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Abstract Numerous phase I and II clinical trials testing
the safety and immunogenicity of various peptide vac-
cine formulations based on CTL-defined tumor antigens
in cancer patients have been reported during the last
7 years. While specific T-cell responses can be detected
in a variable fraction of immunized patients, an even
smaller but significant fraction of these patients have
objective tumor responses. Efficient therapeutic vacci-
nation should aim at boosting naturally occurring anti-
tumor T- and B-cell responses and at sustaining a large
number of tumor antigen specific and fully functional
effector T cells at tumor sites. Recent progress in our
ability to quantitatively and qualitatively monitor tumor
antigen specific CD8 T-cell responses will greatly help in
making rapid progress in this field.
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The concept of defined therapeutic cancer vaccines

The identification of tumor-associated antigens recog-
nized by cytolytic T lymphocytes (CTLs) at the molec-
ular level formed the basis for the design of well-defined

therapeutic cancer vaccines. Indeed, a growing number
of phase I and II clinical trials are being performed and
reported during the last decade. Some of the most often
used approaches to experimental vaccination in human
cancer patients include the use of synthetic peptides
administered either free in aqueous solution or together
with adjuvants, highly purified recombinant proteins,
recombinant viral or bacterial vectors and autologous
dendritic cells either loaded with peptides, proteins, or
infected with recombinant vectors or even fused with
tumor cells. In contrast to all the other vaccine delivery
systems for CTL-defined antigens, peptides are by far
the simplest compounds that lend themselves to rigorous
chemical definition and pharmacological formulation.
However, at the same time, peptides by themselves are
rather weak immunogens. Hence the need to add im-
mune adjuvants to boost their immunogenicity. In this
minireview we will focus on the recent reports on clinical
trials of peptide vaccination (Table 1). The majority of
these trials share two common outcomes. On the one
hand, specific immune responses were induced in a
variable proportion of vaccinated patients, ranging from
about 50% to 80% in some reports. On the other hand,
a smaller proportion of vaccinated patients had mea-
surable clinical benefit. In general the rate of clinical
responses is not superior to 10–20%.

The hurdles for cancer vaccines based on CTL-defined
tumor antigens

Although therapeutic vaccination in cancer patients
does lead to the induction of specific immunity in a
significant but variable proportion of patients, consis-
tent immunization leading to induction of CTL re-
sponses in all vaccinated patients remains to be
achieved. More importantly, the low but significant level
of clinical efficacy in the trials reported thus far suggests
a lack of correlation between specific immunity mea-
sured in blood cells and antitumor effect. Thus, the
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hurdles ahead for the development of effective thera-
peutic cancer vaccines are considerable and include (1)
identification of ‘‘universal’’ tumor rejection antigens,
(2) optimization of vaccination procedures, (3) quanti-
tative monitoring of Ag-specific CTL responses, (4)
identification of the type of protective CTL response(s),
and (5) understanding tumor escape pathways.

The ideal tumor antigen for vaccination

Such antigens should display selective expression by
all tumor cells and not by normal tissues; their

expression should be essential for tumor cell survival;
they should be targeted by both CD8 and CD4 T
cells; and their recognition should be restricted by the
most frequently expressed HLA alleles. Moreover, the
corresponding peptides should be efficiently processed
by the tumor cells and achieve a high density as
MHC-peptide complexes at the surface of the tumor
cells, and the level of immunological tolerance to these
antigens should be minimal. It is clear that, for the
time being, there are no tumor antigens that fulfill
these stringent conditions. Thus, there is room for
tumor antigen identification. In the meantime, the
relatively large number of tumor antigens allows us to

Table 1 Clinical trials of tumor antigenic peptide-based vaccination in mostly, but not exclusively, metastatic melanoma

Peptide HLA Adjuvant CTL Tumor
response

Reference

MAGE-A3168–176
Same peptide or recombinant
minigene virus

A1 None Not detected4/9 regressors
and 1/14 progressors

7/25 [42] [13]

Melan-A26–35

Tyrosinase1–9
Tyrosinase368–376
gp100280–288gp100457–466
Influenza matrix58–66

A2 None or
GM-CSF

3/62/60/60/6 3/3 [43]

