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Abstract For a sequence of random variables X1, . . . , Xn, the dependence
scenario yielding the worst possible Value-at-Risk at a given level α for
X1 + · · · + Xn is known for n = 2. In this paper we investigate this problem
for higher dimensions. We provide a geometric interpretation highlighting the
dependence structures which imply the worst possible scenario. For a portfolio
(X1, . . . , Xn) with given uniform marginals, we give an analytical solution
sustaining the main result of Rüschendorf (Adv. Appl. Probab. 14(3):623–632,
1982). In general, our approach allows for numerical computations.

Keywords Value-at-Risk · Dependent risks · Copulas
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1 Introduction

Throughout this paper, we use the language of quantitative risk management
(QRM) as for instance explained in McNeil et al. (2005). A random variable
X is typically referred to as a (one-period) risk corresponding to the unknown
value of an underlying financial or insurance instrument at the end of a
given time period, viewed from today. For a portfolio (X1, . . . , Xn) of risks
with given marginal distributions, we consider the problem of finding the
worst possible Value-at-Risk at the level α for X1 + · · · + Xn under all pos-
sible dependence scenarios for the random variables X1, . . . , Xn. We denote
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this value by wVaRα(
∑n

i=1 Xi). The definition of Value-at-Risk is given in
Section 2. The latter question has been widely studied in the literature, often
formulated in terms of the best possible lower bound for the distribution
function of the sum; see for instance Section 6.2 in McNeil et al. (2005) and
references therein. In risk management this question is motivated by the fact
that the worst-case dependence scenario does not occur under comonotonic
dependence; see Fallacy 3 in Embrechts et al. (2002). We do not emphasize
this issue further. Recent publications on this subject, which also widely discuss
the role of comonotonicity, are Denuit et al. (2005), Embrechts et al. (2003),
Embrechts and Puccetti (2006) and Embrechts et al. (2005), where the problem
is considered for non-decreasing functionals. A more practically oriented
paper highlighting the importance of such questions is Neslehova et al. (2006).
While the above cited papers provide bounds on wVaRα(

∑n
i=1 Xi) and fully

explain the two-dimensional situation finding a worst dependence scenario in
terms of copulas, they all fail to catch the nature of the copula solving the prob-
lem in higher dimensions. In this paper we describe this extreme dependence
scenario extending some geometrical arguments introduced in Embrechts et
al. (2005) for n = 2. This allows us to numerically answer the question at
hand and, for uniform marginal distributions, to provide an analytical solution
equivalent to that presented in Rüschendorf (1982). The latter is the only
known analytical result for continuous marginals. Some applications of our
results are given in Section 4.

2 Preliminaries and Fundamental Results

We briefly summarize the basic tools used in the literature and recall the
fundamental results on the problem of bounding the Value-at-Risk. All the
theorems are formulated for the sum of risks assuming no information about
their interdependence. For further discussions regarding more general func-
tionals and the assumption of partial dependence information, we refer to the
papers cited in the introduction.

2.1 Value-at-Risk and Copulas

For risk management purposes we assume X1, . . . , Xn to have distribution
functions F1, . . . , Fn with losses represented in their right tails; i.e. losses
correspond to positive values of the Xi’s.

Definition 1 Let X be a random variable with distribution FX . For 0 < α < 1
the Value-at-Risk at probability level α of X is its α-quantile, i.e. VaRα(X) :=
F−1

X (α) := inf{x ∈ � : FX(x) ≥ α}.

In risk management applications, typical values for α are 0.95 or 0.99 in the
case of market or credit risk and α = 0.999 for operational risk.
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Given the joint distribution function F(x) = P(X1 ≤ x1, . . . , Xn ≤ xn), x ∈
�

n, the problem of calculating VaRα(
∑n

i=1 Xi) reduces to a computational
issue. In what follows we assume full knowledge about the marginals but
no prior information on the dependence structure. In this context, the idea
of copula allows for a precise formulation of the problem separating F into
one part describing the dependence structure and another part containing the
information on the marginals. We refer to Nelsen (1999) for the basic results
about copulas.

Definition 2 A n-dimensional copula C is a distribution function on [0, 1]n with
uniform-(0, 1) marginals. We denote their class by Cn.

Remark 1 A copula can be equivalently defined as a function C : [0, 1]n →
[0, 1] satisfying C(u1, . . . , ui−1, 0, ui+1, . . . , un) = 0, C(1, . . . , 1, ui, 1, . . . , 1) =
ui and

∑2
i1=1 · · · ∑2

in=1(−1)i1+···+in C(u1,i1 , . . . , un,in) ≥ 0 for u, v ∈ [0, 1]n with
u ≤ v and uj,1 = u j, uj,2 = vj, j = 1, . . . , n.

