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Abstract Electrostrictive laser-induced gratings (LIG) have
been formed in H2 of various pressures (0.5 . . .5 bar) and
with frequencies of the Brillouin modes (sound waves) of
about 14 MHz. Under these conditions, the rotational de-
grees of freedom can only partially follow the temperature
variation from the acoustic oscillation. A model is given,
which completes the linearized fluid dynamical equations
with equations for the rotational state relaxation, separately
for the average relaxation of the states for Ortho-H2 and
Para-H2. Using such a model, the dispersion of sound fre-
quency is reproduced with an accuracy of a few percent.
However, the total dissipation of sound and the observed
strong alternation in peak heights in the temporal evolution
of the LIG intensity is only approximately predicted by the
model.

1 Introduction

Absorption of ultrasound in pure monatomic gases, in the
fluid dynamic regime, originates from the so-called classi-
cal dissipation processes, i.e., heat conduction and shear vis-
cosity. In polyatomic gases an enhanced sound absorption,
beyond classical absorption, is observed; it is attributed to
intramolecular energy transfer [1, 2]. Actually, in frequency
domains where translational and internal degrees of free-
dom, viz. rotations or vibrations, are not in equilibrium with
each other, the sound absorption due to intramolecular en-
ergy transfer may be larger by orders of magnitudes than the
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sound absorption caused by the classical processes of dissi-
pation. This has been noted since long, see Refs. [1, 2] or
Kneser [3] and references cited therein.

In the usual approaches to measure (ultra)sound absorp-
tion, sound is generated by an actuator and, after some prop-
agation in the medium, detected by a sensor, or the sound ab-
sorption is obtained by applying interferometric techniques.
Knowledge of (frequency-dependent) parameters of sound
absorption—besides the classical parameters that are mea-
surable in static experiments—can be obtained in these tech-
niques by varying frequency and/or pressure of the medium.

In contrast to this, in the time-resolved technique using
electrostrictive laser-induced gratings (LIG) [4–7], sound is
generated simultaneously in the whole overlap volume of
the laser beams. In this volume, two sound waves (Brillouin
modes), which counterpropagate in normal direction to the
layers of the electric field strength and build up a standing
sound wave, are generated. Moreover, besides the Brillouin
modes, a Rayleigh mode (density wave at constant pressure)
as well is excited, as was shown in Ref. [4]. Altogether, these
modes build up a transient optical grating in the medium
that can be read out by a cw-laser beam, so that the tempo-
ral evolution of the grating can be recorded. The intensity
of the diffracted probe beam is called LIG signal intensity.
Preferably the medium is transparent for the read-out laser.

In the time-resolved LIG technique, nonclassical parame-
ters of sound absorption can, with limited accuracy at the
stage of investigation as presented in this paper, be deter-
mined in a single experiment. To investigate such a possi-
bility of measurements and to obtain the phenomenology of
the temporal evolutions of LIG in dispersive domains are the
main goals of this article. The investigations were performed
on H2 of various pressures (0.5 . . .5 bar), with frequencies
for the sound generated of about 14 MHz. This corresponds
to the dispersive domain of translational-rotational energy
transfer.
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2 Electrostrictive LIG experiment for the observation
of sound absorption

For the experiments described in this paper, laser beams for
the formation of the LIG are unfocused. This, on the one
hand, reduces the spatial resolution but, on the other hand,
enlarges strongly the propagation time of the sound wave
out of the observation volume. Thus, in the time evolution of
the LIG signal intensity, attenuation from dissipation of the
sound waves can better be distinguished from attenuation by
their propagation out of the observation volume.

