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Abstract Neurons in the central nervous system establish,
via their axons and dendrites, an extended network that
allows synaptic transmission. During developmental mat-
uration and process outgrowth, membrane turnover is nec-
essary for the enlargement and subsequent growth of axons
and dendrites from the perikarya to the target cell (con-
stitutive exocytosis/endocytosis). After targeting and syn-
apse formation, small synaptic vesicles are needed for the
quantal release of neurotransmitters from the presynaptic
terminal with subsequent recycling by regulated exocyto-
sis/endocytosis. An investigation of the onset of the ap-
pearance of mRNA and protein in dissociated cultures of
neurons from mouse hippocampus or from chick retina has
shown an early abundance of proteins involved in exocy-
tosis, such as syntaxin 1, SNAP-25, and synaptotagmin 1,
whereas dynamin 1, a protein necessary for clathrin-me-
diated endocytosis, can be detected only after neurons have
established contacts with neighboring cells. The results re-
veal that constitutive membrane incorporation and regu-
lated synaptic transmitter release is mediated by the same
neuronal proteins. Moreover, the data exclude that dy-
namin 1 takes part in constitutive recycling before synapse
formation, but dynamin 2 is present at this stage. Thus,
dynamin 2 may be the constitutive counterpart of dynamin
1 in growing neurons. Synapse establishment is linked to
an upregulation of dynamin 1 and thereby represents the
beginning of the regulated recycling of membranes back
into the presynaptic terminal.
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Introduction

In mature neurons, synaptic vesicles continuously recycle
within the presynaptic nerve terminal. This cycle includes
the fusion of synaptic vesicles with the plasma membrane
and transmitter release by exocytosis followed by endo-
cytic membrane internalization. The regulated exo-/endo-
cytosis is thought to be mediated by presynaptic proteins.
These proteins include the members of SNARE proteins
involved in exocytic events (for a review, see Bruns and
Jahn 2002) and a group of proteins including dynamin,
amphiphysin, and endophilin involved in endocytic events
(Herskovits et al. 1994; McPherson et al. 1996; Higgins
and McMahon 2002; Reutens and Begley 2002).

However, membrane expansion and retrieval have to oc-
cur during neuronal development along the processes, at
the tip of growing processes, and during the establishment
of synapses. These mechanisms underlying diverse altera-
tions within neuronal growth cones have been the subject
of intense investigation. Many of these investigations have
centered on the cytoskeleton, which displays significant
changes during growth cone elongation (Letourneau 1996).
Other studies have focused on the involvement of recep-
tor proteins in ion channels (Contestabile 2000), adhesion
molecules (Walsh and Doherty 1997), guidance molecules
(Cook et al. 1998), or neurotrophins (Huang and Reichardt
2001). Additionally, the removal, translocation, and addi-
tion of membrane (and their proteins) must be in the
transformation of the growth cone into a neuronal process
and, later on, into a mature synaptic terminal. Although
key proteins for both pathways have been named (Jahn
et al. 2003), the exact mechanisms of membrane extension
(exocytosis) and retrieval (endocytosis) in living neurons are
still poorly understood in developing neurons.

In-situ and in-vitro studies have been shown that pre-
synaptic proteins involved in exocytosis are expressed
during neuronal development and undergo extensive re-
distribution prior to and during synapse formation (e.g.,
Bergmann et al. 1991; Catsicas et al. 1994; Grabs et al.
1994; Grosse et al. 1998) and are transported together as
distinct packets (Ahmari et al. 2000). Several proteins have
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been shown to mediate membrane expansion during out-
growth (Steiner et al. 2002). The cleavage of other proteins
by clostridial neurotoxins inhibits axonal (Osen-Sand et al.
1993; Igarashi et al. 1996) and dendritic (Grosse et al.
1999) growth. Moreover, constitutive membrane recycling
is reported not to be restricted to the nerve terminal but to
occur in cycles of exo-/endocytosis over the whole axonal
surface (Matteoli et al. 1992; Kraszewski et al. 1995).
However, conflicting data from neuroendocrine pheochro-
mocytoma cell lines (PC12) indicate that neurite extension
can occur, although known members of the exocytic
machinery are absent from specialized strains of these
cells (Leoni et al. 1999; Grundschober et al. 2002).
Additionally, data from null-mutant mice suggest that, in
the absence of either VAMP2 (synaptobrevin 2; Schoch
et al. 2001) or SNAP-25 (Washbourne et al. 2002), synaptic
transmission is decreased, although normal axonal out-
growth and synaptic targeting still occurs.

