotonous
bell-shape dependence of g(t). This non-monotonous be-

havior of g(t) results from the progressive seeding of events
of a different type than the initial mother type by the less
efficient mutual excitation process. This is associated with
the introduction of a second time scale τ2 = 1

α
1

1−nγ ≤ τ1

controlling the dynamics of both ρ(t) and g(t) at short
times. This effect is all the stronger, the smaller q is, i.e.,
the larger γ is.

This phenomenon of the occurrence of a second time
scale τ2 and of the distinct behavior of g(t) := ρk,s(t)
for q < 1 constitutes a characteristic signature of the
mutual excitation mechanism, in a system in which the
time response function is exponential (Poisson, i.e., with-
out memory). The cascade of triggering together with the
random changes of types of events break the Poissonian
nature of the relaxation of the event activity triggered by a
given mother ancestor. This is different from what occurs
for a single event type m = 1 for which the existence of
multiple generations do not change the Poissonian nature
of the relaxation process. It only extends the time scale
according to τ1 = 1

α
1

1−n as the average branching ratio n
increases to the critical value 1.

4.4 Power law pdf of triggering times
of first-generation events

The same qualitative picture emerges for other pdf’s such
as power laws, with a monotonous decay of ρ(t) coexist-
ing with a growth from zero up to a maximum followed
by a decay for g(t). But more interesting features appear,
such as the renormalization of the exponents in two dis-
tinct families, as we now show. As many systems exhibit
power law pdf’s of waiting times with rather small expo-
nents θ ≤ 0.5 (see definition in expression (48)), we shall
consider this regime in the following.

For definiteness, we consider the pdf with power law
tail given by

f(t) =
αθ

(1 + αt)1+θ
, t > 0, θ > 0. (48)

The constant 1 in the denominator regularizes the pdf
at times t < 1/α. The corresponding Laplace transform
of (48) is

f̃(u) = θ eu/α
(u

α

)θ

Γ
(
−θ,

u

α

)
, (49)

which can then be used in (42) to get the general solutions.

4.4.1 Non-critical same-type activity rate ρ(t) =: ρk,k(t)

We first rewrite the Laplace transform ρ̃(u) given by (42)
in a form more convenient for its analysis:

ρ̃(u) = R̄k,k 1 − ϕ(u)
1 + γ0ϕ(u)

1 + γ1ϕ(u)
1 + γ2ϕ(u)

, (50)

where
ϕ(u) := 1 − f̃(u) (51)

http://www.epj.org


Page 10 of 19 Eur. Phys. J. B (2013) 86: 124

and

γ0 =
n

1 − n
, γ1 =

n(1 − q)
1−n+qn

,

γ2 =
n(1 − q)

1−n+q(n+m−1)
, γ0 > γ1 > γ2 (q > 0, m > 1).

(52)

The long time behavior of ρ(t) is controlled by the
small u properties of ρ̃(u), itself dependent on the behav-
ior of ϕ(u) for small u. From its definition (51), we have
that ϕ(u) → 0 for u → 0. Then, the asymptotic behavior
of the Laplace transform (50) of ρ(t) is

ρ̃(u) ∼ R̄k,k − R̄k,kγρϕ(u),
γρ = 1 + γ0 + γ2 − γ1. (53)

For θ ∈ (0, 1), the auxiliary function ϕ(u) (51) has the
following asymptotic behavior

ϕ(u) ∼ βvθ  1, v  1,

β = Γ (1 − θ), v =
u

α
. (54)

Accordingly, relation (53) transforms into

ρ̃(u) ∼ R̄k,k
[
1 − γρβvθ

]
. (55)

The corresponding asymptotic of the rate ρ(t) is thus

ρ(t) ∼ R̄k,k γρβθ

Γ (1 − θ)
1

(αt)1+θ

= R̄k,kγρθ
1

(αt)1+θ
, t → ∞. (56)

The rate ρ(t) := ρk,k(t) of events over all generations of
some type k resulting from a given mother event of the
same type k that occurred at time 0 decays with the same
power law behavior as the bare memory function or pdf
of waiting times for first-generation events. The only sig-
nificant difference is the renormalization of the amplitude
by the factor R̄k,kγρ resulting from the cascades of gen-
erations and random changes between the different event
types.