The setup used in our LIG experiments to determine the
sound absorption of H2 (or of other gases) is depicted to
scale in Fig. 1. A Quantel YG581C multimode Nd:YAG
laser delivered the LIG forming beams at 1064 nm. The
pulse energy per beam was approximately 450 mJ with pulse
duration of 14 ns (long-pulse option). A template reduced
the beam width to 4 mm. The precise angle of the pump
beams (0.639°) was derived from the observed LIG signal
oscillation frequency (respectively the period T ) recorded

Fig. 1 Experimental setup. A: apertures. AOM: acousto-optic modula-
tor. C: corner cube prisms. Ch: chopper. D: dichroic mirror (see text).
G: gas cell. F: infrared blocking filter. I: interference filter. L: lenses.
M: mirrors. P: pinhole. PD: photodiode. PMT: photomultiplier. R: ar-
gon ion readout laser. T: cardboard beam templates

in Ar and N2, and from the known sound velocity v of these
gases, which leads to the value for the distance Λ between
the grating layers.

The 514-nm readout beam was provided by a Spectra
Physics 2060-5S Beamlok argon ion laser. Focusing optics
kept the read-out beam diameter below 1 mm. The output
power was adjusted between 125 mW and 1 W to accommo-
date with the dynamic range of the detector. The wavelength
had to be chosen off 532 nm because there is some second
harmonic generation in all optical components exposed to
the 1064-nm radiation of the pump beam YAG laser.

Background load to the detector PMT was reduced in
three steps. First, a mechanical chopper wheel synchronized
with the laser pulses cut down the averaged intensity by
a factor of 100. Subsequently an acousto-optic modulator
sliced out a pulse of 10–20 µs, depending on experiment.
Finally the beam was sent through a spatial filter consist-
ing of an f = 200-mm lens, a 100-µm pinhole, and an
f = 300-mm lens. The beam diffracted at the LIG passes
several apertures, a 514-nm interference filter, and a Schott
KG3 infrared blocking filter. In case of small beam angles,
the readout beam passes first the dichroic mirror D. The in-
tensity of the signal beam was detected with a Hamamatsu
R3234-01 high-speed, low-afterpulse photomultiplier tube
(rise time 1.3 ns). A Tektronix TDS 744A digital storage
oscilloscope (500 MHz, 2 GS/s) served as recorder and sig-
nal averager. Typically 400 to 800, if needed occasionally
up to 4000, signal pulses have been averaged. The gas cell
consists of standard 40-mm Klein flange components which
have been equipped with dual-wavelength anti-reflection
coated 2′′ quartz glass windows at the ends. As beam over-
lap within the windows creates strong parasitic signals, the
length of the cell had to be changed depending on the beam
angle used. The maximum cell length used was 1.3 m. The
pressure was monitored with a MKS Baratron membrane
manometer.

3 Theory of LIG formation and decay

The time-dependent LIG signal intensity is proportional to
the square of the time-dependent variation of the refractive
index in the grating, which is formed in the overlap vol-
ume of the laser beams [8]. The time-dependent variation
of the refractive index itself is proportional to the variation
ρ′ = ρ − ρ0 of the local mass density around its temporally
averaged value ρ0. Other variations of physical quantities,
which contribute to a variation of the refractive index, as
variation of the populations of the molecular states, and vari-
ation of the temperature, are assumed to be not of relevance
in our experiments, and they are therefore not considered
here. The geometrical factors, like the extension of the grat-
ing, are not calculated either; they are included in an overall
factor.
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The temporal variation of the mass density in the grating
volume can be calculated by means of the linearized equa-
tions of fluid dynamics for momentum and energy trans-
port. Variables in these equations are ρ′ = ρ − ρ0 and the
variation T ′ = T − T0 of the local temperature T around
the average value T0. With a term added on the right-hand
side (RHS) of the momentum equation, which represents the
electrostrictive force, the equations have the following form
[9]:

∂2ρ′(t, �x)

∂t2
− v2

γ
�ρ′(t, �x) − v2βpρ0

γ
�T ′(t, �x)

− η

ρ0

∂

∂t
�ρ′(t, �x) = −ε0γe

2
�E2, (1)

ρ0cv
∂T ′(t, �x)