Whereas the main focus of the previous investigations
has been on the exocytic machinery, little is known about
the involvement of soluble presynaptic proteins used in
endocytosis, such as dynamin, amphiphysin, and endophi-
lin, in dendrite and axon outgrowth and synapse formation.
Although dynamin and amphiphysin are established text-
book members of clathrin-mediated endocytosis, endophi-
lin (Ringstad et al. 1997) is thought to be necessary for lipid
modification at the plasma membrane during endocytosis
(Huttner and Schmidt 2000), and the blockage of en-
dophilin has been shown to interfere with clathrin “un-
coating” (Gad et al. 2000) but not with neurotransmission
(Verstreken et al. 2002). However, multiple isoforms of
dynamin and endophilin are differentially expressed in the
central nervous system (Cook et al. 1994; Nakata et al.
1993; Ringstad et al. 2001). In-situ expression data for
dynamin and amphiphysin in chick retinotectal neurons
have suggested a delay between the upregulation of these
proteins compared with presynaptic proteins involved in
exocytosis (Bergmann et al. 1999; Grabs et al. 2000). In-
terestingly, a delayed appearance of dynamin has also been
found during motor neuron development and neuromus-
cular synaptogenesis (Noakes et al. 1999). The growth
cones of neurons treated with amphiphysin antisense-
probes collapse (Mundigl et al. 1998). Nevertheless, the
specific functions of these endocytic proteins in imma-
ture neurons and during synapse formation remains to be
determined.

Materials and methods

Animals

All experiments were carried out in accordance with the
guidelines published by the Swiss Academy of Medical
Sciences) and the Swiss Academy of Natural Sciences
regarding the use of animals for experimental procedures.

White Leghorn chicks (embryonic day 10, ED10) and
mouse embryos (ED17) were used. Chicks were taken
from termed eggs, whereas mother mice were anesthetized

with Vetanarcol (Pentobarbital 100 mg/kg body weight),
and their embryos were removed by Caesarian section.

Cell culture

Primary cultures were established from the hippocampi of
ED17 mice or from retinae of ED10 White Leghorn chicks.
Single-cell suspensions were prepared by mechanical and
enzymatic dissociation in Neurobasal medium supplement-
ed with B27 solution (Invitrogen, Basel, Switzerland). The
cells were suspended at a density between 100,000 and
500,000 cells/cm2 in poly-D-lysine-coated plastic dishes
(Nunc, Wiesbaden, Germany) and kept for up to 21 days in
culture.

Single-cell reverse transcription/polymerase
chain reaction

Cultivated cells were chosen under visual control under a
Leica DM-IRBE microscope and picked up with a 15-μm
glass capillary (WPI, Aston, UK). Single cells were trans-
ferred into a proteinase/SDS/RNase inhibitor solution and
heated for 5 min at 95°C for lysis and enzyme inactivation.
Reverse transcription (RT) and polymerase chain reaction
(PCR) were performed in single tubes by using the One-
Step RT-PCR system (Qiagen, Basel, Switzerland). There-
after, specific first-round primers for all tested protein
sequences were added to the solution. A second run of PCR
with nested primers used only one pair of primers for a
specific protein in each tube.

First-round primers for the mouse hippocampus were as
given below.