Sklar’s Theorem yields that, for a C ∈ Cn and marginal distributions
F1, . . . , Fn, the function F(x) := C(F1(x1), . . . , Fn(xn)) is a distribution with
these marginal distributions. Conversely, for any joint distribution function
with given marginals, there is a copula linking them. It is unique if the mar-
ginals are continuous. Any copula C lies between the so called lower and upper
Fréchet bounds W(u) := (∑n

i=1 ui − n + 1
)+ and M(u) := min1≤i≤n ui implying

countermonotonic (if n = 2), respectively comonotonic dependence for the
random variables. Taking �(u) := �n

i=1ui we obtain independence. Finally, we
want to stress that the lower Fréchet bound is not a copula for n ≥ 3.

2.2 Bound on wVaR and Known Optimality Results

Let F− denote the left-continuous version of a distribution function F, i.e.
F−(x) = P(X < x) = F(x−). For C ∈ Cn, univariate distributions F1, . . . , Fn

and s ∈ � we define

σC,+(F1, . . . , Fn)(s) :=
∫

{∑n
i=1 xi<s

} dC(F1(x1), . . . , Fn(xn)),

τC,+(F1, . . . , Fn)(s) := sup
x1,...,xn−1∈�

C

(

F1(x1), . . . , Fn−1(xn−1), F−
n

(

s −
n−1∑

i=1

xi

))

,

where σC,+(F1, . . . , Fn)(s) = P(X1 + · · · + Xn < s) for a portfolio (X1, . . . , Xn)

with marginal distributions F1, . . . , Fn and copula C. The following result
yields distributional bounds for σC,+(F1, . . . , Fn)(s) and VaRα(

∑n
i=1 Xi) when

no information about the underlying dependence structure is available. A
more general version can be found in Embrechts et al. (2003, Theorem 3.1)
and Embrechts and Puccetti (2006, Theorem 3.1), where results are given for
non-decreasing functionals in the presence of partial information.
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Proposition 1 Let (X1, . . . , Xn) have marginal distributions F1, . . . , Fn and
copula C ∈ Cn. Then for every real s and every α ∈ (0, 1) we have that

σC,+(F1, . . . , Fn)(s) ≥ τW,+(F1, . . . , Fn)(s) (1)

implying VaRα

(∑n
i=1 Xi

) ≤ wVaRα

(∑n
i=1 Xi

) ≤ τW,+(F1, . . . , Fn)
−1(α).

Note that for practical applications, the Fi’s are assumed to be known but C is
unknown. A long history exists about the sharpness of these bounds. Makarov
(1981) provided the first result for the sum of two random variables. Later,
using a geometric approach, Frank et al. (1987) restated the result using the
copula language. The pointwise best possible nature of the bounds in the two-
dimensional case was finally proved in Williamson and Downs (1990) for non-
decreasing functionals. Below we reformulate their optimality theorem for the
sum. More historical references can be found in the introduction of Embrechts
and Puccetti (2006).

Proposition 2 Let (X1, X2) have marginal distributions F1, F2 and define Cα̃ ∈
C2 for α̃ ∈ [0, 1] as

Cα̃(u1, u2) :=
{

max{α̃, W(u1, u2)} if (u1, u2) ∈ [α̃, 1]2,

M(u1, u2) otherwise.
(2)

Then, choosing α̃ = α(s) := τW,+(F1, F2)(s), we obtain σCα̃ ,+(F1, F2)(s) = α(s).
Hence, for any α ∈ (0, 1), wVaRα (X1 + X2) = τW,+(F1, F2)

−1(α) is attained
under Cα̃, α̃ = α.

Remark 2

(a) Observe that, given some CL ∈ C2, a similar result holds assuming partial
information C ≥ CL on the unknown copula C and substituting W(u1, u2)

by CL(u1, u2).
(b) Taking CL(u), u ∈ [0, 1]n, n ≥ 3 instead of CL(u1, u2), Eq. 2 is not a copula.

In the no information case, this immediately follows from the fact that the
lower Fréchet bounds is not a copula for n ≥ 3. In the presence of partial
information, we refer to the example by Geiss and Päivinen reported in
Embrechts and Puccetti (2006).

Without mentioning the idea of copulas, Rüschendorf (1982) gave the same
result stated by Frank et al. (1987) extending it for the sum of n uniform
random variables.

Proposition 3 The best possible lower bound on the distribution of
∑n

i=1 Xi with
(X1, . . . , Xn) having standard uniform marginals is min{(2s/n − 1)+, 1} for s ∈
(0, n). This implies wVaRα

(∑n
i=1 Xi

) = n(1 + α)/2 for α ∈ (0, 1).