Melan-A27–35 A2 IFA 12/1815/18
by IFN-c release

0/23 [24]

gp100209–217 A2 IFA 2/8 1/19 [25]
gp100209–217(T210 M) A2 IFA 10/11 0/11 [25]
gp100209–217(T210 M) A2 IL-2+IFA 3/19 8/195/12 [25]
MUC-1 peptide
conjugated to KLH

A1,
A2,
A11

Detox-B 7/11 Not reported [44]

gp100209–217(T210 M) A2 IFA±IL-12 33/38 by IFN-c ELISA Inconclusive [45]
Tyrosinase368–376 (370D) 37/42 by tetramer

assay
HPV16 E711–20, E786–93
Pan-DR binding peptide

A2 IFA ND 2/19 [46]

Bcr-abl breakpoint
peptides (5 peptides)

Various QS-21 Undetectable CTL
proliferative responses

Not reported [47]

Tyrosinase peptides A1, A2,A3 GM-CSF 4/7 1/5 [48]
HPV E712–20 A2 IFA 10/16 3/18 [49]
HER-2369–384, 688–703, 971–984 A2 GM-CSF 10/15, 5/15, 12/15 Not reported [50]
gp100209–217(T210 M)

+ HPV16 E711–20

A2 IFA 28/29 Not applicable [14]

gp100209–217(T210 M)

and Melan-A26–35(A27L)

±gp10044–59

A2DRB1*0401 IFA 18/19 (gp100) and 0/18
(Melan-A de novo)7/10
(gp100)0/10
(new anti-Melan-A)

0/221/19 [51]

MAGE-A12170–178 Cw*0702 IFA Not detected 1/9 [52]
gp100209–217(T210 M)

Melan-A26–35 (A27L)

Tyrosinase368–376 (370D)

A2 IFA+SD-9427
(Progenipoietin)

7/10 by IFN-c to at least
one or more peptides11/12
by tetramer assay (after
in vitro stimulation)

Tumor free
at study entry
4/15 relapsed
with a median
follow-up
of 20 months

[53]

One to four
tumor-associated peptides

A2 or A24 IFA 7/14 by IFN-c ELISA;
8/12 by serology (IgG)

No objective
tumor responses
reported

[54]

Melan-A27–35 A2 Peptide
pulsed autologous
PBMCs + rhIL-12

12/18
15/18 by IFN-c
release

7/20 [55]

gp100209–217(T210 M)

+ gp100280–288(A288 V)

A2 IFA and systemic
anti-CTLA-4

11/116/11 3/14
+ severe
autoimmunity

[56]
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choose those that come close to meeting the criteria
listed above.

Therapeutic cancer vaccine optimization

The main goal today for the optimization of therapeutic
cancer vaccines should be to achieve a 100% success rate
in the induction of specific T-cell mediated immunity. In
this regard, the use of molecularly defined tumor anti-
gens for vaccination offers the opportunity to monitor
the optimization process. The variables include the
choice of the delivery system—naked DNA, re-
combinant vectors, short peptides, long peptides, re-
combinant protein or autologous dendritic cells loaded
with an appropriate form of antigen—dose, route of
administration, frequency of vaccination, and immuno-
logical adjuvants. Although, some of these parameters
could be addressed in HLA transgenic mouse models,
the most direct way for vaccine optimization is the
implementation of well-planned, small phase I/II clinical
trials with defined immune response endpoints.

Monitoring tumor antigen-specific CTL responses
in vaccination

Unlike most prophylactic vaccines against infectious
pathogens that aim at the induction of a predefined level
of neutralizing antibodies, therapeutic vaccines based on
CTL-defined antigens aim at inducing a specific CTL
response. Simple and reliable assays to accurately mea-
sure antibody levels have been available to clinical
immunologists for decades. They are routinely used in
the clinics as well as in large scale clinical trials of vac-
cination [1, 2, 3]. In sharp contrast, assays to measure
directly the numbers as well as the quality of antigen-
specific T cells only became available 7 years ago. The
introduction of soluble fluorescent class I MHC–peptide
complexes, commonly known as tetramers or multimers,
allowed us to enumerate CTLs and determine their rel-
ative frequencies directly ex vivo using flow cytometry
[4]. However, they do not provide information on the
differentiation stage of antigen-specific T cells. In this
regard, the parallel development of single cell cytokine
release assays has allowed us to simultaneously assess
the effector capabilities of T cells of defined specificity.
ELISpot assays for cytokine-producing T cells enable
the rapid and relatively sensitive enumeration of T cells
but do not provide direct information on the fraction of
antigen-specific T cells with cytokine production capa-
bility. Flow cytometry–based cytokine-release assays
offer the possibility to combine detection of single
cytokine-secreting cells, with identification of those T
cells binding defined class I MHC–peptide multimers.
Two such assays exist which have been shown to fulfill
this purpose: intracellular cytokine staining [5] and
cytokine release assays [6]. The latter permits the visu-
alization of intact cytokine-secreting antigen-specific

