
Adaptive filtering of MPEG system streams
in IP networks

Michael Hemy & Peter Steenkiste & Thomas Gross

Published online: 24 June 2006
Springer Science + Business Media, LLC 2006

Abstract Congestion and large differences in available link bandwidth create
challenges for the design of applications that want to deliver high quality video
over the Internet. We present an efficient adaptive filter for MPEG System streams
that can be placed in the network (e.g., as an active service). This filter adjusts the
bandwidth demands of an MPEG System stream to the available bandwidth without
transcoding while maintaining synchronization between the streams embedded in
the MPEG System. The filter is network-friendly: it is fair with respect to other
(TCP) competing streams and it avoids generating bursty traffic. This paper presents
the system architecture and an evaluation of our implementation in three different
operating environments: a networking testbed in a laboratory environment, a home-
user scenario (DSL line with 640 Kbit/s), and a wide area network covering the
Atlantic (server in Europe, client in the US). Moreover we examine the network-
friendliness of the adaptation protocol and the relationship between the quality of
the received continuous media and the protocol’s aggressiveness. Our architecture is
based on efficient MPEG System filtering to achieve high-quality video over best-
effort networks.

Keywords MPEG System streams . Adaptive filtering . System architecture .

Performance evaluation . TCP friendly

Multimed Tools Appl (2006) 30: 1–26
DOI 10.1007/s11042-006-0004-8

NO; No. of Pages

Effort sponsored in part by the Advanced Research Projects Agency and Rome Laboratory, Air
Force Materiel Command, USAF, under agreement number F30602-96-1-0287. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon.

The views and conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or implied,
of the Advanced Research Projects Agency, Rome Laboratory, or the U.S. Government.

M. Hemy : P. Steenkiste : T. Gross (*)
Department of Computer Science,
Carnegie Mellon, Pittsburgh, PA 15213, USA

Current address:
T. Gross
Department Informatik, ETH Zürich,
CH 8092 Zürich, Switzerland
e-mail: Thomas.gross@ethz.ch

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159152874?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

The infrastructure of the Internet provides an attractive platform for the distribution
of all kinds of digital audio and video content. In addition to movies, we may want
to transmit video clips retrieved from a database as well as teleconferences or
lectures. However, distribution of continuous media poses a number of challenges.
Since the movie is played as it is received, the transfer over the network must
proceed at a specific rate to prevent buffer overflow or underflow at the player. If
there is competing traffic in the network there is the risk of congestion, and
consequently, packets may be dropped or delayed. Finally, if insufficient network
bandwidth is available and we want to continue to smoothly play the movie, the
application must reduce its bandwidth demands intelligently.

The key problem is to ensure that the player receives a continuous feed in the
presence of variable congestion while maximizing the transfer of comprehensible
information given the available (varying) bandwidth. Bandwidth reduction can be
achieved by filtering the stream (selectively removing a part) before transmitting it
on the congested link while maintaining the stream’s key characteristics. There are
numerous ways to filter a video stream: frame-dropping [4, 6, 10, 17, 26], low-pass
filtering [26], color reduction [26], re-quantization [9, 26], and transcoding [2, 26] are
some approaches; see Section 7 for a detailed discussion. Of all these approaches,
dropping frames from a video stream, also known as temporal decimation, is
relatively the easiest to implement and requires the least computational effort. In an
MPEG video stream the problem that arises is not Fhow to remove frames_ but
Fwhich frames to remove_. The inter-frame dependences inherent in the MPEG
encoding standard have led to the development of prioritized transmission schemes.
Kozen at al. [14] present algorithms for selecting the frames to drop such as to
minimize the longest gap for a given bandwidth, where a gap represents the interval
of unplayable frames.

However, when considering continuous media such as MPEG System streams
(which include some number of video and audio streams), temporal decimation
becomes a more complicated problem because the audio and video layers are
multiplexed and encoded with synchronization meta-data. A straight-forward
approach to demultiplex the System stream, filter the video, and remultiplex it is
computationally expensive. Here we present a filter that can transparently remove
frames from an MPEG System stream while maintaining audio and video
synchronization. Since the output of the filter is also an MPEG System stream, there
is no additional complexity required at the client-end to synchronize multiple
separate streams.

A responsive adaptation process is the key to successful media presentation.
Without it, the distortion caused by random packet losses in an MPEG stream will
be propagated due to the inter-frame dependencies. The adaptation process can be
controlled by various types of feedback. Some algorithms (the Vosaic player [10],
the player of Li et al. [15], the VoD testbed [9], and OGI’s player [6]), monitor
packet arrival as well as information obtained after decoding the stream such as
frame rate or delayed frames. In contrast to that approach we present an adaptation
scheme based only on monitoring network packets. The latter has the advantage of
reducing the client’s complexity and completely decoupling the adaptation from the
format of the continuous media. While we focus on the MPEG System format, the

2 Multimed Tools Appl (2006) 30: 1–26

basic concepts presented in this architecture, and in particular the adaptation pro-
cess, can also be applied to other video standards.