Till now, this and a similar expression for binomial marginals are the only
known analytical results for the multidimensional problem.
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3 Worst Value-at-Risk Scenarios for the Multidimensional Problem

The above result of Rüschendorf (1982) provides sharpness of the bounds
for the n-dimensional problem for uniform marginals. An analytical gener-
alization of Eq. 2, replacing W(u1, u2) by W(u), u ∈ [0, 1]n, n ≥ 3, does not
lead to sharp bounds for the multidimensional case. Below we take a more
geometric approach. From this point of view, the problem at hand consists in
maximizing the probability of the set Gs := {x ∈ �n : x1 + · · · + xn ≥ s}. We
transport the problem onto the unit square through h : �n → [0, 1]n, h(x) :=
(F1(x1), . . . , Fn(xn)) and denote

As := h(Gs) = {u ∈ [0, 1]n : F−1
1 (u1) + · · · + F−1

n (un) ≥ s}. (3)

By definition, for s ∈ �, we have that wVaRα(s)(X1 + · · · + Xn) = s, when
1 − α(s) := supC∈Cn(1 − σC,+(F1, . . . , Fn)(s)). Let PC denote the probability
induced by a copula C. The worst Value-at-Risk dependence scenario at level
α therefore solves the equality

PC
(

AwVaRα(X1+···+Xn)

) = 1 − α. (4)

3.1 Geometrical Properties of Cα̃ ∈ C2 with α̃ = τW,+(F1, F2)(s)

In the two-dimensional case, applying Proposition 2, we immediately see
that Cα̃ satisfies Eq. 4 if α̃ = α. Moreover, for a uniform portfolio (U1, U2),
Embrechts et al. (2005, Proposition 9) yields that this is the only copula putting
measure 1 − α on AwVaRα(U1+U2) with wVaRα(U1 + U2) = 1 + α. Therefore, in
this case the density of Cα in A1+α is concentrated on the boundary Hα =
A1+α ; see Fig. 1 (left).

Figure 1 highlights the geometric idea underlying the worst scenario
Cα̃(u1, u2). The gray areas represent the sets As for a uniform portfolio
(s=1+α=1.25) and a Lognormal(0.4, 1) portfolio (s=4), respectively. The
boundary of As can be written as As := {(F1(t), F2(s − t)), t ∈ �}. We denote

Fig. 1 Sets As and boundaries As for a two-dimensional uniform portfolio for s=1.25 (left) and
Lognormal(0.4, 1) portfolio for s=4 (right). Together we plot the support Hα of Cα̃ for α̃ = α =
τW,+(F1, F2)(s) and the (upper) supports for α̃ = α1 < α and α̃ = α2 > α
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Hα̃ the support of Cα̃ restricted to [α̃, 1]2. In general dimensions, we refer to
the support restricted to [α̃, 1]n as upper support. The solution of the problem
for the uniform portfolio leads then to an optimizing copula, which upper
support coincides with the boundary A1+α .

Remark 3 The choice α̃ = τW,+(F1, F2)(s) in Proposition 2 implies that Hα̃ lies
in As and is tangent to As. Since Cα̃ ∈ C2, the density on Hα̃ is uniformly
distributed and proportional to its length l(Hα̃), say. Therefore Cα maximizes
the density on As. In fact, a different choice of α̃ would decrease the probability
of As. Trivially l(Hα2

) < l(Hα) for α2 > α, whereas the shape of As implies

l(Hα1
) = l(Hα) + 2

√
2(α − α1) − l(Hα ∩ Ac

s) < l(Hα) i f α1 < α.

3.2 Worst VaR Scenario for a n-dimensional Uniform Portfolio

In this section we consider a uniform portfolio. Similar to the previous section,
the uniform case will lead to an optimizing copula for general marginals.

The solution of the worst VaR question consists of maximizing the prob-
ability of a certain region of �n. As illustrated in the previous section, we
transport the problem onto the n-dimensional unit cube and investigate the
shape of the support of the copulas putting maximal measure on Eq. 3. For
a n-dimensional uniform portfolio and n−1 ≤s≤n, the region of the space
where the probability has to be maximized is As = {u ∈ [0, 1]n : ∑n

i=1 ui ≥ s}
with boundary As = {u ∈ [0, 1]n : ∑n

i=1 ui = s}. For 0 ≤s≤n−1 the problem
has a trivial solution. Because of the uniformity of the marginals, the upper
support of a copula maximizing the probability of As has to lie in As ∩ [α̃, 1]n

for some appropriate α̃ ≥ α� := s −(n −1) with α̃ = α� when n = 2.