Protein Clone Forward primer Reverse primer
Beta-actin NM_007393 CCCTGAAGTACCCCATTGAACATG CCTCAGGGCATCGGAACCGCT
Amphiphysin
1

NM_175007 GTATGGACGGGAAGATGTAAAGAT CTGGGCAGGGGAGAAGG

Dynamin 1 NM_010065 TGCCGCAGATCGCCGTGGT TCAGGTCCAACTTGGTGA
TGAC

Alpha-adaptin X14971 TCCGGCTCATCAACAACGCTATCA GCCGCCCGCTGCCTCAC
Endophilin 2 U58885 GGGGCCGAAGGGACCAAACT GCCGTGCAGCATCCCCTC

ATAC
Syntaxin 1a D45208 ACGGCCAAGGACAGCGATGAC TGGTACTTGACGGCCTTCTT

GGTG
Synaptotagmin
1

NM_009306 GCTGAACTGCCCGCCCTGGAC GCTCTGCGCCGGTGCTGTT
GTAG

Nested primers for the mouse hippocampus were as
follows.

Protein Clone Forward primer Nested primer
Beta-actin NM_007393 GATCTGGCACCACACCTTCTAC GCACAGCTTCTCTTTGATG
Amphiphysin 1 NM_175007 CTAAGCGCAGCAGGAAG TGACGTAAAAGCCAACTCGA
Dynamin 1 NM_010065 GGCGTCCCCTGGTCCTG GGTGCGCTGACCCTGGG
Alpha-adaptin X14971 GTGCCGCCCTATGCCTACTG ACACTCCACTAACCGCCCTT

TCAC
Endophilin 2 U58885 CATGGCAAGGAACTAGGTGGAGA GGGGCCGGGGCTTGAACT
Syntaxin 1a D45208 TCCCCGAACCCCGATGAGA AGAGGCAAAGATGGCAGGG

TTCC
Synaptotagmin 1 NM_009306 CCACCGGAAAACCCTCAATC AGCCACCCACATCCATCTTCT
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First-round primers for the chick retina were as below.

Protein Clone Forward primer Reverse primer
Beta-actin NM_205518 CCCTGAAGTACCCCATTGAACACG CCTCGGGGCACCTGAACCTCT
Amphiphysin
1

X60422 GTCCAGAAACGCCTCAACC TAATCCTGCCTTCATCTTTT
CTTT

Dynamin 1 XM_415501 TGCCGCAGATCGCCGTGGT TAAGATCCAGCTTAGTGA
TGAC

Synaptotagmin
1

S64957 ATGGTGAGTGAAAGTCAT GTAAATTGCTCATTGAAA

Nested primers for the chick retina were as follows.

Protein Clone Forward primer Nested primer
Beta-actin NM_205518 GATCTGGCACCACACTTTCTAC GCACAGCTTCTCCTTGATG
Amphiphysin 1 X60422 ACATGAAGACGGGCATC CATCACATTTCTCACCAA
Dynamin 1 XM_415501 GGCGTCCGCTGGTCCTG GGTGCGTTGCCCTTGAG
Synaptotagmin 1 S64957 GGAGGAGGAGGAAAAGAAGAT GAATAATTCCAACCAGAAGC

To compare dynamin 1 and dynamin 2 in the mouse
hippocampus different primers were used. First-round prim-
ers were as given below.

Protein Clone Forward primer Reverse primer
Dynamin
1

NM_010065 CCCGGCGTCCCCTGGTCCTG ACGTCCCGCGCATCTGTG

Dynamin
2

NM_007871 TACCCCGAGAAGGACCAGGCAGAG TGGCGCAGAGAAGGGGTCGT
TGTT

Nested primers for the mouse hippocampus were as
follows.