The remainder of this paper is organized as follows. We first provide some
background on the challenges of streaming MPEG-1 System streams over best
effort networks. We describe the overall architecture of a system that adapts
MPEG-1 System streams to the network conditions in Section 3 and discuss the
design of a filter for MPEG-1 System streams in Section 4. We describe the
implementation in Section 5 and present and analyze performance measurements in
Section 6. Finally, related work is discussed in Section 7.

2 Background

A number of researchers have suggested the use of reservation of network resources
to avoid congestion. Reserving bandwidth, however, is supported only by some
networks but not yet provided by mainstream Internet protocols, and reservations
often carry prohibitive costs or high overheads. The overhead of setting up a
reservation may be tolerable if we play a full-length (i.e., 90 min) movie. However,
we expect that distribution of many short video clips instead of a small number of
large ones will become more common in the future. A multimedia database like the
core of the Informedia system [12] developed at Carnegie Mellon contains a large
number of short movie segments—video clips, sound bites from TV news, movie
story boards—that provide access to individual scenes and shots, commercials, etc.
To allow remote access to such a data collection, we investigate transmission of
movies over existing best-effort networks that make up the Internet.

Several recent proposals for an Bactive services^ architecture advocate the
placement of computation agents within the network to address the congestion issue
as well as to offer additional services. To be practical as an active service, a filter
must be able to reduce the bandwidth of an MPEG System stream by removing
frames from the video stream while maintaining the audio and synchronization
information and while imposing only modest computation demands on its host.
Additional requirements are that the filter outputs a valid MPEG-1 System stream
so that we can use a standard player, that the video stream remains smooth, and that
multiple levels of reduction are possible so we can better adapt to the available
bandwidth. To allow wide deployment we require that only moderate computational
resources are needed, i.e., filter must be efficient enough to run on a conventional
PC. Even if there is no active service platform to host such a filter (i.e., the filter is
placed on dedicated hosts), meeting these requirements is necessary for widespread
use of such a filter.

This section provides background on the MPEG-1 System format and reviews
why this format is very sensitive to packet losses in a best-effort network.

2.1 MPEG-1 System

MPEG-1 was primarily designed for storing video data and its associated audio data
on digital storage media. As such, the MPEG standard deals with two aspects of
encoding: compression and synchronization. MPEG specifies an algorithm for
compressing video pictures (ISO-11172-2) and audio (ISO-11172-3) and then pro-

Multimed Tools Appl (2006) 30: 1–26 3

vides the facility to synchronize multiple audio and multiple video bitstreams (ISO-
11172-1) in an MPEG System. MPEG-1 is intended for intermediate data rates in the
order of 1.5 Mbit/s.

The video sequence layer of an MPEG video stream contains general
information about the video stream (e.g., size, frame rate). The sequence layer
contains groups of pictures (GOP), which consist of a header with information about
the enclosed pictures (e.g., time stamp). The data contain the data portion of a
GOP. An MPEG video stream distinguishes between I-pictures, P-pictures, and B-
pictures—these pictures differ in the coding scheme. I-pictures (intra-coded
pictures) or I-frames are self contained and are coded without reference to
other pictures. P-pictures (predictive-coded pictures) are coded using motion
prediction relative to the last reference picture and exploit immediate differences
from temporally preceding I-pictures or P-pictures. B-pictures (bi-directionally
predictive-coded) are based on a combination of previous and upcoming reference
pictures. Since B-pictures are coded in reference to future pictures, the coding order
must be altered such that decoders have enough information without overflowing
when decoding the data and reordering it for display. While the MPEG format
allows for an almost unbounded number of encoding schemes, most movies use one
of two variants: they use either 24 or 30 frames per second (fps), with two periods
(GOP) of 12 and 15 frames each. Inside each GOP, the first frame is an I-picture,
every third frame is a P-picture; the rest are B-pictures.

An MPEG-1 audio stream consists of audio coded using one of three algorithms,
which offer different levels of complexity and subjective quality. These algorithms
are referred to as Flayers_ in the coding standard. The coding algorithms use psycho-
acoustic properties of the human hearing to compress the data (lossy compression).

The MPEG System layer is responsible for combining one or more compressed
audio and video bitstreams into a single bitstream. It interleaves data from the video
and audio streams, combined with meta-data that provides the timing control and
synchronization.