Theorem 1 Let α̃ ∈ [α�, 1) and Cα̃ : [0, 1]n → [0, 1] be a function with support
in {u ∈ [0, α̃)n : u1 = · · · = un} ∪ {u ∈ [α̃, 1]n : ∑n

i=1 ui ≥ s} for s ∈ [n − 1, n]. A
necessary condition for Cα̃ to be a copula is that α̃ = ᾱ := 2s/n − 1, i.e. that the
support in [α̃, 1]n lies in Hα̃ := {u ∈ [α̃, 1]n : ∑n

i=1 ui ≥ n(1 + α̃)/2}.

Proof Assume α̃ ∈ [α�, ᾱ] and Cα̃ ∈ Cn with corresponding measure μα̃ . Let
Si := {u ∈ [0, 1]n : α� ≤ui ≤ ᾱ}, i = 1,. . ., n − 1, Sn := {u ∈ [0, 1]n : 1 − (ᾱ − α�)≤
un ≤1} and set Ei = Si ∩ An

s , i = 1, . . . , n. By definition, Ei ⊂ En for all i. Since
Cα̃ is a copula with upper support in {u ∈ [α̃, 1]n : ∑n

i=1 ui ≥ s}, μα̃(E1) =
· · · = μα̃(En−1) = ᾱ − α� whereas μα̃(En) = ᾱ − α�. It immediately follows
that μα̃(Ei) = 0 for i = 1, . . . , n − 1 and α̃ = α� = ᾱ. 
�

Remark 4

(a) Geometrically, Theorem 1 implies that if Cα̃ ∈ Cn, the set

Hα̃ := [α̃, 1]n ∩ A n
2 (1+α̃) =

{

u ∈ [α̃, 1]n :
n∑

i=1

ui = n
2
(1 + α̃)

}

(5)

is symmetric with respect to its center ((1 + α̃)/2, . . . , (1 + α̃)/2).
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(b) Observe that the analytic generalization of (2) with W(u1, u2) replaced by
W(u) has upper support {u ∈ [α̃, 1]3 : u1 + u2 + u3 = 2}.

Next we extend the two-dimensional result of Embrechts et al. (2005,
Proposition 9) to general dimensions and we provide the existence of a copula
with support as in Eq. 5.

Theorem 2 Assume C̄, C̃ ∈ Cn to have supports on Hn
0 and Hn

0 , respectively. Let
μC̃ be the measure induced by C̃. Then for Hn+

0 := {u ∈ [0, 1]n : ∑n
i=1 ui > n/2}

and Hn−
0 := {u ∈ [0, 1]n : ∑n

i=1 ui < n/2} it holds that

μC̃

(
Hn−

0

) = 0 ⇔ μC̃

(
Hn+

0

) = 0,

and the two copulas have the same support.

Proof Assume μC̃(Hn−
0 ) = 0 and μC̃(Hn+

0 ) > 0. Consider the independence
copula � with support [0, 1]n. Since C̄, C̃ ∈ Cn, there exist operators ν, ν̃ : Cn →
Cn with ϕ := ν̃ ◦ ν−1 �= Id such that C̄ = ν(�) and C̃ = ν̃(�). It follows that
μϕ(C̄)(Hn−

0 ) = 0 and μϕ(C̄)(Hn+
0 ) > 0. On the contrary, in order to preserve the

uniformity of the marginals, any operator ϕ̃ : Cn → Cn with μϕ̃(C̄)(Hn+
0 ) > 0,

implies μϕ̃(C̄)(Hn−
0 ) > 0, which concludes the proof. 
�

Theorem 3 Let Cα̃ : [0, 1]n → [0, 1] have support Hα̃ as in Eq. 5 on [α̃, 1]n.
Then there exists a sequence of copulas CN,α̃ ∈ Cn, N ∈ 2�+ 1 such that

Cα̃(u) :=
{

lim
N→∞

CN,α̃(u) if u ∈ [α̃, 1]n,

M(u) otherwise.

is a copula.

Proof Without loss of generality, we consider α̃=0 with H0 =[0, 1]n ∩ An
n/2.

For N ∈ 2�+ 1 we consider the partition I :=[0, 1]=∪N
k=1 Ik, where Ik :=

[ k−1
N , k

N

]
. We identify the set Ik1 × · · · × Ikn with the point (k1, . . . , kn) and

define its measure as follows. For any k = 1, . . . , (N+1)/2 and 1 ≤ k̄ < k we
set the functions

g1(k) :=
∣
∣
∣
{

Ik × In−1} ∩ H(N)
0

∣
∣
∣ , g2

(
k, k̄

)
:=

∣
∣
∣
{

Ik × Ik̄ × In−2} ∩ H(N)
0

∣
∣
∣ ,

where H(N)
0 := {(k1, . . . , kn) ∈ {1, . . . , N}n : n

2 − 1
N <

∑n
i=1 ki ≤ n

2 + 1
N }. Then

we define

f (N)
0 (k1, . . . , kn) :=

⎧
⎨

⎩

f �

(

min
1≤d≤n

kd

)

if (k1, . . . , kn) ∈ H(N)
0 ,

0 otherwise,
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where f �(k) := ( 1
N − (n − 1)

∑

1≤k̄<k

g2(k, k̄) f �(k̄))(g1(k) − (n − 1)
∑

1≤k̄<k

g2(k, k̄))−1.