∂t
− (cp − cv)

βp

∂ρ′(t, �x)

∂t
− κ�T ′(t, �x) = 0. (2)

Symbols used in (1), (2) are: v is the adiabatic sound veloc-
ity, cp is the heat capacity at constant pressure, cv is the heat
capacity at constant volume, γ is the ratio cp/cv, η is the to-
tal viscosity, i.e., η = (4/3)ηs + ηb , with the shear viscosity
ηs and the bulk viscosity ηb , which enters here as a free pa-
rameter. Furthermore, � is the Laplacian, βp is the thermal
expansion coefficient at constant pressure, κ is the thermal
conductivity, γe = ρ(∂ε/∂ρ) is the electrostrictive constant,
and n is the refractive index.

The electric field E, which results from two beams of a
laser, intersecting at an angle θ , is approximated in (1) by a
δ-function in time. It is considered to be infinitely spatially
extended in the formal representation of (1), in order to still
be able to solve analytically the equations of motion. Finite
extension (in transverse direction) is only considered later in
data analysis through a finite propagation time of the sound
waves out of the observation volume. The electric field in-
tensity E2 has a part, which is independent on the spatial
position, and a spatially dependent part, which contributes
to the term of the RHS of (1). This term is denoted by E2

var;
its strength I is defined according to

E2
var = I cosqxδ(t − t0), (3)

where q is the modulus of the grating vector, q = 2π/Λ,
with the distance Λ between grating layers. (The notation in
(3) is slightly different from the one used in the earlier arti-
cle [6].) Λ is related to the wavelength λ of the grating form-
ing beams by Λ = λ/(2 sin(θ/2)). In general, in the RHS of
(2), also sources of heat, e.g., from absorption of light of the
LIG formation beams, may be introduced. However, in our
experiments, light absorption is not relevant. Also, dissipa-
tive processes as a source of heat are not considered here, as
it is not of linear order in ρ′ and T ′ [9]. (We checked by an
estimate that such contribution actually can be neglected.)

It was shown in Ref. [4] that experimental data of the
time-resolved LIG intensity with N2 and Ar as media, at

frequencies of about 30 MHz, can well be modeled by (1),
(2). As there is no internal molecular energy transfer (Ar),
or there is, in good approximation, thermal equilibrium be-
tween translational states and internal energy states (N2: ro-
tational states), it is justified to insert into the equations the
static values for the specific heat capacities and the sound
velocity. A value for the bulk viscosity is determined in the
case of N2, which takes into account that the observed sound
dissipation is larger than from thermal conduction and shear
viscosity alone. It was shown furthermore in Ref. [4] that
the initial-value problem posed by (1), (2) is solved by a
superposition of two counterpropagating sound waves (Bril-
louin modes) and, with lower amplitude, a spatially station-
ary density variation (Rayleigh mode). This mode is respon-
sible for the experimentally observed odd–even behavior
of the peaks of the LIG intensity; i.e., the odd-numbered
peaks have a somewhat enhanced intensity compared with
the even-numbered peaks.

4 Periodic translational-rotational energy transfer
in H2

When there is slow intramolecular heat transfer between
translational and internal degrees of freedom, as is the case
for H2 in the domain of a few MHz/bar, a somewhat dif-
ferent situation arises. Under these conditions, the rotational
degrees of freedom can only partially follow the tempera-
ture variation from the acoustic oscillation. In consequence,
specific heat capacities—if variations of translational tem-
peratures are considered—are smaller, and the sound veloc-
ity, which is proportional to the square root of the ratio γ of
heat capacities, is larger than in the low-frequency limit.