Protein Clone Forward primer Nested primer
Dynamin 1 NM_010065 CACCGGCACCAACAAGGGCATTTC CCGAGTTGGCAGGGGACACAGC
Dynamin 2 NM_007871 CAGGCTCAGCGGCGGGACGAC GGCGCTGTGGAGTGGGGCTGTG

Immunostaining of primary cultures

For immunocytochemical detection, cell cultures were
fixed for 30 min with 4% paraformaldehyde in 0.1 M
phosphate buffer saline (pH 7,4). Fixed cultures were per-
meated with 0.1% Triton X-100 for 30 min. For immu-
nofluorescence, mouse monoclonal or rabbit polyclonal
antibodies recognizing dynamin 1 (Transduction Labora-
tories), dynamin 1 (DG1, kindly provided by P. DeCamilli;
see Butler et al. 1997), synaptotagmin 1 (clone 41.1, kindly
provided by R. Jahn; see Brose et al. 1992), and SNAP-25
(SMI-81, Sternberger Monoclonals) were diluted 1:100 in
goat serum dilution buffer (20 mM NaPO4 pH 7.4, 15%
normal goat serum, 450mMNaCl) and incubated overnight
at 4°C. Antigen/antibody complexes were visualized by
using Alexa 488- or Alexa 546-conjugated goat anti-rabbit
or goat anti-mouse IgGs 1:100 for 2 h (for further details,
see Grabs et al. 1994; Grosse et al. 1998, 1999). The cul-
tures were examined and photographed by using a Leitz
DM-IRBE microscope equipped with epifluorescence.

For ultrastructural analysis, cultures were fixed with 2%
paraformaldehyde and 0.5% glutaraldehyde in 0.1 M
cacodylate buffer (pH 7.2) for 30 min. Cultures were pro-

cessed for pre-embedding staining by the avidin-biotin-
complex technique (for further details, see Grosse et al.
1998). Sections were postfixed with 1% OsO4, counter-
stained with 4% uranyl acetate and 0.2% lead citrate, and
examined in a Zeiss EM10 electron microscope.

Results

Low density cultures were established either from embry-
onic mouse hippocampus (ED17) or from embryonic chick
retina (ED10). For investigation of the developmental
appearance of the mRNA of synaptic proteins, single cells
were kept under controlled in-vitro conditions. Two dif-
ferent stages of neuronal development were compared:

1. neurons grown in isolation with no connections to
neighboring neurons (Fig. 1a) and

2. neurons with established connections to one or more
adjacent neurons (Fig. 1b).

Fig. 1 Selection of single cells. Single neurons either grown in
isolation (a) or integrated in a neuronal network (b) were chosen as
described. By means of micropipettes with a 15-μm tip containing
phosphate-buffered saline (PBS), target cells were localized (c),
picked up by negative pressure in the pipette (d), and transferred
into Eppendorf tubes filled with RNase protection medium
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All cells were taken between day-in-vitro 5 (DIV5) and
16 (DIV16) from the culture system. In order to withdraw
single cells out of the culture, fine capillaries were drawn
out to give tips with a diameter of 15 μm. Capillaries were
placed under microscopical control beside the chosen neu-
rons (Fig. 1c). Single cell bodies were picked up by neg-
ative pressure by using an UltraMicroPump II (WPI) and
immediately transferred into RNase protection medium
(Fig. 1d).

mRNAwas extracted from these single cells and reverse-
transcribed. cDNA was then amplified by two rounds of
multiplex RT-PCR in the same cell for beta-actin (control),
for proteins involved in endocytosis (amphiphysin 1, dyna-
min 1, alpha-adaptin, endophilin 2), and for proteins in-
volved in exocytosis (syntaxin 1, synaptotagmin 1). In the
chick retina, we tested for beta-actin, amphiphysin 1,
dynamin 1, and synaptotagmin 1.

In the mouse hippocampus, all cells with established
contacts exhibited mRNAs for all tested endo- and exocytic
proteins (Fig. 2a). The results for cells grown in isolation
were similar for most of the protein mRNAs, which were
abundant in these cells. In contrast, in isolated neurons
without a neuronal network, we were never able to detect a
signal for dynamin 1 (Fig. 2b, lane 4).

The results from cultures of chick retina cells were
identical to those from the mouse hippocampus. Cells
with established contacts revealed signals for all tested
mRNAs (Fig. 3a), whereas cells lacking contacts to
neighboring cells were devoid only of dynamin 1 mRNA
(Fig. 3b, lane 4).