4.4.2 Intermediate critical asymptotic same-type activity
rate ρ(t) := ρk,k(t)

For n close to 1, γ0 becomes large and there is an in-
teresting intermediate asymptotic regime describing the
intermediate time decay of ρ(t). To describe it, we need
to distinguish the following three parameter regimes.
1. γ0 � 1 and γ2 < γ1 � 1. This occurs for n → 1 while

q is not too close to 0. For instance, n = 0.95, q =
0.5, m = 5 yield γ2 = 0.613, γ1 = 0.905, γ0 = 19. In
this case, there is an intermediate range on the u-axis
defined by

(γ0β)−θ  v  (γ1β)−θ

⇐⇒ α (γ0β)−θ  u  α (γ1β)−θ ≈ α, (57)

such that γ0ϕ(u) � 1 while γ1ϕ(u)  1 and
γ2ϕ(u)  1. In this range, the leading terms con-
trolling the value of expression (50) is

ρ̃(u) ≈ R̄k,k 1
γ0ϕ(u)

. (58)

Substituting the asymptotic relation (54), we obtain

ρ̃(u) ≈ R̄k,k 1
γ0Γ (1 − θ)

v−θ. (59)

The corresponding intermediate asymptotic of the
rate is

ρ(t) ≈ R̄k,k 1
γ0

sin(πθ)
π

1
(αt)1−θ

,

1  αt  [γ0Γ (1 − θ)]1/θ
. (60)

2. γ0 > γ1 � 1 and γ2 � 1: this occurs for n → 1 with q
close to 0 and m large. For instance, n = 0.95, q = 0.01,
m = 50 yield γ2 = 1.68, γ1 = 15.8, γ0 = 19. In this
case, there is an intermediate range on the u-axis de-
fined by

(γ1β)−θ  v  (γ2β)−θ

⇐⇒ α (γ1β)−θ  u  α (γ2β)−θ ≈ α, (61)

such that γ0ϕ(u) > γ1ϕ(u) � 1 while γ2ϕ(u)  1. In
this range, the leading terms controlling the value of
expression (50) is

ρ̃(u) = R̄k,k γ1

γ0
(1 − ϕ(u)), (62)

whose inverse Laplace transform has the same form
as (56) with γρ replaced by 1.

3. γ0 > γ1 > γ2 � 1: this occurs for n → 1 with q
close to 0 and m not too large. For instance, n = 0.95,
q = 0.01, m = 2 yield γ2 = 13.5, γ1 = 15.8, γ0 = 19.
Then, in the intermediate interval on the u-axis

(γ2β)−θ  v  1 ⇐⇒ α (γ2β)−θ  u  α, (63)

the asymptotic relation (54) holds, while at the same
time γ2ϕ(u) � 1. In this range (63), the leading terms
controlling the value of expression (50) is

ρ̃(u) ≈ R̄k,k 1
γ0ϕ(u)

γ1ϕ(u)
γ2ϕ(u)

= R̄k,k γ1

γ0γ2

1
ϕ(u)

. (64)

Using the asymptotic relation (54), we obtain

ρ̃(u) ≈ G v−θ,

G = R̄k,k γ1

γ0γ2β
= R̄k,k γ1

γ0γ2Γ (1 − θ)
. (65)

The corresponding intermediate power asymptotic of
the rate ρ(t) is

ρ(t) ≈ R̄k,k γ1

γ0γ2

sin(πθ)
π

1
(αt)1−θ

,

1  αt  [γ2Γ (1 − θ)]1/θ . (66)
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As an illustration, for the above values n = 0.95,
q = 0.01, m = 2, the power law (66) with ex-
ponent 1 − θ holds up to a maximum time
[γ2Γ (1 − θ)]1/θ

α−1 ≈ 75 000 α−1 for θ = 0.25.

Let us summarize and interpret the above results:

1. n → 1 and q not small (γ0 � 1 and γ2 < γ1 � 1).
The intermediate power law asymptotic (60) with ex-
ponent 1 − θ is similar to the renormalized response
function due to the cascade of generations found for
the self-excited Hawkes process with just one type of
events [11,65,71]. The mechanism is the same, since
a coupling coefficient q not too small ensures a good
mixing among all generations.

2. n → 1 with q → 0 and m → ∞ with qm � 1 (γ0 >
γ1 � 1 and γ2 � 1). In contrast with the previous case,
the activity rate ρ(t) exhibits the same decay (56) with
exponent 1+θ as if the system was far from criticality.
In a sense, due to the weak mutual triggering efficiency
and the many event types, the system is never critical.

3. n → 1 with q → 0 and m not too large such that
qm  1 (γ0 > γ1 > γ2 � 1). The intermediate power
law asymptotic (66) with exponent 1−θ is again similar
to the renormalized response function due to the cas-
cade of generations found for the self-excited Hawkes
process with just one type of events [11,65,71].