In order to describe such partial thermal equilibrium, be-
sides the temperature T of the translational motion, an in-
ternal temperature Tint of the partially excited internal de-
grees of freedom is introduced [1]. In extension, tempera-
tures Tint,i (t) for each state of the internal degrees of free-
dom may be considered. In modeling the dynamics, the lin-
earized fluid dynamic equations (1), (2) have thus to be sup-
plemented with equations which describe the relaxation of
the internal temperatures, i.e., in case of H2, the rotational
temperatures. In this work, in order to simplify the data
analysis and to avoid too much arbitrariness in determin-
ing parameters, we model the rotational state relaxation by
including only two processes, each with a relaxation con-
stant. This is thought to refer to the relaxation in Ortho-H2

and Para-H2, respectively. Thus, we introduce two rotational
temperatures Tint,i , i = 1,2.

To describe relaxation, commonly the assumption is
made that the temporal derivative of the relaxing quantity is
proportional to its difference with the corresponding quan-
tity for thermal equilibrium. Thus, in our case,

Ṫint,i = −λi(Tint,i − T ). (4)
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From (4) it follows that the variations of the internal tem-
peratures are time delayed with respect to variations of the
translational temperature. In case of a periodic variation of
the translational temperature, amplitudes of the oscillations
of the internal temperatures are reduced, and the oscillations
are phase-shifted with respect to the translational temper-
ature. In consequence, pressure and mass density oscillate
at different phases. This gives rise to an additional internal
friction, i.e., to a nonvanishing value of the bulk viscosity.
Actually, neglecting heat transfer in zeroth order, the pres-
sure oscillates with the phase of the translational tempera-
ture, whereas the density oscillates with the phase of the to-
tal internal energy, i.e., the sum of the translational and the
intramolecular energy.

Furthermore, when relaxation is present in the system to
be described, the heat transport equation (see (2)) has to be
adapted. The internal energy term is split into separate terms
for translational energy and for intramolecular energy with
the specific heat capacities cv,tr and, from counting degrees
of freedom, cv,int = 2/3cv,tr. Taking into account that the
densities ρ0,1 and ρ0,2 for Ortho-H2 and Para-H2, respec-
tively, are ρ0,1 = 3/4ρ0 and ρ0,2 = 1/4ρ0, one obtains thus
the modified energy transport equation

ρ0cv,tr

(
∂T ′(t, �x)

∂t
+ 1

2

∂T ′
int,1(t, �x)

∂t
+ 1

6

∂T ′
int,2(t, �x)

∂t

)

−cp − cv

βp

∂ρ′(t, �x)

∂t
− κ�T ′(t, �x) = 0. (5)

Primed quantities in (5) are used for the deviations of
quantities from their temporal average. Equations (1), (4),
(5) form the modified system of differential equations,
which is proposed in case of nonequilibrium between trans-
lational and internal degrees of freedom.

5 Solution of the modified linearized fluid dynamic
equations

In a first step of solving the coupled linearized fluid dynamic
equations, the space dependence of ρ′(t, �x), T ′(t, �x), and
T ′

int,i (t, �x) in (1), (4), (5) is split off. This is done under the
assumption noted above that grating layers are infinitely ex-
tended in the y–z plane (symmetry axis of irradiating laser
beams in direction of y-axis). Hence,

ρ′(t, �x) = cosqxρ′(t), T ′(t, �x) = cosqxT ′(t),

T ′
int,i (t, �x) = cosqxT ′

int.i (t).
(6)

In the next step, the functions ρ′(t), T ′(t), and T ′
int,i (t)

are Fourier transformed according to

f̃ (Ω) =
∫ +∞

−∞
f (t) exp(−iΩt) dt.