The above construction defines a copula on the grid {k1, . . . , kn}N . The set
Ik × In−1 denotes the kth slice of [0, 1]n along the first dimension. Therefore
g1(k) counts the number of points on such a slice which also lie in H(N)

0 .
Similarly g2(k, k̄) counts the number of points on H(N)

0 which are on the kth
slice along the first dimension and on the k̄th slice along the second one. By the
symmetry of the support, we could define these functions using any other two
dimensions. Moreover, by definition, all the slices have width 1/N. The idea is
then to consider I0 × In−1 and weight each point in order to have total measure
1/N. In doing this, by symmetry, we assign a measure to all the points lying on
an equivalent slice for any of the other dimensions. We continue with I1 × In−1

assigning a weight only to the missing points. To do this we only have to take
into account the missing points on slice k, i.e. (n − 1)

∑
1≤k̄<k g2(k, k̄) f �(k̄). By

the symmetry of H(N)
0 , we only evaluate slices k = 1, . . . , (N+1)/2. Using f �

we finally assign probability weights to the points with respect of the marginal
constraints.

For any N, by construction, the function CN,0 : [0, 1]n → [0, 1] defined
through

CN,0(u) :=
k(u1)∑

k1=1

· · ·
k(un)∑

kn=1

f (N)
0 (k1, . . . , kn), k(u) := sup

{

k ≥ 1 : k
N

≤ u
}

is a copula. Setting C0(u) := lim
N→∞

CN,0(u) we then obtain that

C0(u1, . . . , ui−1, 0, ui+1, . . . , un) = lim
N→∞

CN,0(u1, . . . , ui−1, 0, ui+1, . . . , un)

≤ lim
N→∞

1/N = 0,

C0(1, . . . , 1, ui, 1, . . . , 1) = lim
N→∞

CN,0(1, . . . , 1, ui, 1, . . . , 1)

= lim
N→∞

k(ui)/N = ui,

and for u, v ∈ [0, 1]n with u ≤ v (componentwise) and uj,1 = uj, uj,2 = vj, j =
1, . . . , n

2∑

i1=1

· · ·
2∑

in=1

(−1)i1+···+in C0
(
u1,i1 , . . . , un,in

)

= lim
N→∞

2∑

i1=1

· · ·
2∑

in=1

(−1)i1+···+in CN,0
(
u1,i1 , . . . , un,in

) ≥ 0.

It follows that the conditions given in Remark 1 are satisfied and C0 ∈ Cn. 
�
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Fig. 2 Sets A3(1+α̃)/2, Hα̃ and Hα̃ for a three-dimensional uniform portfolio. The set Hα̃ with
α̃ = α is the upper support of any copula leading to wVaRα(X1 + X2 + X3)

Remark 5 Similarly as in the above proof, it is possible to construct other
copulas with support Hα̃ . We denote the family of the copulas sharing this
support by Cn

α̃
.

By Theorems 1, 2 and 3, any copula putting probability 1− α̃=1−(2s/n − 1)

on An(1+α̃)/2 has support Hα̃ as in Eq. 5. Figure 2 illustrates these results in the
three-dimensional case.

As a consequence we obtain the result of Rüschendorf (1982) given in
Proposition 3. We restate it here using the language of copulas.

Corollary 1 Let Cα̃ ∈ Cn
α̃

with α̃ = α. Then

PCα
{X1 + · · · + Xn < s} = α (6)

for s = n(1 + α)/2 and the best possible lower bound on the distribution
function of X1 + · · · + Xn for uniform marginals is min{(2s/n − 1)+, 1} for
s ∈ (0, n).

Proof The worst dependence scenario for Value-at-Risk at level α satisfies
Eq. 4. Taking Cα̃ ∈ Cn

α̃
, we obtain PCα̃

(An(1+α̃)/2) = PCα̃
(Hn(1+α̃)/2) = 1 − α̃.