While we present results for MPEG-1, which is an older standard, later versions of
MPEG have a similar layered structure, so the same adaptation algorithms will apply.

2.2 Error susceptibility of MPEG-1 streams in best-effort networks

IPv4, today’s Internet protocol, provides no support for resource reservation. Users
are competing for bandwidth, and if a link becomes congested, packets are dropped.
Since traffic conditions change continuously, congestion can start and disappear at
any time. In the current Internet there is an assumption that it is the source’s
responsibility to reduce the data send rate when packet losses are observed to
reduce congestion. For most applications, this reduction is done by TCP, the
dominant Internet transport protocol, but if an application takes control of
managing the send rate (as is the case for this application that uses UDP to
transmit audio and video), it should also abide by this rule.

Random packet loss can hurt MPEG-1 System streams in two ways, besides the
obvious fact that the information in the packet is lost. When we analyze random
packet losses, we must take into account that network packets may not correspond
to MPEG packets and that the latter are a layer completely separate from the video
frames. The damage caused by the loss of a particular packet depends on its location

4 Multimed Tools Appl (2006) 30: 1–26

in the stream and on the robustness of the player in recovering from packet losses.
In the worst case, we may loose a network packet that contains meta-data of the
whole MPEG System stream (the MPEG System header), and players that rely
solely on synchronization information found in the stream will be unable to
continue. In a typical scenario, it is most likely that a packet lost will contain some
part of a video frame with meta-data (video being the predominant stream).

In the context of the MPEG layers, a network loss translates into a disruption in the
System pack layer and may result in concatenating parts from two different MPEG
packets. This loss can induce corruption in the lower layers, e.g., corruption of the
video or audio data. Part of the MPEG packet following the lost packet may be
perceived as belonging to the previous MPEG packet, e.g., a network loss that affects
an MPEG audio packet can corrupt the next MPEG video packet, thus damaging the
video rendering even though the video data was not missing. If video data has been
affected, the frame is decoded incorrectly. An incorrect I-picture or P-picture
propagates problems to all dependent frames and corrupts these as well. In the worst
case, we may loose a whole GOP, typically equivalent to half a second of video.

Figure 1 shows results of experiments with various levels of network packet losses
for a collection of MPEG System streams. The darker area in the graph represents
frames that cannot be decoded properly because of missing information. The lighter
area in the graph represents frames that, while having all their data intact, cannot be
decoded properly due to a dependence on damaged frames. Up to 35% of the total
frames can be damaged by losing just 1% of the network packets. Similarly, Boyce
and Gaglianello [5] observed that packet loss rates as low as 3% translate into frame
error rates as high as 30%.

3 Architecture

In a typical video streaming application, there are two primary components: the
client requesting the video and the server providing it. Typically, the server responds
to requests from multiple clients. Our goal is to provide each client with the best

0%

20%

40%

60%

80%

100%

0.05% 0.10% 0.20% 0.50% 1.00% 2.00% 5.00% 10.00%

% Packets dropped (1.5KB packets)

%
 U

n
d

is
p

la
ya

b
le

 f
ra

m
es

Average Lost Frames Average Bad Frames

Fig. 1 Effect of network losses on MPEG System streams

Multimed Tools Appl (2006) 30: 1–26 5

possible video stream, subject to the network conditions on the path between the
server and that client, while being fair to other users (connections) in the network.

The three components of our architecture are: a client, a server, and a filter.
When there is congestion, the stream must be adapted by a filter. Such a filter could
be placed with the server, but the video server may be too busy to handle the
computation required to adapt the MPEG System stream to network conditions. If a
single server provides multiple streams, it would be undesirable to restrict
placement of the filter to the server node. In a multicast arrangement, each client
may experience a different bandwidth, so in this case filters must be placed on nodes
that connect to network bottlenecks to match a client’s available bandwidth. Figure 2
depicts a multicast setup where a stream is transmitted to several clients. Filter
placement algorithms [13] are beyond the scope of this paper, but here we assume
that the bottleneck link of the server–client connection is between the filter and the
client, and that the server-filter path experiences extremely low packet loss rates.

The filter-based architecture must meet a number of requirements:

1. adequately adapt to changes in available bandwidth;
2. maintain synchronization of the continuous media stream;
3. demand realistic computation resources, so that filters can operate on com-

modity platforms;
4. cooperate with other network usage;
5. behave transparently so that filters can be cascaded;
6. integrate into existing security models so that the filters can be deployed in the

existing WWW infrastructure.

Requests for changes in the quality of the transmitted movie must originate at the
client side. Such requests could either be entered interactively by the person
watching the video, or preferably be triggered automatically by a process analyzing
the received stream at the client. Unfortunately, perception-based models are
computationally expensive. Since the client is already busy with decoding and
rendering a continuous media stream, we need a simple, non-intrusive method to
determine when, and how much, that stream should be filtered.