In order to determine the differential expression of
dynamin isoforms 1 and 2, we investigated their presence
in the mouse hippocampal system. Interestingly, we found
that dynamin 2 was expressed in neurons with and without
synaptic contact (Fig. 4, lanes 3, 4), whereas the data for
dynamin 1 was identical to that described above (Fig. 4,
lanes 1, 2).

To verify the data obtained by RT-PCR at the protein
level, we investigated the expression of proteins by using
the immunocytochemical double-fluorescence technique.
The analysis of the distribution for synaptotagmin 1 and
dynamin 1 in the mouse hippocampus revealed that the
pattern of immunostaining was strictly stage-dependent.
Early developmental stages (DIV5) revealed an immuno-
signal for synaptotagmin 1 in the cell body and neuronal

Fig. 3 Single-cell RT-PCR from chick retina (lane 1 size marker).
As found in the hippocampus, we could detect beta-actin (Actin),
amphiphysin 1 (Amph), and synaptotagmin 1 (Syt) in cells with con-
tacts (a) and in cells without contacts (b). Dynamin 1 (Dyn) could be
found in neurons connected to neighboring neurons (a, lane 4) but
was missing in cells without contacts (b, lane 4)

Fig. 2 Single-cell RT-PCR from mouse hippocampus (lanes 1, 5
size markers). Identified pyramidal cells from mouse hippocampal
cultures were used in order to detect differences in the mRNA
content between neurons with and without established contacts to
neighboring neurons. Although transcripts were found for beta-actin
(Actin), amphiphysin 1 (Amph), alpha-adaptin (Adap), endophilin 2
(Endo), syntaxin 1 (Syx), and synaptotagmin 1 (Syt) in cells with
contacts (a) and in cells without contacts (b), dynamin 1 (Dyn)
transcripts were detected in cells with neuronal contacts (a, lane 4)
but were missing in cells without contacts (b, lane 4)

Fig. 4 Differential appearance of dynamin isoforms in mouse hip-
pocampus (lane 1 size marker). Mouse hippocampal cultures were
used to detect differences in mRNA expression between dynamin
isoforms 1 (Dyn1) and 2 (Dyn2). Neurons with established contacts
to neighboring neurons (+) expressed both mRNAs (lanes 2, 4).
Cells without contacts (-) exhibited no transcripts for dynamin 1
(Dyn1-, lane 3), whereas transcripts for dynamin 2 (Dyn2-) were
detectable (lane 5)
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processes, whereas dynamin 1 was not detectable (Fig. 5a,
b). If cells were kept in culture for more then 2 weeks
(DIV16) and developed a neuronal network, double-stain-
ing showed a similar expression pattern for synaptotagmin
1 and dynamin 1 in the cell bodies and neuronal processes
(Fig. 5c, d). In agreement with the data from the mouse
hippocampus, we found a stage-dependent expression pat-
tern of SNAP-25 and dynamin 1 in the chick retina. Again,
early developmental stages (DIV6) were immunostained
for SNAP-25, a protein known as t-SNARE in the pre-
synaptic terminal, and were devoid of dynamin 1 (Fig. 6a,
b). Cells that were grown in culture for longer times
(DIV15) and that had visible contacts to adjacent cells

showed equivalent immunoreactivity for SNAP-25 and
dynamin 1 in the same neurons (Fig. 6c, d). At the ultra-
structural level, we found dynamin 1 localized throughout
the presynaptic terminal in DIV 13 neurons with staining of
synaptic vesicles and the plasma membrane (Fig. 7).

Taken together, our results reveal that exocytic protein
mRNA is present in all investigated cells at all stages. Data
from the chick retina and the mouse hippocampus show
that mRNA transcripts are also present for endocytic pro-
teins (chick: amphiphysin 1; mouse: amphiphysin 1, alpha-
adaptin, and endophilin 2) in all preparations. Dynamin 1
has however only been detected in cells with established
neuronal contacts, whereas dynamin 2 has been found in

Fig. 5 Immunostaining of
mouse hippocampal cultures.
Mouse hippocampal cultures
express synaptotagmin 1 (a) in
the cell body and processes from
early stages of development
(DIV5 day-in-vitro 5), but no
dynamin 1 (b) can be detected at
this stage. Later stages (DIV16)
exhibit a similar immunostain-
ing for synaptotagmin 1 (c) and
for dynamin 1 (d). Bars 20 μm
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all the investigated cells from our mouse hippocampal
cultures.