Then equality (4) is satisfied for α̃=α and wVaRα(X1+. . .+Xn) = n(1 + α)/2
which implies Eq. 6. 
�

3.3 Worst VaR Scenario for a General Portfolio

Relying on the solution for the uniform case studied in the previous section, we
provide an answer for a general portfolio with marginals F1, . . . , Fn. Although
we illustrate the case of a three-dimensional portfolio, our arguments remain
valid in higher dimensions. We recall that, for a portfolio (X1, X2), the copula
leading to the worst possible Value-at-Risk wVaRα(X1 + X2) is indeed the
solution of the uniform case for α̃ = α. This follows from the uniformity of the
density on the upper support; see Fig. 1 and Remark 3. In general, the worst
value wVaRα is not attained under a Cα̃ ∈ Cn

α̃
with α̃ = α.
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Example 1 Consider the portfolio (X1, X2, X3) for Xi ∼ Pareto(1/ξi) with
tail distribution function Fi(x) = (1 + x)−1/ξi , i = 1, 2, 3. Assume ξi = 0.7, i =
1, 2, 3. In Fig. 3 (left) we illustrate the surface As for s = 21.4 together with
the upper support Hα̃ of Cα̃ for α̃ = 0.9. On the right we plot As for s = 22.7
with Hα̃ for α̃ = 0.895. Computing the probability of As under these two
dependence structures we obtain

PC0.9 (X1 + X2 + X3 ≥ 21.4) = PC0.895 (X1 + X2 + X3 ≥ 22.7) = 0.1

and therefore the Value-at-Risk of the sum at level α = 0.9 under C0.9 is
smaller that under C0.895.

The message coming from Example 1 is that choosing the upper support
tangent to As, i.e. α̃ = α, in general does not imply a worst dependence
scenario. This is due to the distribution of the density on the support. Indeed
the marginal constraints imply that for n > 2 the density is not uniformly
distributed but concentrated on the border of Hα̃ and more thinly when
reaching the center (n(1+ α̃)/2,. . ., n(1+ α̃)/2). This can be easily seen in the
three-dimensional case looking at the projection of Hα̃ on [0, 1]2.

In Fig. 1 (right) we take α̃ < α. This implies that the measure on the upper
support is greater than 1 − α. Contrary, for α̃ > α, a portion of the support
does not lie in As. In Remark 3 we discussed the two-dimensional situation,
where the density is proportional to the length of the support and every choice
of α̃ different from α leads to a better scenario for the problem at hand. In the
general case, cutting some portion of the support does not necessarily imply
a better scenario. In fact the increment of probability on the boundary could
compensate the reduction in some other region. For α̃ sufficiently small, we
lose too much density on As. Trivially, α̃ > α implies a better scenario. From
the solution of the uniform problem given by Theorems 1, 2 and 3 and the

Fig. 3 Surfaces As for a three-dimensional Pareto(0.7) portfolio with s = 21.4 (left) and s =
22.7 (right). We plot Hα̃ for α̃ = 0.9 on the left and α̃ = 0.895 on the right
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distribution of the probability on its upper support, we immediately obtain the
following result.

Theorem 4 Let (X1, . . . , Xn) be a portfolio with marginal distributions
F1, . . . , Fn. Then wVaRα(X1 + · · · + Xn) is attained under a copula Cα̃ ∈ Cn

α̃
for

some α̃ ≤ α depending on the marginal distributions. Using the same notation
as in Eq. 4, we have that

sup{PCα̃

(
AwVaRα(X1+···+Xn)

) : Cα̃ ∈ Cn
α̃, 0 < α̃ ≤ α} = 1 − α.

Remark 6 In contrast to the two-dimensional case, in dimensions higher than
two a copula Cα̃ leading to wVaRα(X1 + · · · + Xn) depends upon the choice
of the marginals. In fact the region of the support where we lose probability
is given by Hα̃ ∩ {u ∈ [0, 1]n : F−1

1 (u1) + · · · + F−1
n (un) < s} and depends on

F1, . . . , Fn.

4 Applications

In this section we apply Theorem 4 and compute the worst-possible Value-at-
Risk for the sum at level α for a three-dimensional portfolio (X1, X2, X3). The
random variables Xi, i = 1, 2, 3 are Pareto(1/ξi) distributed with tails Fi(x) =
(1 + x)−1/ξi . We solve the problem for α = 0.9, 0.95, 0.99 (typically used for
market or credit risk) and α = 0.995, 0.999 (values used in operational risk)
and this for various model assumptions.

Assumption I Xi ∼ Pareto(1/ξi) with ξ1 = ξ2 = ξ3 = 0.7,

Assumption II Xi ∼ Pareto(1/ξi) with ξ1 = 0.7504, ξ2 = 0.6607 and ξ3 =
0.2815,

Assumption III Xi ∼ Pareto(1/ξi) with ξ1 = 1.1905, ξ2 = 1.3889 and ξ3 =
1.2195.

