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Abstract. Wnt signaling has proven to be essential for
neural development at various stages and across species.
Wnts are involved in morphogenesis and patterning, and
their proliferation-promoting role is a key function in stem
cell maintenance and the expansion of progenitor pools.
Moreover, Wnt signaling is involved in differentiation
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processes and lineage decision events during both central
and peripheral nervous system development. Additionally,
several reports point to a role of Wnt signaling in axon
guidance and neurite outgrowth. This article reviews and
consolidates the existing evidence for the functions of
Wnt signaling in neural development.
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Introduction

During the past few years, technical advances and im-
proved methodology have helped to considerably  increase
our understanding of the mechanisms regulating neural 
development. However, our knowledge about neural devel-
opment is still peppered with many unanswered questions.
Various signaling molecules and signal transduction mech-
anisms, cell-cell interactions, as well as the extracellular
matrix (ECM) have been implicated in neural develop-
ment. Slowly, a complex scheme is emerging in which a
plethora of factors and signaling cascades are orchestrated
in a spatiotemporal manner. The signals involved include
members of the transforming growth factor-b (TGF-b) 
superfamily [1] such as the bone morphogenic proteins
(BMPs) [2–4] and the growth and differentiation factors
(GDFs) [5, 6]. In addition, members of the Hedgehog 
family, fibroblast growth factor (FGF), and many other
cues are crucial for neural development [7–11]. 
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In this review article, we focus on the role of Wnt proteins
in vertebrate neural development. After a short introduc-
tion to the Wnt family, we describe the canonical Wnt sig-
naling pathway and discuss the effects of Wnt signaling
on key developmental processes like proliferation, apop-
tosis, stem cell maintenance, lineage decision, differenti-
ation, and axon guidance. Much of the data on Wnt sig-
naling are related to embryonic development, such as the
formation of Spemann’s organizer and dorsalization of
the vertebrate central nervous system (CNS), which in-
volve Wnt signaling [12–15]. Moreover, a great deal of
effort has been put into studies on postnatal requirement
and function of Wnt signaling. Various requirements for
Wnt signaling in different cortical cell populations were
recently reported for postnatal mouse brains [16]. Equally
important are the effects of Wnt signaling in the adult 
organism in cases of signal deregulation or alteration. In
such situations, aberrant Wnt signaling can act as a path-
omechanism in tumorigenesis [17–20]. Furthermore, Wnt
signaling is thought to play an important role in the onset
of Alzheimer’s disease [21–23]. 
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The Wnt family

The Wnt family consists of a group of proteins encoded by
7 known genes in Drosophila and about 19 genes in 
vertebrates. The name Wnt is derived from the Drosophila
gene wingless (wg), which plays a role in segment polarity,
and the mouse gene int-1, which is required for midbrain
and cerebellar formation as well as the generation of
neural crest cells [24–27]. The size of Wnt proteins varies
between 350 and 400 amino acids. They contain around
24 highly conserved cysteine residues most probably 
involved in disulfide bond formation, as is typical for 
extracellular proteins. The importance of Wnt proteins
and their signaling pathways in development is reflected
in the degree of conservation of protein structure across
species [28–30]. Wnt proteins are mostly glycosylated
prior to secretion. Their only lipid modification is palmi-
toylation, which is not strictly required for Wnt activity
[31], but may be involved in tethering of the protein to the
membrane thereby increasing its activity. Overexpression

of unpalmitoylated Wnt possibly overcomes the lack of
membrane tethering [32]. Wnt proteins act in multiple
disparate signaling pathways and bind to cell surface 
receptors to activate signaling cascades. In particular,
three major pathways have been identified, all of which
are thought to signal via Frizzled (Fz) receptors: (i) the
Wnt/b-catenin pathway also referred to as the canonical
Wnt signaling pathway, in which b-catenin – a Drosophila
armadillo related protein – is crucially involved (fig. 1);
(ii) the Frizzled/planar cell polarity (Fz/PCP) pathway,
and (iii) the Ca2+ pathway [33, 34]. 