The Fourier transforms (FT) of (4) are given by

(iΩ + λi)T̃int,i = λiT̃ . (7)

Relations (7) are inserted into the equation for the FT of (5).
The FT ρ̃(Ω) and T̃ (Ω) obey thus the following equations,
where τ i ≡ 1/λi :

Ω2ρ̃ − q2v2

γ
ρ̃ − βpρ0q

2v2

γ
T̃ − iΩ

ηq2

ρ0
ρ̃

= −1

2
q2γeε0I exp(−iΩt0), (8)

[
iΩρ0cv,tr

(
1 + 1

2(1 + iΩτ1)
+ 1

6(1 + iΩτ2)

)
+ κq2

]
T̃

= iΩ
cp − cv

βp

ρ̃. (9)

Substitution of T̃ (Ω) from expression (9) into (8) and the
inverse Fourier transform yields

ρ′(t) = − 1

4π
q2γeε0I

×
∫ +∞

−∞
exp[iΩ(t − t0)]

(Ω2 − ihΩ − k) − klΩ
f (Ω)−im

dΩ (10)

with the notation

f (Ω) = Ω

(
1 + 1

2(1 + iΩτ1)
+ 1

6(1 + iΩτ2)

)
,

h = ηq2

ρ0
, k = q2v2

γ
,

l = cp − cv

cv,tr
, m = κq2

ρ0cv,tr
.

(11)

The integral (10) can be calculated by applying the residuum
technique: the integral path is closed for t < t0 with a half
circle in the lower half-plane and for t > t0 in the upper half-
plane. The poles of the integrand are all in the upper half
plane; the general form for the roots of the denominator in
the integrand is

Ω1 = � + iβ1, Ω2 = −� + iβ1,

Ω3 = iβ2, Ω4 = iβ3, Ω5 = iβ4,
(12)

where �,β1, β2, β3, β4 ∈ �+. Ω1 and Ω2 are, up to the
sign, the complex frequencies of the Brillouin modes, and
Ω3 . . .Ω5 are, up to the sign, the decay constants in the three
contributions to the Rayleigh mode, which decrease expo-
nentially in time.

The residues are given by

Resi = lim
Ω→Ωi

(Ω − Ωi) exp[iΩi(t − t0)]
F(Ω)

≡ Resi,const × exp
[
iΩi(t − t0)

]
(13)
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with the notation

F(Ω) ≡ Ω2 − ihΩ − k − klΩ

f (Ω) − im
. (14)

Summing over the residues Resi of the poles of the inte-
grand, i, i = 1, . . . ,4, one obtains an expression of the form

ρ′(t) ∝ Θ(t − t0) × {
exp

[−β1(t − t0)
]{

sin
[
�(t − t0)

]
− δ1 cos

[
�(t − t0)

]} + δ2 exp
[−β2(t − t0)

]
+ δ3 exp

[−β3(t − t0)
] + δ4 exp

[−β4(t − t0)
]}

(15)

for the temporal variation of the mass density. The quantities
δi in (15), i = 1, . . . ,4, depend on the values of the time-
independent factors Resi,const of the residua, as defined in
the second equation of (13), and Θ(t − t0) is the Heaviside-
function (= 1, t − t0 > 0;= 0, t − t0 < 0).

6 Experimental results and comparison with model

The LIG experiments in H2 have been performed at pres-
sures p = 0.5 bar, 1 bar, 2 bar, and 5 bar. Figures 2a to 2d
show the respective results. They reveal an odd–even behav-
ior of peak intensities, which is stronger for the lower pres-
sures. A “generic” fit to the experimental curves reveals that
they can rather well be reproduced by two contributions os-
cillating at angular frequencies 2� and � , respectively, and
both decaying exponentially. A closer look reveals then that
the � -term shows some deviation from a purely exponential
decay. Such behavior would indeed be given by a function as
derived in (15). However, as is shown below in detail, with
the quantities Ωi and δi determined from the solution of (1),
(4), (5), the deviation from a purely exponential decay of the
� -term is by far too strong. In addition, the various terms
that contribute to an oscillation of the LIG intensity with the
angular frequency � do sum up only very approximately to
the amount demanded by the experimental data.