The main features of these assumptions are: they are all power-tailed,
homogeneous as in I, or heterogeneous as in II and III. Assumption II
corresponds to a finite mean situation whereas III corresponds to an infinite

Table 1 Values of VaRα(X1 + X2 + X3) for Assumption I under Cα, Cα̃ and M

↓ C,
α→ 0.9 0.95 0.99 0.995 0.999 0.9999

M 13.0 21.4 72.3 119.4 374.7 1, 889.9
Cα 21.4 36.7 119.5 196.0 611.1 3, 074.7
Cα̃ 22.7 38.6 123.8 205.2 634.3 3, 120.0
α̃ 0.895 0.948 0.989 0.9948 0.9989 0.99989

In the last row we give the values of α̃ yielding the worst dependence structure and wVaRα(X1 +
X2 + X3)
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Table 2 Values of VaRα(X1 + X2 + X3) for Assumption II under Cα, Cα̃ and M

↓ C,
α→ 0.9 0.95 0.99 0.995 0.999 0.9999

M 9.1 16.0 53.3 87.9 278.3 1, 453.4
Cα 13.6 22.7 70.5 114.1 348.1 1, 749.9
Cα̃ 13.6 22.7 70.5 114.1 360.5 1, 981.0
α̃ 0.9 0.95 0.99 0.995 0.99865 0.999865

mean model. The ξ -values chosen correspond to examples often encountered
in QRM practice. For Assumptions II and III; see for instance Moscadelli
(2004). Based on Theorem 4 and the upper support Hα̃ of Cα̃ ∈ Cn

α̃
, we propose

the following numerical procedure. For given s ∈ � and α̃ ∈ (0, 1), analogously
as in the proof of Theorem 3, for N ∈ 2�+ 1, we discretize the unit cube [α̃, 1]3

through

[α̃, 1] = ∪N
k=1 Ik, Ik :=

[

α̃ + k − 1
N

, α̃ + k
N

]

and we identify the set Ik1 × Ik2 × Ik3 with the point (k1, k2, k3) ∈ {1, . . . , N}3.
Further we consider the sets A(N)

s and H(N)

α̃
as discretized versions of As

and Hα̃ , respectively. We let w ∈ �N3
be a vector containing the probability

weights of the points in [0, 1]3. We then generate a vector f ∈ �N3
with

entry one when the corresponding point lies on [0, 1]3 \ A(N)
s ∩ H(N)

α̃
and zero

elsewhere. Similarly we create a N3 × 3N matrix A providing the marginal
restrictions. Finally we solve the optimization problem

min
w

f T
w, Aw = ( 1

N , . . . , 1
N

)T
, w ∈ [0, 1]N3

. (7)

It follows that s = wVaRα(X1 + X2 + X3) at level α = α̃ + f T
ŵ, where ŵ is

the solution of Eq. 7. Any copula leading to wVaRα has support H(N)

α̃
.

We illustrate the above procedure for the Assumptions I, II and III.
Together with the worst-case wVaRα , in the Tables 1, 2 and 3 we provide
the values under Cα̃ with α̃ = α and for the comonotonic copula M for which
VaRα(X1 + X2 + X3) = VaRα(X1) + VaRα(X2) + VaRα(X3).

Figures 4 and 5 show the densities on A(N)
s ∩ H(N)

α̃
as functions of the

parameter α̃ for Assumptions I and II and levels α = 0.99 and α = 0.9999,
respectively. The starting value for α̃ is larger than α. We can observe that
in both cases the densities increase linearly in α̃ till reaching α. For the two
assumptions we observe different behavior. For Assumption I, the densities

Table 3 Values of VaRα(X1 + X2 + X3) for Assumption III under Cα, Cα̃ and M

↓ C,
α→ 0.9 0.95 0.99 0.995 0.999 0.9999

M 53.6 135.1 1, 111.2 2, 754.2 22, 946.6 492, 468.4
Cα 130.7 320.4 2, 531.2 6, 161.3 48, 905 960, 782
Cα̃ 144.3 351.5 2, 700 6, 500 52, 000 980, 000
α̃ 0.89 0.947 0.989 0.9943 0.99885 0.99988
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Fig. 4 Densities on A(N)
s ∩ H(N)

α̃
for s = 123.8 (α = 0.99) (top) and s = 3, 120 (α = 0.9999) (bot-

tom) as functions of α̃ for Assumption I

continue to increase after α and, once a maximum is reached, they tend to zero.
The α̃ corresponding to this maxima, α̃ = 0.989 (α = 0.99) and α̃ = 0.99989
(α = 0.9999), give the worst dependence scenarios.

For Assumption II, the densities on A(N)
s ∩ H(N)

α̃
have a first maximum

in α̃ = α and a second one for some α̃ > α. In the case α = 0.9 the worst
dependence scenario is implied by the first maximum and the upper support
is tangent to As. For α = 0.9999, the second maximum dominates.