The canonical Wnt signaling pathway

Extracellular Wnt molecules bind to Fz seven-pass
transmembrane receptors and to low-density lipoprotein
receptor-related proteins (LRP5 or LRP6) to form a
ternary complex [35–38]. This receptor complex induces
the phosphorylation of Dishevelled (Dsh). An alternative

Figure 1. Model of canonical Wnt/b-catenin signaling pathway. Both adherens junctions and the canonical Wnt signaling pathway require
b-catenin. By default, b-catenin is phosphorylated in the glycogen synthase kinase-3b (GSK3b), Axin, APC complex and thus directed into
the ubiquitin/proteasome degradation pathway. Wnt forms together with Frizzled and LRP 5/6 a trimeric complex and activates intracellu-
lar dishevelled (Dsh) by phosphorylation. Dickkopf (DKK) inhibits the formation of the Wnt/receptor complex. Activated Dsh inhibits
GSK3b and thus leads to stabilization and accumulation of b-catenin in the cytoplasm. Stabilized b-catenin is transported to the nucleus
in a concentration-dependent manner. There it activates, together with transcription factors of the TCF/LEF family, the transcription of tar-
get genes. Nemo-like kinase (NLK) phosphorylates TCF and regulates its DNA-binding affinity. Pitx2 acts as a transcriptional repressor
when bound to b-catenin.
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activation of the canonical Wnt signaling pathway via Fz
dimerization only has been proposed from experiments
with Xenopus laevis [39]. Moreover, there is evidence
that Wnt proteins are able to induce phosphorylation of
Dsh via LRP5/6 by pathways other than the canonical,
since phosphorylation of Dsh did not necessarily lead to
b-catenin stabilization [40].
Wnt signaling is regulated at the receptor level by various
regulatory proteins, including LRP5/6-binding factors
(Dickkopfs, DKKs) and secreted Fz-related proteins
(SFRPs) [41–43]. DKKs inhibit the ternary complex 
formation between Wnt, Fz, and LRP5/6, and therefore
inhibit canonical Wnt signaling [44]. Interestingly,
DKK1 has been reported to be a direct transcriptional 
target of the canonical Wnt signaling pathway [45]. This
might point to a feedback loop modulating canonical Wnt
signaling. Moreover, Golan at al. [46] have shown that
human Fz receptor 6 can act as a negative regulator for
the canonical Wnt signaling pathway downstream of the
b-catenin destruction complex (fig. 1). b-Catenin is not
only a key component of the canonical Wnt signaling
pathway, but also serves as a structural molecule that 
anchors the actin cytoskeleton to the intracellular domain
of cadherins [47–49]. As such, b-catenin is also involved in
cadherin-mediated cell-cell adhesion. Adherens junctions
and canonical Wnt signaling possibly require distinct
molecular forms of beta-catenin. While the cytosolic pool
of b-catenin can bind to a-catenin and cadherins, Wnt
signaling is thought to promote a specific conformation
of b-catenin which can bind to certain transcription factors
but not to cadherins [50].
Dsh inhibits the complex formation of Axin, adenoma
poliposis coli protein (APC), glycogen synthase kinase-3b
(GSK3b) and b-catenin. This complex is required for 
b-catenin phosphorylation, which directs the protein into
the proteasome degradation pathway [51, 52]. If not 
degraded, b-catenin accumulates in the cytoplasm. 
Although b-catenin lacks a nuclear localization signal it
can be translocated into the nucleus in a concentration-
dependent manner. Translocation has been shown to be
independent of the classical nuclear transport pathways
that involve Ran or importin [53, 54]. However, b-catenin
is too large for passive nuclear transport. A possible solu-
tion for the nuclear transport problem emanates from the
fact that b-catenin interacts with the androgen receptor
(AR), which might serve as a nuclear transporter. Indeed,
AR agonists affected the nuclear transport kinetics of b-
catenin and the AR in an analogous manner [55].
In the nucleus, b-catenin interacts with high-mobility
group (HMG) box transcription factors, like the T cell
factor (TCF, also known as lymphoid-enhancer factor
LEF), and forms a transcriptional activator complex [56].
This activator complex targets genes such as cyclin D1, 
c-Myc, fibronectin, BMP4, mab-5, and NT-3 [27]. Com-
plex formation between the TCF and b-catenin is inhibited

by a protein called inhibitor of b-catenin and TCF-4
(ICAT), which can bind to b-catenin armadillo repeats in
a manner similar to that of the TCFs [57, 58]. In cells with
elevated b-catenin, ICAT was proposed to sequester a
subpopulation of b-catenin and thus to buffer increased
b-catenin levels in the cytoplasm [59]. Phosphorylation
of TCF/LEF by activated Nemo-like kinase (NLK) inhibits
the DNA-binding affinity of the complex and thus 
indirectly regulates Wnt signaling in the nucleus [60]. Yet
NLK has also been shown to act as a positive regulator of
Wnt signaling in early zebrafish development [61].
Moreover, the factor Pitx2, which is involved in cell type-
specific proliferation, has been shown to be converted
from a transcriptional repressor into a transcriptional 
activator when bound to b-catenin [62]. Overall, the var-
ious levels of regulation of canonical Wnt signaling may
indicate multiple possible interactions with other signaling
cascades, required for differential signal integration. 