We chose to monitor the incoming network traffic and devised an algorithm that
adjusts the degree of filtering to the current packet loss rate: the client only needs to
send a binary signal to the filter (increase or reduce the stream). The filter picks the
appropriate level of filtering based on the current level of filtering and the direction
of the change request. This approach completely decouples the filter module from

ServerServerFilterFilterClientClient higher-BW
link

lower-BW
link

ClientClient

medium-BW
link

Fig. 2 Filter-based architecture

6 Multimed Tools Appl (2006) 30: 1–26

the network monitoring and feedback loop. The resulting software architecture is
highly flexible with regard to what kind of filtering that is supported, and we may
plug in filters for various continuous media formats.

The first three requirements are immediately satisfied by the MPEG System
sensitive filter described in the next section. The fourth requirements is also met by
our architecture but we do not discuss this aspect in detail. Cascadability is useful in
multicast scenarios where multiple clients are viewing the same movie. Cascad-
ability implies that there is a symmetry in format and control between the inputs and
outputs of the filter. Additionally, the control protocol needs to propagate
commands and replies between all the components on the chain. The client must
be able to interact with both the server (e.g., on movie selection) and the filter(s)
(e.g., on filtering requirements). The sixth requirement, to allow ubiquitous access,
implies that we would like the client to be an applet that is running in a WWW
browser. However, the security model for applets allows the applet to establish
network connections only to the specific server from which it was downloaded.

We satisfy these last two requirements by maintaining two channels between
every pair of components, one for control and the other for data, as indicated by
figure 3. Control information is propagated along the chain in parallel with the data.
When a component receives a command, it will execute the command (if it is
destined for that component) or forward it (otherwise). Furthermore, the client
applet is retrieved from the host executing the filter. With this design, the client
must communicate with one host only (the filter), thus satisfying the Java security
restrictions, and the control operations for clients and servers are independent from
the number of filters.

4 Filter design

4.1 Frame removal algorithm

Removing frames from a video stream reduces the amount of data that needs to be
transmitted to the client. While each displayed frame gets the same amount of playing
time and is thus equally important, there is a big difference in both the size and
information contents of each of the encoded frames. These differences are a
consequence of the MPEG inter-frame encoding. I-frames are the largest, and B-
frames are the smallest. While the relative sizes suggest that we should drop I-frames
first, the information contents and inter-frame dependencies make this filtering
impractical. The filter must maintain dependencies when removing frames while
considering the smoothness of the resulting stream to prevent Bstop and go^ jerkiness.
Kozen et al. [14] suggest algorithms for evaluating which frames to drop based on
estimating the available bandwidth and minimization of the interframe gaps. Our

ClientClient

Control Control

DataData

FilterFilter ServerServer

Fig. 3 Channels of communication in the network

Multimed Tools Appl (2006) 30: 1–26 7

approach does not require the filter to evaluate the available bandwidth. It just
needs to be able, per request, to increase or decrease the streaming bandwidth.

To provide variable bandwidth, we define n filtering levels such that for n ¼ 0 no
filtering is performed, and for n ¼M all the video frames are removed. In practice,
the number of filtering levels is M0 such that M0 < M, because most players are not
able to play an MPEG System stream that is defined to have both audio and video
when its video stream has been completely removed.

To determine which frames can be dropped, the frame pattern must be known.
The filter analyzes the first few GOPs in the video stream to determine the number
of I-frames NI , the number of P-frames NP, and the number of contiguous B-frames
NB. For example, in the following GOP

IBBBPBBBPBBB

we have NI ¼ 1; NP ¼ 2; NB ¼ 3. After determining these constants, we can establish
the various filtering levels.

The drop patterns for different levels are designed to conform to the depend-
ences and to provide smoothness. Since B-frames do not have dependencies, the
first level removes the middle B-frame from each group of contiguous B-frames.
The second level removes two B-frames by selecting equally spaced frames. The
third level (if NB � 3) removes all the B-frames. E.g., in a GOP consisting of the
following sequence:

I1B1B2B3P1B4B5B6P2B7B8B9

the first three filtering levels produce:

I1B1B3P1B4B6P2B7B9

I1B2P1B5P2B8

I1P1P2

The first levels of filtering do not reduce the data bit rate significantly since B-
frames contain the least amount of physical data as indicated by figure 4. The actual
frame rate that results from a given filtering level depends on the format of the
movie, i.e., level 3 may result in 8 fps for one movie and 6 fps for another.