In order to understand the different nature between the two assumptions,
we look at the supports plotted in Fig. 6. The idea is as follows. We set the
upper support tangent to As (with s chosen such that α̃ = α = 0.9) and we shift
it by taking values of α̃ smaller than α. The set A(N)

s ∩ H(N)

α̃
is illustrated for

α̃ = 0.895 and α̃ = 0.885 under Assumptions I and II. Remark that a smaller
α̃ implies a larger cut of the support and an increment of the probability
on [α̃, 1]3. At this point we recall that the density is not homogeneous on

Fig. 5 Densities on A(N)
s ∩ H(N)

α̃
for s = 70.5.8 (α = 0.99) (top) and s = 1, 981 (α = 0.9999) (bot-

tom) as functions of α̃ for Assumption II
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Fig. 6 Upper supports for Assumptions I (top) and II (bottom). In both cases we take α = 0.9 and
we consider α̃ = 0.895 (left) and α̃ = 0.885 (right)

the support and more concentrated when reaching the border. The different
dynamics observed in Figs. 4 and 5 are due to the regions where the support
is cut. In Assumption I (with equal marginals) the support loses probability
in the center. Hence the probability on A(N)

s ∩ H(N)

α̃
decreases only when α̃

is small enough; see Fig. 4. On the other hand, if the tail of one distribution
dominates the others, the cut arises near the border. This is the case for As-
sumption II for instance, where the loss of probability can not be compensated
for small adjustments of α̃. With larger movements of the parameter, the
cutted region includes the central region as in Fig. 6 (bottom/right) and the
probability on A(N)

s ∩ H(N)

α̃
grows again. Besides the region where the loss

of probability occurs, the shape of the set As plays a role. In particular, this
explains the differences arising in Assumption II. For α = 0.99, we observe a
loss of probability for any small adjustment of α̃, which is not compensated
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Table 4 Values for wVaR0.9, wVaR0.999, VaR0.9 under C0.9 and VaR0.999 under C0.999 with the
corresponding scaling factors

ξ wVaR0.9 wVaR0.999
wVaR0.999
wVaR0.9

VaR(C0.9)
0.9 VaR(C0.999)

0.999
wVaR

(C0.999)

0.999

wVaR
(C0.9)

0.9

0.7 22.7 634.3 27.9 21.4 611 28.6
0.8 31.1 1, 360 43.7 29.9 1, 310 43.8
0.9 43.8 2, 940 67.1 41.5 2, 806 67.6
1.0 60.8 6, 350 104.4 57 6, 006 105.4
1.1 84.3 13, 800 163.7 78 12, 850 164.7
1.2 116.0 30, 400 262.1 106.4 27, 490 258.4
1.3 160.4 65, 500 408.4 144.7 58, 805 406.4
1.4 221.0 145, 000 656.1 196.3 125, 793 640.8
1.5 304 310, 000 1, 019.7 266 269, 087 1, 011.6

by the augmentation before the second maximum. The very sharp profile of
As for α = 0.9999 allows the initial loss to be compensated as illustrated in
Fig. 5 (bottom).

As further application of our methodology, we calculate wVaRα(X1 + X2 +
X3) for an homogeneous portfolio (X1, X2, X3). We solve the problem for
α = 0.9, 0.999 and Xi ∼ Pareto(1/ξ), i = 1, 2, 3 for different values of ξ . The
following table gives the results of our numerical computations together with
the scaling factors from wVaR0.9 to wVaR0.999 and from VaR0.9 under C0.9 to
VaR0.999 under C0.999, respectively (Table 4). We observe that the scaling curve
grows exponentially as a function of the parameter ξ . It is moreover interesting
to note that the scaling curve for the Value-at-Risk computed for α̃ = α, i.e.
with tangent upper support, does not differ significantly from the worst one.

Remark 7 The computational complexity of our numerical procedure in-
creases exponentially with the dimension of the portfolio. Therefore, even if
the values obtained are numerically not the exact worst-possible VaRs, in high
dimensions the values obtained under Cα can be used as a first approximation
for wVaRα . More work on the numerical accuracy of the above procedure is
called for.

5 Conclusion

In this paper we extend the geometrical properties of the copulae leading to
the worst-possible Value-at-Risk at level α for the sum of two risks. These
solutions depend upon the probability level α. We solve the problem for an
n-dimensional portfolio and explain how, for n ≥ 3, any worst-case scenarios
Cα̃ depends upon the choice of the marginals. In particular the worst scenarios
are not obtained when the upper support of Cα̃ is tangent to As. However,
when the dimension of the problem becomes high, the copulae with tangent
upper support turn out to be useful in order to approximate wVaRα . We
conclude emphasizing that the results presented in this paper can be easily
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restated substituting As by Aψ
s := {u ∈ [0, 1]n : ψ(F−1

1 (u1), . . . , F−1
n (un)) ≥ s}

corresponding to the Value-at-Risk optimization question for general increas-
ing functionals ψ .
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