Proliferation and apoptosis

Precise regulation of proliferation/apoptosis ratios is 
essential in neural development [63]. Unbalance results in
severe malformations during embryonic development, and
promotes cancer formation postembryonically. In vitro as
well as in vivo studies have shown that Wnt signaling is 
required to expand and maintain neural precursor popula-
tions in the brain and the spinal cord [64–66]. Wnt-1 regu-
lates precursor populations in the mid/hindbrain and is
necessary for its development [67, 68]. Wnt-3a signaling
seems to be involved in hippocampal development by
regulating the size of the caudomedial cortex through
progenitor pool regulation and/or stem cell maintenance
[69]. Moreover, Wnt signaling regulates the size of the
cerebral cortex in the mammalian system [70]. In the
spinal cord, progenitors are specified by BMP signaling
that determines domains of Wnt ligand, receptor, and an-
tagonist expression, resulting in spinal cord patterning
[71]. In these BMP-defined progenitor populations, Wnt
signaling is thought to regulate cell cycle exit and thus
progenitor expansion [70, 72]. Similar proliferative ef-
fects of Wnt signaling have been described for stem cells
and progenitors in various tissues like the skin, intestine,
and the hematopoietic system [31, 73, 74]. 
While most results indicate a proliferative function of
Wnt signaling, there are also reports which claim that
Wnt signaling inhibits proliferation in certain cell types,
such as human endothelial vein cells (HUVECs) [75].
This effect is thought to result from non-canonical
Wnt/Ca2+ pathway signaling that inhibits the proliferative
effects of canonical Wnt signaling [76–78].
Wnt signaling not only affects proliferation but has also
been implicated in apoptosis. In cancer research, for 
example, Wnt signaling has been related to drug resis-
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tance in cancer therapy where vinblastine and vincristine
are used as apoptosis-inducing drugs. The effect of these
drugs has been overruled by Wnt signaling and cell sur-
vival maintained, while inhibition of Wnt signaling by 
expression of dominant-negative TCF4 rendered the cells
responsive to the drugs [79]. Another study on 3T3-L1
cells revealed a TCF4-independent mechanism by which
Wnt signaling inhibits apoptosis. While overexpression
of dominant-negative TCF4 triggered the expression of
apoptotic genes, Wnt signaling upregulated the expression
of insulin-like growth factors (IGF I/II) which mediate
antiapoptotic effects [80]. Moreover, conditional ablation
of b-catenin in the dorsal spinal cord led to increased
apoptosis, although whether this was due to impaired
canonical Wnt signaling or to disturbed cell-cell interac-
tions was difficult to assess [F. Ille, R. Kemler and L.
Sommer, unpublished data]. Canonical Wnt signaling has
been proposed to suppress apoptosis by inhibiting c-
Myc-induced release of cytochrome c and caspase activa-
tion [81, 82]. In addition to the antiapoptotic effects of
canonical Wnt signaling, apoptotic inhibition has been 
attributed to b-catenin-independent Wnt signaling via
Janus kinase (Jnk) [83]. Despite the evidence for anti-
apoptotic effects of Wnt signaling, Wnt may also induce

apoptosis. In particular, Hasegawa and colleagues have
shown that stabilizing b-catenin by conditional APC 
ablation leads to massive induction of apoptosis in neural
crest cells in the mouse model [84]. 