Comparison of the model and experimental data was
done in the following way: To take into account for the fi-
nite duration of the laser pulse and the finite detector re-
sponse time, model curves were convoluted by a Gaussian
with an FWHM of 14 ns. To take into account the propaga-
tion of the sound waves out of the observation volume, an
overall envelope H = exp(−t2/σ 2) of Gaussian shape was
applied to the simulated density variation. From the data on
sound velocity and the size of the pump beams, the width
parameter σ = 2 µs seemed appropriate; such input exactly
matches the value found from a best fit to the experimental
data. (Neglecting this decay mechanism leads to an increase
of the derived value of β1 of 1.3% in the 0.5-bar case. The
influence is more pronounced when longer decay times are
present, i.e., in the 5-bar case, but remains clearly below 1%
when the corresponding decay time is changed by 10%.)

In a third step, the various quantities in the model were
determined. The ratio l of specific heat capacities is l = 2/3.
For the intersecting angle θ = 0.639° between the laser
beams, one obtains q = 65.87 × 103 m−1. Values for k,m,
and the density ρ0 are determined from tables [10]. Relax-
ation times and bulk viscosity are thus the only unknown
quantities in (10), (11). In the next step, routines of Maple
were used to determine the roots of the denominator of the
integrand on the RHS of (10) and the corresponding residua.
In particular the function “eval”, with passing to the limit
as Ω → Ωi , was used for the determination of residua. To
be safe on the accuracy of the limit procedure, calculations
were done with 40 digits.

The roots depend on values for τi and ηb that are inserted
in the expressions to be evaluated. To proceed here, the fol-
lowing general properties of the model are observed:

1. The angular frequency � depends strongly on τi but only
very weakly on ηb . (ηb is for each single pressure as-
sumed to be a frequency independent quantity.)

2. At the pressure p = 0.5 bar, decay of the leading am-
plitude (dissipation constant β1) is somewhat too strong
even when inserting a vanishing value for ηb . For the
higher pressures, some deficit in the modeled values of
β1 occurs, which may be attributed to bulk viscosity.
However, as experimental data do not fit accurately with
the model, we renounce on determining values for ηb and
insert in general a value ηb = 0.25ηs in the model. This
value compares about with values of the bulk viscosity
determined for other gases beyond a dispersive domain
[4]. At the pressure p = 0.5 bar, the somewhat arbitrarily
chosen value for ηb contributes with 2.6% to the dissipa-
tion constant β1; such value for ηb contributes also little
to β1 for the other pressures.

3. Various pairs of τ1 and τ2 can reproduce the experi-
mentally observed angular frequency � . For the pres-
sure p = 0.5 bar, if τ1 = τ2 is assumed, one obtains
τi = 26.2 ns. This, however, leads at the higher pressures
to relatively large deviations between the experimental
and the theoretical value of � . In order to obtain also
here approximately correct values for the observed dis-
persion, i.e., the variation of the frequency with a varia-
tion of the pressure, we choose τ1 = 24 ns and τ2 = 80 ns
for p = 0.5 bar.

In Table 1, dependent on the pressure, the experimen-
tally determined values for the angular frequency � and
for the absorption coefficient β1, and as well their values
determined with the procedure described above, are noted.
Thereby, it was taken into account that the relaxation times
scale inversely with pressure. Also, the experimentally de-
termined values for the sound velocity v, which is approxi-
mately given (see Ref. [5]) by v = �/q = Λν, and for the
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Fig. 2 Comparison of
experiment and model for the
temporal evolution of LIG
intensity. (a) p = 0.5 bar.
(b) p = 1 bar. (c) p = 2 bar.
(d) p = 5 bar. The temperature
was 295 K. The frequencies in
the modeled curves were
adapted to their experimentally
observed values. Solid lines:
experimental data; dashed lines:
fit as described in text

absorption coefficient μ ≡ β1/ν are noted in Table 1. Ex-
perimental values for � correspond to frequencies between
14.62 MHz (p = 0.5 bar) and 13.74 MHz (p = 5 bar).