4.4.3 Asymptotic and intermediate critical asymptotic
inter-type activity rate g(t) := ρk,s(t)

In order to obtain the time-dependence of g(t), we express
its Laplace transform g̃(u) given in expression (42) in a
form analogous to (50):

g̃(u) = R̄k,s 1 − ϕ(u)
1 + γ0ϕ(u)

1
1 + γ2ϕ(u)

, k �= s. (67)

Three regimes can be distinguished:

1. Asymptotic regime of long times for n < 1. At
long times, the asymptotic relation (54) holds true.
Then, analogous to (55) and (56), we obtain the fol-
lowing asymptotics

g̃(u) ∼ R̄k,s
[
1 − γgβvθ

]
, γg = 1 + γ0 + γ2 u → 0

⇒ g(t) ∼ R̄k,s γgβθ

Γ (1 − θ)
1

(αt)1+θ
, t → ∞. (68)

This power law decay with exponent 1+θ, equal to the
exponent of the memory kernel (48), is characteristic of
the non-critical regime in which only a few generations
of events are triggered in significant numbers.

2. Intermediate asymptotic regime (n → 1 with
q → 0 and m large). Then, γ0 � 1 and γ2 � 1. This
is the same second regime analyzed in Section 4.4.2. In
this case, there is an intermediate asymptotic in the
range defined by (61) such that the following approxi-
mate relation holds

g̃(u) ≈ R̄k,s

γ0

1
ϕ(u)

, k �= s. (69)

The corresponding intermediate power asymptotic of
g(t) := ρk,s(t) is

ρ(t) ≈ R̄k,k

γ0

sin(πθ)
π

1
(αt)1−θ

, 1αt [γ0Γ (1−θ)]1/θ
.

(70)
This power law decay with exponent 1 − θ is signif-
icantly slower than the previous one with exponent
1 + θ and results from the proximity to the critical
point n = 1.

3. Intermediate asymptotic regime (n → 1 with
q → 0 and m small). Then, γ2 given in (52) is large
and there is an intermediate interval (63) for u such
that, analogous to (64), the following approximate re-
lation holds

g̃(u) ≈ R̄k,s 1
γ0ϕ(u)

1
γ2ϕ(u)

= R̄k,s 1
γ0γ2

1
ϕ2(u)

. (71)

Using the power asymptotic (54), we obtain the inter-
mediate power law

g̃(u) ≈ G v−2θ, G = R̄k,s 1
γ0γ2β

= R̄k,s 1
γ0γ2Γ (1 − θ)

.

(72)
Accordingly, the intermediate power law asymptotic of
the inter-type activity rate g(t) := ρk,s(t) reads

g(t) ≈ R̄k,s

γ0γ2Γ (2θ)Γ (1 − θ)
1

(αt)1−2θ
,

1  αt  [γ2Γ (1 − θ)]1/θ
. (73)

This power law decay with exponent 1 − 2θ is similar
to the decay after an “endogenous” peak, as classified
in previous analyses of the monovariate self-excited
Hawkes process [56,67–70,72]. Indeed, the exponent
1 − 2θ, corresponding to a very slow power law decay,
has been until now seen as the characteristic signature
of self-organized bursts of activities that are generated
endogenously without the need for a major exogenous
shock. Here, we see this exponent describing the de-
cay of the activity of events triggered by an “exoge-
nous” mother shock of a different type, in the critical
regime n → 1 and for weak mutual coupling q → 0. It
is clear that the mechanism is different from the pre-
viously classified “endogenous” channel [56,67–70,72],
involving here an interplay between the cascade over
generations and the weak mutual excitations.

Figure 7 shows the time-dependence of both ρ(t) :=
ρk,k(t) and g(t) := ρk,s(t) in the regime n → 1 with
q → 0 and m small, for which there exists an interme-
diate asymptotic of the third type both for ρ(t) and g(t).
For ρ(t), one can clearly observe the intermediate power
law asymptotic with exponent 1−θ = 0.75 followed by the
final asymptotic power law with exponent 1 + θ = 1.25.
For g(t), the intermediate power law asymptotic with
exponent 1 − 2θ = 0.5 is clearly observed, followed
by the same final asymptotic power law with exponent
1 + θ = 1.25.
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Fig. 7. Time-dependence of ρ(t) := ρk,k(t) and g(t) := ρk,s(t)
in double logarithmic representation for n = 0.95, q = 0.01,
m = 2, and θ = 0.25 (1 + θ = 1.25, 1 − θ = 0.75, 1 − 2θ =
0.5). Time is in unit of α−1. The functions ρ(t) and g(t)
have been calculated numerically from their complete Laplace
transforms (42).

5 One-dimensional chain
of directed triggering

5.1 Definitions

We consider a chain of directed influences k → k+1 where
the events of type k trigger events of both types k and k+1
only (and not events of type k−1 or any other types), and
this for k = 1, 2, . . . , m. This is captured by a form of the
matrix N̂ which has only the diagonal and the line above
the diagonal with non-zero elements.