When all B-frames have been dropped, the bandwidth is further reduced by
dropping P-frames. The next P-frame to be dropped is always the last one before the
next I-frame. When all B- and P-frames are gone, we start dropping I-frames. At this
point, the quality of the video degrades significantly. If we remove one of two I-
frames (above all B- and P-frames), we remain with a video rate of one frame per
second. Higher filtering levels can remove further I-frames, distancing them apart as
much as needed to achieve the required bandwidth. The resulting stream looks like a
slideshow at this point.

4.2 Efficient filtering of MPEG-1 System streams

Typically, if an underlying video or audio stream needs to be modified, the process
requires demultiplexing the MPEG System stream, applying the filtering on the under-
lying data and remultiplexing according to the MPEG standard. MPEG multiplexing
requires calculating various parameters (i.e., the presentation time stamps and the de-
coding time stamps of media units) to construct an MPEG System stream that allows a

8 Multimed Tools Appl (2006) 30: 1–26

standard player to decode it on time. This process is obviously computationally
expensive. Our design exploits the fact that a correct MPEG System stream already
has the correct parameters, hence removal of data (namely frames) can be done while
maintaining the corresponding pairs of meta-data and media units (video or audio).

The MPEG System stream is analyzed by a state machine that decodes rate
information and identifies the System layers, the video layers, and the audio samples.
Since the video sequence is broken into MPEG packets without considering frame
boundaries, it is important to maintain state across all the MPEG layers simulta-
neously for all audio and video streams. When a frame of a particular video stream is
detected, the filter checks whether it should be dropped or forwarded according to the
current filtering level. The filter outputs MPEG packets containing only information
that needs to be forwarded. With this method, there can be empty MPEG packets,
and even empty GOPs, but keeping these empty (MPEG) packets provides the
important benefit that synchronization is maintained, allowing in practice a client to
decode and render the stream correctly. During this process the only change that needs
to be made to the MPEG packet layer is the adjustment of the MPEG packet length.

To be practical, filtering should be efficient so a single server can support many
clients. Figure 5 shows the cost of filtering a number of movies at three levels of
filtering and compares those cost with the overhead of just demultiplexing the MPEG
System streams. The costs are expressed as a percentage of CPU load of a Pentium
400 MHz machine while data is being streamed at video rates, and the costs only
include the processing overhead but not the network communication. The results
show that this particular type of filtering is very efficient and faster than any trans-
coding, since the latter would require demultiplexing the System stream as a first step.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

30 20 10 8 6.7 6 4 3.33 2 1.67 1

FPS

B
W

re

d
u

c
ti

o
n

dilbert.m pg

goodtim e.mpg

masklo.m pg

Fig. 4 Bandwidth reduction for various filtering levels expressed as different frame rates for stream
with 24 fps

Multimed Tools Appl (2006) 30: 1–26 9

4.3 Adaptation algorithm

We have established in Section 3 that it is the client’s responsibility to request
modifications in the continuous media stream’s bandwidth. To decide whether the
filter should increase or decrease the bandwidth, the receiver continuously measures
the current packet loss rate using a sliding window of variable length S packets.

During steady state operation, if the packet losses reach a threshold � during a
window of length S�, the client requests the filter to reduce the bandwidth. The
value of � should be such that a packet loss of � (or less) in S� still results in ac-
ceptable video quality. If after startup or an adaptation the threshold � is reached
before S� packets have arrived, the client immediately requests a bandwidth reduction.

A second threshold �, such that � < �, and a window length S� are used to
determine when the bandwidth can be increased. If the packet losses are less than �
during a period S such that:

S � 2n
* S�

the client asks the filter to increase the bandwidth. Typically n ¼ 0, however if an
increase in bandwidth is followed by a decrease in bandwidth over a period S such
that S < S�, then n ¼ nþ 1. Similarly if the opposite condition exists, then
n ¼ n� 1. For both cases we require: 1 � n � 5. The reason for using two thresholds
and a multiplier for S� is to make bandwidth recovery less aggressive. Thereby the
protocol is more friendly to competing traffic than an immediate increase. This
behavior is somewhat similar to TCP’s congestion control, that is, our protocol
reduces bandwidth more aggressively than it increases it and adapts its

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

0.90%

0.644 1.08 1.29 1.5 1.81

B itrate o f vario us m ovies [Mb it/sec]

P
ro

c
e

s
s

o
r

 u
s

a
g

e

dem ux

filter=1

filter=3

filter=5

pittsburgh.mpg

goodtime.mpg

maskhi.mpg

longclip.mpg

masklo.mpg

Fig. 5 Pentium 400 MHz load for filtering various movies

10 Multimed Tools Appl (2006) 30: 1–26

Baggressiveness^ if attempts to reclaim bandwidth are not successful. We experi-
mented with reducing the filter level by more than one in response to client requests
to decrease bandwidth, but this did not improve the results.