The experimental and modeled values of � differ, rel-
ative to the deviations from the frequency that would arise
for pressures close to 0 bar, by a few percent. (For 2 bar,
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Table 1 Experimental and modeled values for the angular frequency
� of sound and the sound absorption coefficient β1 at various ratios
of νexp/p. In addition, the experimental values of the sound velocity v

and the absorption coefficient μexp ≡ β1,exp/νexp are noted. The tem-
perature was 295 K

p [bar] 0.5 1 2 5

νexp/p [MHz/bar] 29.24 14.26 6.97 2.747

�exp [106 s−1] 91.87 89.57 87.62 86.30

� mod [106 s−1] 91.87 89.44 87.67 86.63

β1,exp [106 s−1] 4.23 4.54 3.43 1.70

β1,mod [106 s−1] 4.67 4.25 2.95 1.53

vexp [m s−1] 1395 1360 1330 1310

μexp 0.289 0.318 0.234 0.123

the relative deviation is less than 1%.) The values for μ are
generally about 10% lower than the values given by Petralia
[11]. The comparison of the experimental data for the tem-
poral evolution of the LIG intensity with the modeled data
is depicted in Figs. 2a to 2d. In order to facilitate compar-
ison between experiment and model, the frequencies in the
model data were set equal to the experimentally determined
frequencies.

7 Conclusions

We showed in the present paper that the technique of elec-
trostrictive LIG is well suited to investigate dispersion and
absorption of sound in gaseous media. As LIG is a time-
resolved technique, experimental data contain more infor-
mation on these processes than the standard techniques. This
may especially be useful for frequency domains where trans-
lational and internal degrees of freedom are not in thermal
equilibrium with each other. Under such conditions, a peri-
odic heat transfer between translational and intramolecular
energy occurs, which changes the velocity and the absorp-
tion of sound. Conversely, from determining macroscopic
parameters, such as sound velocity, sound absorption, and
related quantities, data on the energy transfer between the
different degrees of freedom can be inferred.

The experiments described in this paper were performed
in H2 at pressures between 0.5 and 5 bar. The sound fre-
quency was about 14 MHz. In this domain, translational and
rotational degrees of freedom are not in equilibrium with
respect to each other. Especially at the lower pressures, we
observed that odd-numbered peaks in the temporal evolu-
tion of the LIG intensity are strongly enhanced compared
with the even-numbered peaks. This may be attributed to the
formation of a Rayleigh mode (density variation at constant
pressure) of large amplitude in such LIG.

To model the observed behavior, the linearized fluid dy-
namical equations were completed with equations for the
rotational state relaxation, separately for the average relax-
ation of the states for Ortho-H2 and Para-H2. The two relax-
ation constants, in a not fully unique procedure, were deter-
mined in such way that the observed sound velocities at the
various pressures are approximately reproduced.

The model proposed does not reflect the whole phenom-
enology that is observed. There is approximate agreement
between model and data for the observed dispersion: The
relative deviations of the calculated sound velocity (with re-
spect to the difference from its theoretical value at pressures
close to 0 bar) from the experimentally observed values are
reproduced within a few percent. The absorption of sound
in dependence of the pressure is approximately reproduced,
too. Though, at the smallest pressure (0.5 bar), predicted ab-
sorption is somewhat larger than observed, even when the
bulk viscosity is set equal to zero. In consequence, at the
higher pressures, where the predicted absorption is smaller
than what is observed, it is hardly justified to extract values
for the bulk viscosity from the data.

The performance of the model is worst with respect to the
general form of the temporal evolution of the LIG intensity:
The enhancement of the odd-numbered peaks in the tempo-
ral evolution of the LIG intensity, compared with the even-
numbered peaks, is predicted much smaller by the model
than what is observed. Including additional equations, which
describe the relaxation of some single rotational states, does
not essentially improve the situation. Thus, we have to con-
sider the model described here as a first attempt to theo-
retically explain experimental data on the LIG formation in
a dispersive domain where translational and intramolecular
degrees of freedom are not in equilibrium with each other.
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