As the simplest example, we shall study networks of
mutual excitations corresponding to the following ma-
trix N̂ of the mean numbers of first-generation events

N̂ =

⎡

⎢⎢⎢⎣

χ ξ 0 0 0 . . . 0 . . .
0 χ ξ 0 0 . . . 0 . . .
0 0 χ ξ 0 . . . 0 . . .
0 0 0 χ ξ . . . 0 . . .
. . . . . . . . . . . .

⎤

⎥⎥⎥⎦ (74)

where
χ =

n

1 + q
, ξ =

nq

1 + q
. (75)

5.2 Laplace transform of the event activities ρk,s(t)
defined in (30)

In order to derive the equations governing the rates ρk,s(t),
we need to recall a result concerning the total numbers
of events R̄k,k and R̄k,s generated by a given mother of
type k.

The statistical average of the total numbers of events of
type s over all generations that are triggered by a mother

of type k is given by

R̄k,s =
∂

∂ys
Ak(y)

∣∣
y1=y2=...=ym=1

. (76)

It is standard in branching processes to find that the gen-
erating functions {Ak(y); k = 1, . . . , m} are solutions of
the transcendent equations (see Ref. [73] for details of the
derivation):

Ak(y) = Ak
1(y1 · A1(y), . . . , ym · Am(y)), k = 1, . . . , m.

(77)
Using (77), it is straightforward to show that R̄k,s is
solution of

R̄k,s = nk,s +
m∑

�=1

nk,� · R̄�,s, (78)

where nk,s is the mean number of first-generation events
of type s triggered by the mother event of type k.

Since expression (78) holds for all k = 1, . . . , m and
s = 1, . . . , m, it can be written in matrix form

R̂ = N̂ + N̂R̂, (79)

where N̂ = [nk,s] is the matrix of the mean numbers of
first-generation events and R̂ = [R̄k,s] is the matrix of
the mean numbers of events over all generations. The sum
over row indices of the elements of the matrix N̂

nk =
m∑

s=1

nk,s, (80)

is the mean number of first-generation events of all kinds
that are triggered by a mother event of type k.

The solution of the matrix equation (79) is

R̂ =
N̂

Î − N̂
. (81)

Assuming that the mother event is of type k, we thus
obtain [73] R̄s,s = R̄k,s = R̄s,k = 0 for 1 ≤ s < k and

R̄k,k =
χ

1 − χ
=

n

1 + q − n
,

R̄k,s =
ξs−k

(1 − χ)s−k+1

= (1 + q)
(nq)s−k

(1 + q − n)s−k+1
, s > k. (82)

Then, the Laplace transforms ρ̃k,s(u) (33) of the rates
ρk,s(t) are given by the right-hand sides of expres-
sions (82), with the following substitutions

χ �→ χf̃(u), ξ �→ ξf̃(u). (83)

This yields

ρ̃k,k(u) := ρ̃(u) =
χf̃(u)

1 − χf̃(u)
,

ρk,s(u) := g̃m(u) =
(ξf̃(u))m

(1 − χf̃(u))m+1
, m = s − k > 0.

(84)
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Fig. 8. Time-dependence of the cross-rates ρk,s(t) := gm(t)
given by (85) for n = 0.95, q = 1 and different m values.

5.3 Exponential pdf f(t) of triggering times
of first-generation events

We use the parameterization (45) for the pdf f(t), which
leads after calculations to

ρk,k(t) := ρ(t) = αχ e−(1−χ)αt,

ρk,s(t) := gm(t) =
αξ

m!
(ξαt)m−1(m + χαt) e−(1−χ)αt,

m = s − k > 0.
(85)

The rate ρk,k(t) := ρ(t) of events of the same type as the
mother decays simply as an exponential with a charac-
teristic decay time 1+q

1+q−nα−1, which exhibits the stan-
dard critical slowing down at the critical value of the
mean branching ratio nc = 1 + q. In contrast, the cross
rates ρk,s(t) := gm(t) exhibit a non-monotonous behavior,
which reflects the directed nature of the mutual trigger-
ing of events of different types. For large m values, the
cross-rate becomes almost symmetrical functions of time,
as shown in Figure 8.

5.4 Power law pdf of triggering times
of first-generation events

The time-dependence of ρk,k(t) := ρ(t) given by the first
equation of (84) when f(t) is given by relation (48) with
Laplace transform (49) is the same as for the monovari-
ate Hawkes process (with a single event type), with the
modification that the role of the mean branching ratio
n is replaced by χ. The rate ρ(t) exhibits an intermedi-
ate power law asymptotic with exponent 1 − θ up to a
cross-over time �α−1/(1 − χ)

1
θ followed by the asymp-

totic power law decay with exponent 1 + θ corresponding
to the memory kernel f(t).