After every request to increase or decrease the frame drop rate, the client
temporarily suspends measuring the packet loss rate until it is notified by the filter
that the drop rate change took place. This period depends on the number of packets
Fen-route_ and the frame being processed by the filter when it receives the request to
change the drop rate.

4.4 Data streaming and smoothing

To allow the data channel to use UDP, it is important to limit the network packet
size to avoid fragmentation. At the filter, the MPEG System packets are broken into
smaller packets that fit within an MTU (the maximum transfer unit). We encapsulate
the MPEG data in a datagram packet that contains a header with a sequence
number, the current filtering level (required by the adaptation process) and some
additional flags. By aligning the MPEG packet layer with the network packet, we are
able to minimize the errors at the client when reassembling the packets.

The filter needs to send each packet at exactly the same time as the corre-
sponding data packet from the non-filtered movie would have been sent. This rate is
determined by the MPEG bitrate of the movie. When filtering frames, the re-
maining stream is not evenly spread across a standard GOP segment. In particular,
when the filtering level is high, the stream contains only I-frames and audio. If those
were to be transmitted at their corresponding time, the network traffic would be of a
bursty nature. While the global average rate may be reduced by filtering, the bursty
periods may suffer losses on a congested network, thus causing further reduction in
the stream data. To provide better adaptation, it is necessary to smooth the network
traffic. A smoothing algorithm tracks the amount of time that is Fsaved_ by partial
frame streaming and statistically distributes it over the remaining data. Additional
parameters provided by the control protocol allow fine tuning of the transmission
rate to prevent buffer underflow or overflow.

5 Implementation

We have implemented the three-tier architecture with a filter as described in the
previous section. All the components are implemented using Java for portability. In
this section we discuss implementation issues relevant to each of the components.

5.1 Client

The client is based on the Java Media Framework (JMF), a package that supports
the replay of audio and video streams in a browser. JMF supports a wide range of
video and audio formats, including MPEG-1 System streams, and promises to be a
widely used package to display multimedia material over the web.

JMF consists of two main components, a player and a dataSource. The player is
responsible for replaying the audio and/or video stream and is typically optimized
for a particular platform. The dataSource is responsible for retrieving the data.
DataSources exist that retrieve data from disk, or retrieve data over the network

Multimed Tools Appl (2006) 30: 1–26 11

using a variety of protocols. We implemented a new dataSource to support our
transport protocol described in Section 5.3. The filter for MPEG-1 System streams
we describe has been used with JMF implementations from Intel and Sun.

5.2 Filter

As a provider of an active service (variable filtering), the filter must be able to
handle multiple clients simultaneously. Also, there are no restrictions on the
number of video-servers a filter could be uplinked to. Hence a filter behaves like a
server and can actually provide an MPEG System stream from its own location
without being connected to another video-server.

The filter responds to general setup requests as well as control requests to increase
or decrease the bandwidth. Its responsibilities in the system can be summarized as
follows:

1. receive MPEG System stream from server, or local host;
2. send paced MPEG System stream to client;
3. receive requests from client;
4. act upon requests or forward them to the video server.

5.3 Transport protocol

The control connection (figure 3) is used to exchange control information and is
always based on TCP. MPEG data is transferred between the server and the filter as
well as between the filter and the client using UDP. Since the filter needs the first
few GOPs to be error-free to determine the filtering levels, and since the player
implemented at the client’s end needs to correctly identify the format of the
continuous media to identify the filtering levels, we transmit the first couple GOPs
(typically 24 or 30 frames) over the control channel, to guarantee reliable delivery.

5.4 Control protocol

The control channels are used for multiple purposes. Initially they are used by the
client to request video clips and other information. To satisfy Java security
requirements, the browser-based client can have only a single open connection,
hence all requests are forwarded to the server by the filter over the control channels.
The main use of the control channel is to carry the feedback, which is needed by the
adaptation algorithm, from the client to the filter.

The control packets contain an opcode that identifies the request or information
type, plus any relevant parameters. In addition, a destination tag encoded by an IP
address identifies the target, allowing the propagation of commands or replies. Note
that there are other ways of managing the control channel. Some of the control
information could, e.g., be sent using RTP [21].

6 Evaluation

We present a detailed evaluation of our video streaming application. We first
describe our experimental setup. We then compare the video quality with and

12 Multimed Tools Appl (2006) 30: 1–26

without filter-based adaptation. Finally we characterize the responsiveness of the
filter with dynamic competing loads and the bandwidth sharing of our application
with itself and TCP.

6.1 Experimental setup

We present results for three different scenarios. For all the experiments the client
was run on a 200 MHz Pentium Pro machine.