T cells which can be isolated by flow cytometry cell sorting
for analysis or for adoptive transfer immunotherapy [7].
In addition to cytokine production, T cells can also be
characterized in terms of their cell surface phenotype. The
expression of surface antigens such as CD45RA,
CD45RO, CD27, CD28, and CCR7 allows us to establish
correlations with their functional state of differentiation
[8, 9, 10]. The expression of molecules associated with
T-cell effector function can also be quantitated by intra-
cellular staining such as perforin and granzyme B.
Although, there are no single cell assays for the detection
of multimer+ T cells with lytic function, some recent
methods designed to detect target cell apoptosis by flow
cytometry may be useful to develop them [11].

Despite the advances in recent years in accurate
monitoring of antigen-specific CD8 T-cell responses,
progress is still needed. The assays remain labor inten-
sive and are difficult to standardize. The high number of
cells required limits the number of assays that can be
performed. Moreover, the circulating lymphocyte pool is
the only compartment readily accessible for monitoring
specific T-cell responses, although it may not be the most
relevant in terms of establishing correlations with clini-
cal tumor response. An important limitation at present
relates to the sensitivity of these assays which is in the
order of approximately 1 in 10,000 CD8+ T lympho-
cytes. It is becoming clear that the frequency of tumor
antigen-specific CD8 T cells is frequently below this limit
of detection, even after repeated vaccination. Hence the
common practice in monitoring current clinical trials of
vaccination of introducing steps of in vitro antigen-dri-
ven amplification of T cells before measurement of
multimer+ T cells, or of specific cytokine release assay.
Thus, most of the valuable information on in vivo fre-
quency and functional differentiation of T cells upon
vaccination is lost. A solution to this problem has been
devised recently in a study quantitating the frequency of
MAGE-3.A1–specific T cells before and after vaccina-
tion [12, 13]. It involves two or three rounds of in vitro
stimulation with peptide in multiple single cell dose
microcultures combined with detection of expanding
specific T cells in individual microcultures by flow
cytometry with multimers. This method has been used to
estimate the frequency of antigen-specific T cells, al-
though it is not a complete limiting dilution analysis.
While this approach is quite labor intensive, it allows us
to monitor T-cell activation at low T-cell frequencies.
Hopefully, the learning process on vaccine optimization
will lead to the consistent induction of high frequency
systemic CTL responses in the future so that their direct
and accurate monitoring with the modern tools de-
scribed above will be possible.

We have used fluorescent HLA-A2 multimers carry-
ing several of either cancer/testis or melanocyte/mela-
noma differentiation antigenic peptides to assess the
naturally acquired CTL response to various tumor
antigens. To establish baseline values of frequency of
tumor antigen specific T cells in cancer patients,
we measured the numbers of multimer+ T cells in
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peripheral blood lymphocytes (PBMCs) in series of
HLA-A2 metastatic melanoma patients. The experi-
mentally determined sensitivity of multimers varies from
1 in 2,000 to 1 in 10,000 CD8+ PBMCs (0.05–0.01%).
Memory T cells directed against dominant viral epitopes
such as influenza matrix 58–66, Epstein-Barr virus
BMLF 280–288, or CMV pp65 495–503 are readily
detectable above this detection limit in a high propor-
tion of individuals. In contrast, generally, multimer+ T
cells for gp100 [14], tyrosinase [15], MAGE-A10 [16],
NY-ESO-1 [17], or SSX-2 [18] can not be detected
directly ex vivo, but only after expansion by repeated in
vitro stimulation with the antigenic peptide on appro-
priate antigen-presenting cells. Some exceptions involv-
ing the tyrosinase antigen have been reported in
advanced metastatic melanoma patients. In one case,
the multimer+ T cells were functionally anergic [8],
whereas in the second report they were functionally
active ex vivo [9].