Interesting new regimes appear for the time-
dependences of the cross-rates gm(t). We first express the

Laplace transforms g̃m(u) given by (84) of the cross-rates
by using the auxiliary function ϕ(u) defined by (51):

g̃m(u) = R̄k,s [1 − ϕ(u)]m

[1 + γϕ(u)]m+1 , (86)

where
γ =

χ

1 − χ
=

n

1 + q − n
, (87)

and the mean number R̄k,s (k �= s) is given by expres-
sion (82). Replacing ϕ(u) by its asymptotic (54), we ob-
tain the asymptotic formula

g̃m(u) = R̄k,s

(
1 − βvθ

)m

(1 + γβvθ)m+1 . (88)

The long time asymptotic of gm(t) is controlled by the be-
havior of g̃m(u) for v → 0, whose leading order is given by

g̃m(u) ∼ R̄k,s
[
1 − γ(m)vθ

]
, v → 0

γ(m) = β(m + (m + 1)γ). (89)

This expression holds true for γ < +∞, i.e., n < 1 + q,
where the upper bound nc = 1+q define the critical point.
Accordingly, the main asymptotic of the cross event rate
gm(t) is

g(t) ∼ R̄k,s γ(m)θ
Γ (1 − θ)

1
(αt)1+θ

, t → ∞. (90)

This recovers the usual long time power law dependence,
which is determined by the memory kernel f(t) of waiting
times for first-generation triggering.

There is also an intermediate asymptotic regime
present when γ � 1, i.e., n → 1 + q from below. Specifi-
cally, the intermediate asymptotic domain in the variable
v is defined by the interval (βγ)−1/θ  v  1, such that
γβvθ � 1 while v  1. Then, the asymptotic relation (54)
is true, and expression (88) can be simplified into the ap-
proximate relation

g̃m(u) ≈ Gmv−(m+1)θ, Gm =
R̄k,s

(γβ)m+1
,

(βγ)−1/θ  v  1. (91)

Accordingly, analogous to (73), we obtain

gm(t) ≈ Gm

Γ [(m + 1)θ]
1

(αt)1−(m+1)θ
, 1  αt  (γβ)1/θ .

(92)
This expression (92) predicts a hierarchy of exponents
1 − (m + 1)θ characterizing the intermediate asymptotic
power law dependence of the rates gm(t) := ρk,s(t) of
events of type s as a function of the distance m = s − k
along the space of types from the type k of the initial trig-
gering mother. Figure 9 illustrates this prediction (92) for
m = 1; 2 with θ = 0.25, leading to the two intermediate
asymptotic exponents 1 − 2θ = 0.5 and 1 − 3θ = 0.25.
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Fig. 9. Time-dependence of the rates g1(t) := ρk,k+1(t) (up-
per curve) and g2(t) := ρk,k+2(t) (lower curve) of events of
type s = k + 1 and s = k + 2 triggered by a mother of type k.
The parameters are n = 0.99, q = 0.01 and θ = 0.25. The
dashed straight lines correspond to the power laws predicted
in the text for the asymptotic and corresponding intermediate
asymptotic regimes.

The intermediate power law decay laws with exponents
1− (m+1)θ hold only when this exponent is positive, i.e.,
for m < 1

θ −1. To understand what happens for larger m’s,
a more careful analysis is required, which is presented in
Appendix B, which shows that formula (92) still holds
and predicts that gm(t) is an increasing function of time
for times αt < (γβ)1/θ before decreasing again with the
standard asymptotic power law ∼1/t1+θ. This is summa-
rized by Figure 10, which plots the time-dependence of the
rates gm(t) := ρk,k+m(t) of events of type s = k + m trig-
gered by a mother of type k for m = 0 to 5, with θ = 1/3.
One can clearly observe the existence of the intermediate
power asymptotics (Eq. (B.24) in Appendix B and expres-
sion (92)) for different values of m. When inequality (B.25)
of Appendix B holds, the intermediate asymptotics are not
decaying but growing as a function of time, as predicted
by expression (B.24) of Appendix B and (92).

6 One-dimensional chain
of nearest-neighbor-type triggering

6.1 Definitions

A natural extension to the above one-dimensional chain
of directed triggering discussed in the previous section in-
cludes feedbacks from events of type k + 1 to type k. The
example treated in the present section corresponds to fully
symmetry mutual excitations confined to nearest neighbor
in the sense of event types: k ↔ k + 1. Mathematically,
this is described by a symmetric circulant matrix N̂ of the
average numbers nk,s of first-generation events of different
types triggered by a mother of a fixed type.