& The first scenario consists of a dedicated testbed using 230 MHz Pentium
Pro systems running FreeBSD as routers. The routers are connected using
dedicated 10 Mbits/s Ethernet links that form the bottleneck. The filter is a
400 MHz Pentium II machine and the video server is a DEC 500/266.
Several of the experiments use the H-FSC scheduler [23] that is part of the
Darwin system [8] to control congestion at a finer grain. We set up a
reservation of X Mbit/s (for example 2 Mbit/s) for continuous media streaming
and one or more competing sources; the remaining link bandwidth is assigned to
a UDP stream that floods the network but is prevented from using the X Mbit/s
pipe by the scheduler. By changing X we can control the congestion conditions.

& The second scenario consists of a DSL connection between a central city
location (campus of Carnegie Mellon) and a suburban home. The path
between the server at Carnegie Mellon and client at the home has three
segments: the campus local area network where the server and filter are
placed, a T1 line to the telephone office, and a synchronous DSL line to the
suburban residence. The last segment is the bottleneck link, its maximum
UDP throughput was measured to be 649 Kbit/s. About 95% of this
maximum bandwidth was available for the connection between filter and
client.

& The last scenario involves a transatlantic connection between at client at
Carnegie Mellon and a server at ETH in Zurich, Switzerland. We ran the
server and filter on the same Linux box (a Pentium II 400 Mhz) for
convenience. Since we use the Internet, we had no control over competing
sources. Interestingly, the bandwidth for the transatlantic connection proved
to be larger than needed for streaming video and all tries resulted in the
whole movie being streamed without losses.

The adaptation parameters are set to

S� ¼ 500; S� ¼ 500;� ¼ 25; � ¼ 5

In Section 6.3 we report parameter sensitivity by experimenting with different
values.

The video stream is received and displayed by a JMF-based client. While it is
possible for us to subjectively judge and compare the quality of the received video
stream, JMF provides no objective quality metrics. For this reason, we developed a
second version of the JMF data source that is identical to the one we described in
Section 5 but is an application instead of an applet. This setup allows us to store in
files additional tracing information as well as the MPEG System stream for off-line
analysis and replay. We also developed a tool (mpegOscope) that analyzes MPEG
System streams and collects a variety of statistics, e.g., frequency of several types of

Multimed Tools Appl (2006) 30: 1–26 13

errors, lost frames due to the propagation of errors, etc. The mpegOscope tool is
quite accurate, e.g., the number of good frames it reports is typically within 1% of
the frames displayed. We verify this number by comparing statistics collected by the
Windows Media Player when replaying the received stream.

When comparing different scenarios, we primarily use the following metrics: the
first metric is the average rate of correctly received video frames. Two other metrics
are the average bandwidth of the transmitted and received MPEG-1 System stream;
these metrics capture the network resource utilization. The final metric captures the
smoothness of the video stream. This is a fairly subjective metric, but the idea is that
we want to distinguish between a video stream where every other frame is missing
and a stream where the same number of frames has been dropped, but in a bursty
fashion. The metric we use is the spectrum of frame rates over the length of the
media stream; a video stream played mostly at one frame rate will be in general
more smooth and pleasant than a video stream that has a broad spectrum of rates.

In the remainder of this section, we first present a detailed analysis of the
effectiveness of our adaptive filtering technique for a single video clip. We then
show how the different parameters affect the algorithm behavior. Finally, we look at
the responsiveness of the algorithm with bursty competing traffic and at how the
algorithm shares bandwidth with other video and TCP flows.

6.2 Evaluation of video quality

In this section we compare the quality of the received MPEG System stream with
and without adaptation under some typical operating conditions.

Figure 6 shows the transmitted and received bandwidth for the video stream (in
Kbit/s) for the DSL scenario using a movie with a bandwidth requirement of 1.07
Mbit/s. The first two cases compare the throughputs with the filter active and
disabled, when the MPEG System is the only traffic in the network. We see that in
both cases, roughly the same number of bits are received, but the transmit rate with
adaptation is much lower than without adaptation. With adaptation performed by
the filter, the output stays close to the maximum bandwidth of the critical link,
marked by a horizontal line in figure 6. Without adaptation, the output rate is
unconstrained and a large portion of the data is dropped along the way to the client.

Disabled Active Traffic +
Disabled

Traffic +
Active

0

200

400

600

800

1000

1200

R
at

e
(K

bi
t/s

ec
)

Transmit ReceiveFig. 6 Effect of adaptation on
network load for DSL setup

14 Multimed Tools Appl (2006) 30: 1–26

Without filtering, the receive rate is equal to the link capacity. When filtering, the
adaptation reduces the bandwidth until it reaches a steady state. We note that the
average receive rate is slightly lower than link capacity. This is because frame
filtering has only a certain distinct number of filtering levels as shown previously in
figure 4. While the receive rates are almost similar with and without filtering,
Table 1 shows that there is a big difference in the frame rates attained at the client,
so the actual movie quality is significantly lower without adaptation.