Stem cell maintenance, differentiation, and lineage
decision

Stem cell maintenance and self-renewal are cellular
processes closely associated with proliferation. Given the
role of Wnt signaling in cell cycle regulation, Wnt sig-
naling has not surprisingly also been implicated in the
control of stem cell development [85]. Activation of
Wnt/b-catenin signaling in human and mouse embryonic
stem cells (ESCs) by administration of pharmacological
GSK3b inhibitor maintains their self-renewal capacity as
well as their pluripotency [86]. Exposure of hematopoietic
stem cells to Wnt molecules and sustained expression of
b-catenin in long-term cultures maintains self-renewal as
well as the capacity of these cells to reconstitute the
hematopoietic lineages in vivo [87]. Nonetheless, ablation
of b-catenin seems to impair neither hematopoiesis nor
lymphopoiesis under physiological conditions [88]. For

Figure 2. Wnt signaling in neural crest stem cell development. A gradient of Wnt molecules is established in the dorsal neural tube, which
is involved in neural tube patterning and the generation of the neural crest cell population. Some of the early neural crest stem cells (eNCSC;
blue-colored cells) are thought to become committed to the sensory lineage (blue arrow) in response to canonical Wnt/b-catenin signaling
in the dorsal neural tube. Delaminated eNCSCs migrate toward their homing positions. At these positions, NCSCs respond to local signals
and are involved in the generation of structures such as the dorsal root ganglia (DRG), the autonomic ganglia (red arrow), and structures
of the skin (black arrow), and others.
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these processes, the data suggest either an alternative 
rescue pathway or the involvement of a factor upstream of
b-catenin in the Wnt signaling cascade.
The effects of Wnt signaling on stem cells seem to be 
diverse. While it inhibits neural differentiation and main-
tains pluripotency in ESCs [86, 89], it can also promote
differentiation in other stem and progenitor cells [85].
Marretto et al. [90] identified a TCF-dependent reporter
gene in differentiating cortical neurons during develop-
ment, suggesting a potential role of Wnt/b-catenin signal-
ing in the differentiation process. In agreement with this,
Wnt-7a signaling induces differentiation in neural precur-
sor cells (NPCs) of the neocortex [91]. This process 
reduces the NPC pool at late developmental stages (E13.5)
whereas NPCs at earlier developmental stages (E10.5) do
not seem to differentiate in the presence of Wnt. Recently,
Wnt-3a has been reported to promote differentiation into
the neural and astrocyte lineage by inhibiting neural stem
cell maintenance [92]. Moreover Wnt/b-catenin signaling
is required for neural differentiation in ESCs [93]. 
In neural crest stem cells (NCSCs), Wnt signaling has
been linked to cell fate decision (fig. 2). Neural crest cells
generate various cell types of the peripheral nervous 
system (PNS) as well as craniofacial, skin, and heart struc-
tures [94]. These cells are derived from the border of the
neural plate adjacent to the ectoderm, and are strictly 
dependent on Wnt signaling [95, 96]. Wnt/b-catenin 
signaling regulates cell fate decisions in early neural crest
stem cells (eNCSCs) by driving these cells into the sensory
lineage, rather than affecting the population size. Hari at
al. [97] have shown by cell type-specific gene ablation
that loss of b-catenin-function in NCSCs prevents sensory

ganglia and melanocyte formation in vivo [97]. Intrigu-
ingly, b-catenin-deficient NCSCs emigrate and proliferate
normally in culture, but they fail to acquire a sensory 
neuronal fate [97]. Conversely, a b-catenin gain-of-
function study shows that, in vivo, continuous Wnt/b-
catenin signaling in NCSCs leads to sensory neurogenesis
at the expense of all other neural crest derivatives [98].
However, stabilized b-catenin does not affect NCSC 
migration and proliferation. Consistent with the in vivo
data, practically all mutant cells lose NCSC features and
adopt a sensory fate in cell culture. Although all eNCSCs
are Wnt responsive, only a subpopulation of the cells 
generate sensory cells in vivo, indicating the presence of
factors counteracting Wnt activity [85]. The development
of the hippocampus, and in particular the generation of
dentate gyrus granule cells, also appears to be regulated
by LEF1/TCF transcription factors [99]. Similar effects
have been reported for skin stem cells, in which b-catenin
signaling determines differentiation into follicular and
epidermal lineages [100, 101]. Taken together, these 
results underline the role of Wnt signaling in lineage 
decision, but the molecular mechanisms remain to be 
resolved.

Axon guidance and neurite outgrowth

One essential aspect in CNS development is ‘wiring,’ a
process which involves patterning, migration, axon 
guidance, and synapse formation. As mentioned before,
Wnt molecules have been implicated in morphogenesis,
where they establish tissue patterning together with other

Figure 3. Guidance of commissural axons in the developing spinal cord. (a) Commissural axons of certain neurons are repelled by the 
dorsal bone morphogenetic protein (BMP) gradient (blue) that originates from the roofplate (RP). At the same time, the axons are attracted
by the ventral sonic hedgehog (SHH) gradient in the floorplate (FP). Therefore, commissural axons extend ventrally toward the floorplate.
(b) Once the axons reach the floorplate, they cross it and turn rostrally. After turning toward the head, the axons extend along a Wnt-4 
gradient until they reach their target area and form synapses.