We assume that all diagonal elements are equal to some
constant χ (same self-triggering abilities) and all their
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Fig. 10. Time-dependence of the rates gm(t) := ρk,k+m(t) of
events of type s = k + m triggered by a mother of type k, for
m = 0 (same type of events as the initial triggering mother)
and m = 1, 2, 3, 4 and 5. Here, θ = 1/3 and γ := ln

(
1+q

n

)
=

0.01. The number of summands used in the sum (B.7) of Ap-
pendix B is N = 1500.

neighbors are equal to some different constant ξ (same
mutual triggering abilities). The elements n1,m and nm,1

are also equal to ξ to close the chain of mutual excita-
tions between events of type 1 and of type m. Restricting
to m = 6 for illustration purpose, the corresponding ma-
trix N̂ reads

N̂ =

⎡

⎢⎢⎢⎢⎢⎣

χ ξ 0 0 0 ξ
ξ χ ξ 0 0 0
0 ξ χ ξ 0 0
0 0 ξ χ ξ 0
0 0 0 ξ χ ξ
ξ 0 0 0 ξ χ

⎤

⎥⎥⎥⎥⎥⎦
(93)

where

χ =
n

1 + q
, ξ =

nq

2(1 + q)
⇒ χ + 2ξ = n. (94)

As before, the parameter q quantifies the “strength” of
the interactions between events of different types. Here, n
represents the total number of first-generation events of
all types that are generated by a given mother of fixed
arbitrary type. Figure 11 provides the geometrical sense
of matrix N̂ (93) for m = 6, where the circles represent
the six types of events and the arrows denote their mutual
excitation influences.

6.2 Analysis of the event rates ρk,s(t)

The Laplace transform ρ̃k,k(u) of the event rates
ρk,k(t) (30) of type k that are triggered by a mother of
the same type k reads

ρ̃k,k(u) := ρ̃(u) = A[nf̃(u), q], (95)
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Fig. 11. Geometric sense of the matrix N̂ for a one-
dimensional chain of nearest-neighbor triggering in the space
of event types.

where [73]

A(n, q) =

4n(1 − n + q)3 − (1 − n + q)(5n − 2q − 2)n2q2 − n4q4

4(1 − n + q)4 − 5(1 − n + q)2n2q2 + n4q4
.

(96)

Analogously, the Laplace transforms of the cross-rates
ρ̃k,s(u) are

g̃1(u) = B
[
nf̃(u), q

]
,

g̃2(u) = C
[
nf̃(u), q

]
,

g̃3(u) = D
[
nf̃(u), q

]
, (97)

where [73]

B(n, q) =
nq(1 + q)(2(1 − n + q)2 − n2q2)

4(1 − n + q)4 − 5(1 − n + q)2n2q2 + n4q4
,

C(n, q) =
n2q2(1 + q)(1 − n + q)

4(1 − n + q)4 − 5(1 − n + q)2n2q2 + n4q4
,

D(n, q) =
n3q3(1 + q)

4(1 − n + q)4 − 5(1 − n + q)2n2q2 + n4q4
.

(98)
Figure 12 shows the time-dependence of ρ(t), g1(t),
g2(t) and g3(t) for the case where the pdf f(t) is a
power law (48), for the parameters n = 0.995, q = 0.01,
θ = 0.2. One can observe a common power law asymptotic
∼t−1−θ = t−1.2 at large times, as well as intermediate
asymptotic power laws

ρ(t) ∼ t−1+θ = t−0.8, g1(t) ∼ t−1+2θ = t−0.6,

g2(t) ∼ t−1+3θ = t−0.4, g3(t) ∼ t−1+4θ = t−0.2. (99)

7 Concluding remarks

We have presented a preliminary analysis of some tem-
poral properties of multivariate self-excited Hawkes con-
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Fig. 12. Top to bottom: the solid lines represent the time-
dependence of ρ(t), g1(t), g2(t) and g3(t), in the case a one-
dimensional chain of nearest-neighbor-type triggering in the
space of types, with six types. The parameters are n = 0.995,
q = 0.01, θ = 0.2. The dashed straight lines show the asymp-
totic and intermediate asymptotic power laws predicted in the
text.

ditional Poisson processes. These processes are very in-
teresting candidates to model a large variety of systems
with bursty events, for which past activity triggers future
activity. The term “multivariate” refers to the property
that events come in different types, with possibly differ-
ent intra- and inter-triggering abilities. The richness of
the generated time dynamics comes from the cascades of
intermediate events of possibly different kinds, unfolding
via random changes of types along the genealogy. We have
developed the general formalism of the multivariate mo-
ment generating function for the cumulative number of
first-generation and of all generation events triggered by
a given mother event as a function of the current time t.
We have obtained the general relations for the mean num-
bers of events triggered over all generations by a given
event as a function of time. We have applied this technical
and mathematical toolbox to several systems, character-
ized by different specifications on how events of a given
type may trigger events of different types. In particular,
for systems in which triggering between events of different
types proceeds through a one-dimension directed or sym-
metric chain of influence in type space, we have discovered
a novel hierarchy of intermediate asymptotic power law
decays of the rate of triggered events as a function of the
distance of the events to the initial shock in the space of
types. We have been able to derive the time-dependence
of the rates of events triggered from a given shock for dis-
tributions of waiting times of first-generation events that
have either exponential or power law tails, for a variety
of systems. Future directions of investigations include the
study of more realistic networks in type-space and of the
full distribution of even rates, beyond the mean dynamics
reported here.
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Appendix A: Proof of theorem 3.1

Substituting relation (13) in expression (14) leads to

Ak
1(y1, y2, . . . , ym; t) =

∞∑

d1=0

. . .