Discussion

The data from this study reveal two main aspects of neu-
ronal development. On the one hand, single-cell multiplex
RT-PCR has detected that all tested mRNAs, with the
exception of dynamin 1, are abundant even at early stages
of neuronal development. On the other hand, dynamin 1
has only been detected once neurons have established
connections to neighboring cells, whereas the ubiquitously

expressed dynamin isoform 2 is detectable before synapse
formation.

In addition to the active reconstruction of microfilaments
(Letourneau 1996; Tseng and Wirtz 2004), early stages of
neuronal maturation and process outgrowth are character-
ized by the incorporation of newly synthesized membrane
(Ahmari et al. 2000; Zakharenko and Popov 2000), which
is transported as so-called constitutive vesicles to the
growth cone. It remains a matter of discussion whether
vesicles for the enlargement of the membrane surface are
identical to the synaptic vesicles that are found in mature
synapses for the release of transmitters (Leoni et al. 1999;
Grundschober et al. 2002). Our results are of relevance to

Fig. 6 Immunostaining of chick
retinal cultures. Cultures taken
from chick retina express
SNAP-25 (a) in the cell body
and processes from early stages
of development (DIV6). Only
faint staining of dynamin 1 (b)
can be detected in cell clusters
(arrow) but none in isolated
neurons or growth cones at this
stage. Later stages (DIV15) ex-
hibit similar immunostaining for
SNAP-25 (c) and for dynamin 1
(d). Bars 50 μm
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this debate and to findings that have revealed the existence
of spontaneous exocytosis during neurite extension along
the processes (Gao and Van den Pol 2000). We have found
that most of the tested proteins, including the plasma
membrane anchors (t-SNAREs) syntaxin 1 and SNAP-25,
are expressed at these early stages, and thus it is tempting to
speculate that constitutive and synaptic vesicles share a
similar set of membrane proteins.

We have also found that dynamin 1 mRNA and protein
are not detectable in any of the tested cells from the two
studied culture systems before the establishment of synap-
tic contacts. Interestingly, the results are strictly stage-re-
lated (contacts to other neurons being present or absent),
depending on the density of neurons, and are not time-
dependent. As we have shown previously in the retino-
tectal system of the chick in situ, a significant delay occurs
between the onset of the expression of exocytic proteins
and that of endocytic proteins (Bergmann et al. 1999, 2000;
Grabs et al. 2000). Shortly after synapse formation, how-
ever, endocytic proteins are upregulated to fulfill their role
in the recycling of membrane from the plasma membrane
back to the presynaptic terminal (Südhof 2004). We have

found, by studying single cells, that amphiphysin 1 mRNA
is available in isolated neurons, but that dynamin 1 mRNA
is first detectable after synaptogenesis with neighboring
cells. Previous studies have shown that the blocking of
dynamin by mutant isoforms or by peptides leads to an
arrest in endocytosis (Shupliakov et al. 1997; Damke
et al. 2001), but that membrane recycling occurs earlier
(Matteoli et al. 1992; Kraszewski et al. 1995). Our data thus
exclude that dynamin 1 is part of the machinery of mem-
brane recycling during neurite growth. However, dynamin
2 is expressed before synapse formation.

The appearance of dynamin 1 mRNA and the presence
of known components of endocytosis thus mark a time-
point at which neurites stop growing and start recycling
their plasma membrane. Our data have revealed that dy-
namin 1 is specific for the regulated recycling of synaptic
vesicles after synapse formation, whereas dynamin 2 may
act as the constitutive counterpart of dynamin 1.
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