CMLS, Cell. Mol. Life Sci. Vol. 62, 2005 Review Article 1105

proteins like sonic hedgehog (SHH) and BMPs. In the
early neural tube, for example, BMP4 expressed in the
roofplate and SHH expressed in the floorplate generate
two dorsoventral countergradients which influence
proneural gene expression. Wnt-1 and Wnt-3a are 
expressed in the dorsal neural tube at later stages, and are
thought to determine proneural domains of the dorsal
neural tube by mechanisms which still remain to be 
elucidated [102, 103]. Wnt-4, however, is expressed in the
ventral neural tube and has been related to axon guidance
in commissural axons [104]. Commissural axon migration
is repelled from the roofplate by BMP signaling, and at
the same time, these axons are attracted toward the floor-
plate by SHH. Once these axons reach the floorplate, they
cross it, turn rostrally, and extend toward the brain
(fig. 3). Lyuksyutova et al. [104] have found Wnt-4 to be
expressed in a rostrocaudal gradient in the floorplate,
which attracts postcrossing commissural axons. Likewise,
commissural axons which lack the Wnt receptor Fz3 
exhibit rostrocaudal guidance defects in postcrossing
commissural axons [104]. Since these results have not
been tested in Wnt-4 knockout animals, the direct 
involvement of Wnt-4 in axon guidance remains to be
proven. Nevertheless, evidence from invertebrate systems
favors the hypothesis that Wnt molecules can act as guid-
ance molecules. In Drosophila, Wnt-5 seems to fulfill a
guidance function. By signaling through the Derailed 
receptor expressed in the growth cones, Wnt-5 acts as a
chemorepellent [105–107].
In vertebrates, ablation of Ryk, the mammalian homo-
logue of Drosophila Derailed, leads to axon guidance 
defects in vivo [108]. Unlike Derailed, Ryk acts as a Fz
coreceptor and forms a ternary complex with Fz and
Wnt-1. It also mediates TCF activation induced by Wnt-1
and is able to bind to Wnt-3a. Moreover, Ryk is required
for neurite outgrowth in dorsal root ganglion neurons, 
induced by Wnt-3a [108]. Similarly, Wnt-7a has been 
described to remodel axon spreading and branching 
in developing cerebellar granule cells [109]. Axonal 
remodeling involves MAP-1B, a microtubule-associated
protein that has been identified as substrate for GSK3b
and implicated in axonal outgrowth [110]. Upon GSK3b
inhibition, the amount of phosphorylated MAP-1B 
decreases in the cells, a process that naturally occurs prior
to axonal remodeling and leads to changes in microtubule
dynamics. Recently, Ciani et al. [111] have shown that the
Wnt/b-catenin signaling component Dsh also induces 
axonal remodeling and stabilizes microtubules in devel-
oping neurons. Intriguingly, this process seems to involve
neither b-catenin nor TCF factors, suggesting an alterna-
tive regulatory pathway for canonical Wnt signaling,
downstream of GSK3b. Similar evidence comes from 
experiments in neuroblastoma [112]. Here, GSK3b and
Axin have been reported to promote neurite outgrowth in
a b-catenin-independent manner.

Conclusion

The roles of Wnt signaling in neural development are
manifold, and seem at times contradictory. While one of
its most important functions is promotion of prolifera-
tion, in some contexts, Wnt signaling is able to inhibit it.
Similarly, apoptosis is abolished by Wnt signaling in cer-
tain cases whereas in others it is induced. As much as Wnt
signaling is responsible for stem cell maintenance, it is to
a similar extent essential for differentiation and lineage
decisions, axon guidance, and neurite outgrowth. With
every newly described aspect of Wnt signaling, more
questions arise. Some answers to these questions may lie
in understanding the intrinsic status of a cell that reflects
its ‘history’ and that is modified depending on the posi-
tion of the cell in the organism at a given timepoint. In
other words, the effects of Wnt signaling are tissue and
cell type specific and represent the results of combinato-
rial signal integration in an environment of dynamic 
signaling networks.
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