∞∑

dm=0

∞∑

r1=d1

. . .

∞∑

rm=dm

Pk(r1, . . . , rm)

×
m∏

s=1

(
rs

ds

)
[μk,s(t)ys]ds [1 − μk,s(t)]rs−ds . (A.1)

Inverting the order of the summations

∞∑

ds=0

∞∑

rs=ds

(· · · ) =
∞∑

rs=0

rs∑

ds=0

, (A.2)

we rewrite expression (A.1) as

Ak
1(y1, y2, . . . , ym; t) =

∞∑

r1=0

. . .

∞∑

rm=0

Pk(r1, . . . , rm)

×
r1∑

d1=0

. . .

rm∑

dm=0

m∏

s=1

(
rs

ds

)

× [μk,s(t)ys]ds [1 − μk,s(t)]rs−ds ,
(A.3)

or equivalently

Ak
1(y1, y2, . . . , ym; t) =

∞∑

r1=0

. . .
∞∑

rm=0

Pk(r1, . . . , rm)

×
m∏

s=1

rs∑

ds=0

(
rs

ds

)

× [μk,s(t)ys]ds [1 − μk,s(t)]rs−ds .
(A.4)

Using the binomial formula

rs∑

ds=0

(
rs

ds

)
[μk,s(t)ys]ds [1−μk,s(t)]rs−ds = [1+μk,s(y−1)]rs ,

(A.5)
we obtain

Ak
1(y1, y2, . . . , ym; t) =

∞∑

r1=0

. . .

∞∑

rm=0

Pk(r1, . . . , rm)

×
m∏

s=1

[1 + μk,s(t)(y − 1)]rs . (A.6)

In view of definition (8) of the MGF Ak
1(y1, y2, . . . , ym),

this last expression means that

Ak
1(y1, y2, . . . , ym; t) = Ak

1 [1 + μk,1(t)(y1 − 1), . . . , 1
+μk,m(t)(ym − 1)] . (A.7)

Using definition (16) of the function Qk, we obtain
relation (15).

Appendix B: Analysis of the behavior
of gm(t) := ρk,s(t) for a one-dimensional
chain of directed triggering of Section 5
for n → 1 + q when 1 − (m + 1)θ < 0

Let us start with expression g̃m(u) (84) that we rewrite,
omitting the nonessential factor ξm, as

g̃m(u) =
f̃m(u)

[1 − χ · f̃(u)]m+1
, with χ =

n

1 + q
. (B.1)

Using the binomial formula

1
(1 − x)m+1

=
∞∑

k=0

(
m + k

k

)
xk, (B.2)

expression (B.1) becomes

g̃m(u) =
∞∑

k=0

(
m + k

k

)
χkf̃m+k(u). (B.3)

As we are interested in the case where the pdf f(t) has
the power asymptotic f(t) ∼ 1/t1+θ, with 0 < θ < 1,
it is convenient to use for f(t) one special representative
of the functions presenting this asymptotic power law be-
havior, namely the one-sided Lévy stable distribution of
order θ [74], that we refer to as fθ(t). Its Laplace trans-
form is

f̃θ(u) = e−uθ

, 0 < θ < 1. (B.4)

Accordingly, relation (B.3) takes the form

g̃m(u) =
∞∑

k=0

(
m + k

k

)
χke−(m+k)uθ

. (B.5)

Taking the inverse Laplace transform of (B.5) provides us
with the exact expression

gm(t) =
∞∑

k=0

(
m + k

k

)
χk

(m + k)1/θ
fθ

(
t

(m + k)1/θ

)
.

(B.6)
In order to analyze (B.6), it is convenient to rewrite it as

gm(t) =
θ

t1+θ

∞∑

k=0

Sm(k + m) Qθ

(
m + k

tθ

)
e−γk, (B.7)

where

γ = ln
(

1
χ

)
= ln

(
1 + q

n

)
> 0 for n < 1 + q. (B.8)
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We have defined the functions

Sm(x) := x

(
x

m

)
, x � m, (B.9)

and

Qθ(x) :=
1

θx1+1/θ
fθ

(
1

x1/θ

)
, x � 0, (B.10)

such that

1
x1/θ

fθ

(
t

x1/θ

)
=

x θ

tθ+1
Qθ

( x

tθ

)
. (B.11)

In order to extract the relevant information from expres-
sion (B.7) for gm(t), we need to discuss some properties
of the two functions Sm(x) and Qθ(x).