In marked contrast to most tumor antigen specific T
cells which are not detectable ex vivo by multimer-as-
sisted flow cytometry, an abundant repertoire of HLA-
A2/Melan-A/MART-1 multimer+ T cells was identified.
Indeed, we were able to trace the origin of this repertoire
to a particularly efficient positive selection in the human
thymus [19]. It appears that the large numbers of Melan-
A/MART-1 multimer+ T cells are maintained
throughout the adult life of healthy individuals at high
numbers (on average approximately 1 in 1,400 CD8+ T
cells) in a functionally naı̈ve state. Thus, T cells specific
for the HLA-A2-Melan-A/MART-1 antigen are easily
detectable by multimer staining directly ex vivo [20, 21].
At some time during melanoma tumor progression some
of these T cells are activated and recruited to the tumor
site [22]. In PBMCs from melanoma patients, their mean
frequency was not significantly different from that
measured in healthy individuals but variable propor-
tions of these cells exhibited an activated/memory phe-
notype. Remarkably, the mean frequency of Melan-A/
MART-1 multimer+ T cells found in fresh metastatic
lymph node cell suspensions was of 1 in 30 in two thirds
of HLA-A2 melanoma patients, that is 25-fold higher
than in the peripheral blood. Moreover, close to 100%
of these cells exhibited an activated/memory phenotype,
characterized as CD45RAlow and CCR7-. Thus, the
Melan-A/MART-1 constitutes an excellent model anti-
gen in humans to monitor the naturally acquired antit-
umoral T-cell responses as well as to precisely monitor
the response elicited by various strategies of vaccination.

We have also assessed the Melan-A/MART-1–spe-
cific CD8 T cell response to experimental vaccination
[23]. We conducted phase I clinical trials in advanced
melanoma patients using Melan-A/MART-1 peptide,
either the wild-type peptide or a modified peptide ana-
logue, alone or in combination with immunological ad-
juvants. Peptides (100 lg/dose) were injected at 4-week
intervals, either alone or mixed with one of two adju-
vants approved for human use: the AS02 (provided by
GlaxoSmithKline, Belgium), which consists of the

saponin QS21, monophosphoryl lipid A, and an oil-in-
water emulsion; and Montanide (Seppic, Paris, France)
which contains the mineral oil Drakeol and anhydro
mannitol octadecanoate. To date we have completed the
analysis of 49 vaccinated patients. All patients tolerated
well the various vaccine formulations. Measurement of
the frequency of A2/Melan-A/MART-1 multimer+

CD8+ lymphocytes in blood samples obtained before
and after peptide vaccination showed increases follow-
ing vaccination in 13 patients. One patient, who received
the wild-type Melan-A/MART-1 peptide with the AS02
adjuvant, had a 23-fold expansion and reached a plateau
frequency of A2/Melan-A/MART-1 multimer+ lym-
phocytes of about 2% of the circulating CD8+ T-cell
compartment. The remaining patients had more modest
expansions ranging between twofold and twelvefold the
prevaccination multimer+ T-cell frequency. Interest-
ingly, the latter were in the group immunized with
peptide and Montanide. In fact, 12 out of 17 patients in
this group had a detectable specific CTL response to
peptide inoculation. Other clinical trials of vaccination
with Melan-A/MART-1 and gp100 peptides have also
shown the efficiency of Montanide as an adjuvant for
CTL induction in melanoma patients [24, 25]. We also
assessed the evolution of the cell surface phenotype of
A2/Melan-A/MART-1 multimer+ T lymphocytes over
time after peptide vaccination. Interestingly, we could
identify significant phenotype shifts in Melan-A/
MART-1–specific T cells in all five patients with detect-
able frequency increases. This consisted of up-regulation
of HLA-DR and 2B4 as well as down-regulation of
CD45RA, CCR7, and CD27 in variable proportions of
multimer+ T lymphocytes [23].