1. Properties of the function Sm(x). The func-
tion Sm(x) is a finite sum of power functions of the
argument x

Sm(x) =
m∑

r=1

ar,m xr+1. (B.12)

In particular,

S0(x) = x, S1(x) = x2, S2(x) =
1
2

x3 − 1
2

x2,

S3(x) =
1
6

x4 − 1
2

x3 +
1
3

x2,

S4(x) =
1
24

x5 − 1
4

x4 +
11
24

x3 − 1
4

x2. (B.13)

2. Properties of the function Qθ(x). For θ ∈ (0, 1/2),
this function is at least exponentially decaying with
increasing x. Accordingly, its moments of any order
r > 0 are finite and given by

M(r) :=
∫ ∞

0

xr Qθ(x)dx =
Γ (r + 1)
Γ (rθ + 1)

. (B.14)

Moreover, the value of Qθ(x) at x = 0 is equal to

Qθ(x = 0) =
1

Γ (1 − θ)
. (B.15)

For the particular cases θ = 1/2 and θ = 1/3, the
function Qθ(x) can be expressed in explicit form:

Q1/2(x) =
1√
π

exp
(
−x2

4

)
,

Q1/3(x) = 3
√

9Ai
(

x
3
√

3

)
. (B.16)

We study the behavior of gm(t) given by expression (B.7)
for γm  1, tθ � 1 and m t−θ  1. To leading order
and without essential error, we may replace the discrete
sum (B.7) by the continuous integral

gm(t) � θ

t1+θ

∫ ∞

m

Sm(x) Q
( x

tθ

)
e−γxdx. (B.17)

Using the following change of variable of integration

x �→ y =
x

tθ
↔ x = tθ y, (B.18)

we obtain

gm(t) � θ

t

∫ ∞

0

Sm(tθy)Qθ(y)e−γtθydy. (B.19)

Using relation (B.12), this yields

gm(t) � θ

t

m∑

r=1

ar,mt(r+1)θGr,m(t), (B.20)

where

Gr,m(t) =
∫ ∞

0

yr+1Qθ(y)e−γtθydy. (B.21)

The intermediate asymptotic regime corresponds to the
time domain γtθ  1 with tθ � 1. In this case, the ex-
ponential in the integral (B.21) can be replaced by unity.
Using relations (B.14), we obtain that

Gr,m =
∫ ∞

0

yr+1Qθ(y)dy =
Γ (r + 2)

Γ [(r + 1)θ + 1]
, γtθ  1,

(B.22)
is time-independent. Accordingly, the mean rate
gm(t) (B.20) is found as the sum of power law functions

gm(t) � θt(m+1)θ−1
m∑

r=1

ar,mGr,mt(r−m)θ. (B.23)

Taking into account that we consider the case tθ � 1 (that
allowed us to use the integral approximation (B.17)), we
obtain the sought power law intermediate asymptotic

gm(t) � θ(m + 1)
Γ [(m + 1)θ + 1]

t(m+1)θ−1 ∼ t(m+1)θ−1,

1  t  γ−1/θ. (B.24)

This recovers the result (92) presented in the main text.
In addition, it makes more precise what happens for

(m + 1)θ > 1. (B.25)

In this case, gm(t) starts as a growing function of t up to
t � γ−1/θ. This retrieves the same qualitative behavior
found when f(t) is an exponential, which has been ana-
lyzed in Section 5.3 and represented in Figure 7.

Of course, at times t � γ−1/θ, this growth is replaced
by the standard power law decay ∼ 1/t1+θ. Indeed, for
γtθ � 1, the integral (B.21) is approximately equal to

Gr,m(t) � Qθ(0)
∫ ∞

0

yr+1e−γtθydy

=
(r + 1)!
Γ [1 − θ]

γ−r−2t−(r+2)θ. (B.26)
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Substituting this relation into (B.20) yields

gm(t) � θ

t1+θ

m∑

r=1

ar,m
(r + 1)!
Γ [1 − θ]

γ−r−1 ∼ 1
t1+θ

, t�γ−1/θ.

(B.27)
Figure 10 in the text sums up these results by plotting the
time-dependence of the rates gm(t) := ρk,k+m(t) of events
of type s = k + m triggered by a mother of type k for
m = 0 to 5. One can clearly observe the existence of the
intermediate power asymptotics (B.24) for different val-
ues of m. When inequality (B.25) holds, the intermediate
asymptotics are not decaying but growing as a function of
time, as predicted by expression (B.24).
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