A detailed analysis of the T-cell response in the pa-
tient who had the most marked increase in A2/Melan-A/
MART-1 multimer+ T cells following immunization
revealed interesting features that may provide valuable
hints to future monitoring of cancer vaccines: (1) As
assessed by ELISPOT and intracellular staining, the
absolute number of Melan-A/MART-1–specific T cells
able to secrete IFN-c increased >50-fold upon vacci-
nation. This represented about 40% of the specific cells
that could rapidly secrete IFN-c, while no IL-4 pro-
duction could be detected under the same experimental
conditions [26]. When tested directly ex vivo after sort-
ing from the postimmunization blood sample, Melan-A/
MART-1–specific cells were weakly cytolytic but became
highly active after in vitro restimulation. Together, these
results are in agreement with the effector cell surface
phenotype of the specific cells. They indicate that large
numbers of functionally active tumor-specific CD8+ T
cells could be obtained and maintained at high levels
after in vivo activation by repeated peptide-based vac-
cination. (2) Importantly, we documented a distinct in-
crease in the functional avidity of antigen recognition
and in tumor reactivity in the postimmune Melan-A/
MART-1–specific populations as compared to the pre-
immune specific cells [27]. Improved antigen recognition
correlated with an increase in the half-life of A2/peptide
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multimer interaction with the TCRs as assessed by ki-
netic analysis of A2/Melan-A/MART-1 multimer
staining decay. (3) Ex vivo analysis of the TCR Vb
repertoire used by Melan-A/MART-1–specific CD8+ T
cells at different time points during vaccination revealed
that the response was the result of asynchronous
expansion of several independent T-cell clones. Some of
them could also be identified in TILs recovered from a
metastatic tumor site excised during the vaccination
period [27]. These data thus provide further evidence for
a tumor peptide-driven immune response resulting in the
selection of high avidity T-cell clones of increased tumor
reactivity that appear to evolve independently within
oligoclonal populations of specific T cells. (4) Some
subcutaneous and lymph node metastases regressed
completely and even a lung metastasis underwent partial
objective regression, while the remaining subcutaneous
and visceral metastases were stabilized for a period of
1 year. Together, these results raise the possibility that a
strong and systemic specific T-cell response may exert
potent antitumor effects.

Concluding remarks

The 1980s were characterized by efforts to understand
the role of T cell—mediated immunity in tumor recog-
nition and culminated with the cloning of the first CTL-
defined human tumor antigen in 1991 [28]. One decade
later, a relatively large volume of clinical results with a
variety of cancer vaccines based on molecularly defined
tumor antigens has been acquired. Despite the relative
success of vaccination at inducing specific immunity,
clinical efficacy remains marginal. Thus, there are
important hurdles to overcome to attain a high level of
induced immunity in every vaccinated patient and, more
importantly, good clinical efficacy. The number of
parameters in the process of vaccine optimization is
large and imposes the need to carry out a large number
of exploratory clinical studies to discriminate between
multiple possible vaccination strategies [29]. To quote
only one recent example of the complexities involved in
even the most simple form of vaccine delivery, the pep-
tides, it was shown that the use of a 11 amino acid
peptide instead of the exact 9 amino acid antigenic
peptide led to the induction of a peptide-specific re-
sponse biased for immunodominant epitope that is not
expressed naturally by the tumor [30, 57]. Although
preclinical studies in transgenic HLA mice, or even in
nonhuman primates, might be of help, the most direct
way remains to perform carefully planned phase I clin-
ical trials of vaccination with defined tumor antigens.
Only the systematic and standardized quantitative and
qualitative monitoring of antigen-specific T-cell re-
sponses will allow us to make rapid progress towards
optimal vaccination procedures in humans.

Great progress in monitoring antigen-specific class
I–restricted T-cell responses in humans has been made in
parallel with progress in human tumor immunology.

Nevertheless, monitoring of the local immune responses
is still at its early stages. Recent studies have shown the
feasibility of using fluorescent multimers in fresh or
frozen tissue sections [31, 32, 33, 34]. Moreover, the
limited amount of tumor material requires the adapta-
tion of sensitive molecular tools to monitor gene
expression in different clinical situations and identify
potential correlates of immune responsiveness [35].

Multiple mechanisms of tumor escape from immune
pressure have been well documented in recent years [36].
In fact, tumor escape has been identified as one of the
major stumbling blocks in the search for clinically
effective cancer vaccines [37]. Strategies targeting
multiple tumor antigens and including T-cell help should
help in coping with this problem. In this regard, the
identification of tumor antigens targeted by CD4 T cells
is progressing at a fast pace [38, 39]. MHC class II–
peptide multimers are becoming available and should
facilitate the monitoring of specific CD4 T-cell responses
[40, 41]. Finally, vaccination at the early stages of cancer
progression may greatly minimize the chances for
tumors to escape.
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