To demonstrate that the frame rate achieved with adaptation (filter level 3) is
optimal we perform two additional experiments: one with limiting the maximum
filter level to 2 and one with statically configuring the filter level to 3 without any
adaptation. The results are also presented in Table 1. A static level 3 filtering is
optimal in that it provides the highest frame rate for the current network conditions.
The adaptive filter comes close to this result when allowing adaptation to occur, only
losing a few frames initially (until bandwidth reduction is achieved) and when
probing for available bandwidth.

Figure 6 and Table 1 also show results of experiments we ran with competing
traffic. For these experiments we use another machine in the home setting
connected via the DSL line to browse the web and also issue file transfers (using
FTP). The results represent an average of various runs. With the filter, the video
stream is able to adapt, using less bandwidth than without the traffic. When the filter
is disabled, the server continues to stream the continuous media at full rate,
effectively flooding the DSL link and preventing any other traffic. While filtering
allows the competing streams to proceed, most of the bandwidth is used by the video
stream. The movie clip used for these experiments is too short to notice long-term
adaptation in presence of competing traffic. We evaluate bandwidth sharing in
Sections 6.4 and 6.5.

Figure 7 shows the frame rate distributions for cases one and two and compares
them with the distribution for local replay. For each frame rate we show the
percentage of all frames that are delivered at this rate to the client. We see that with
adaptation the frame rates are centered around 5 and 10 fps, whereas without
adaptation the peak is around 0 fps (i.e., no playable frames arrive at the client).

The MPEG movie used in these experiments has the following structure:
IBBPBBPBBPBB. Removing all the B-frames (filtering level 2) still results in
equally distributed frames IBBPBBPBBPBB, with a rate 1/3 of the original or 10 fps,
where a subscript indicates that the frame was removed. The filter level needed for
correct adaptation in this experiment is 3. At this level, the filter removes the last P-
frame to maintain inter-frame dependences. The resulting stream IBBPBBPBBPBB has
a frame rate of 7.5 fps, but the interval between the frames is no longer constant.

DSL experiment Average fps

Filtering disabled 0.5

Filtering active 6

Filtering limited to level 2 1.2

Filtering fixed at level 3 7.5

Traffic + Filtering disabled 0.5

Traffic + Filtering active 5

Table 1 Filter performance
evaluation

Multimed Tools Appl (2006) 30: 1–26 15

The uneven spacing of frames causes the peaks in the frame rates distribution shown
in figure 7.

Figure 8 summarizes the result of an evaluation obtained in the testbed. Figure 8a
shows the transmit and receive bandwidth throughput for a 1.5 Mbit/s movie with a
bottleneck link bandwidth of 1.1 Mbit/s. The adaptation behavior is similar to that
on the DSL line: without the filter, a good part of the bits sent by the sender do not
show up at the receiver. Figure 8b shows the distribution of good, lost/dropped, and
damaged frames with and without adaptation. Clearly, adaptation yields a benefit
also using this metric. Finally, figure 8c shows how many audio frames are correctly
received with and without adaptation: again, adaptation pays off.

6.3 Parameter sensitivity

There are four parameters that can be used to control the operation of the filter: �,
S�, �, and S�. We now report on the influence of these parameters. In addition, we
provide data to justify the smoothing algorithm (Section 4.4).

Experience has shown that � and S� are the more sensitive parameters. In most
cases �, the number of lost packets that triggers a request to decrease bandwidth, is
reached before a period S�, so usually S� ¼ S�. Since � is typically small, it has less
of an impact than S� on bandwidth recapturing since S� enforces a delay equivalent
to a window of at least that size before making a request to increase the stream.

It is clear that reducing � will cause a faster adaptation, but the question is Bwill a
lower � result in more good frames?^ Figure 9 shows the percentage of a movie’s
content (pittsburgh.mpg) that is sent by the filter (DSL setup described earlier,
� ¼ 5). If we inspect the results (with smoothing, filled symbols), we see that
reducing the rate of adaptation (increasing �) increases the amount of data that is
sent by the filter, since the filter can now tolerate longer periods of congestion
before increasing the filtering level. However, the window size has a much larger
influence on the behavior; a large window size implies that the filter will take longer
to reclaim bandwidth. (With S ¼ 200; � ¼ 10 the filter can in the best case tolerate
almost twice as many losses as with S ¼ 1000; � ¼ 25 before reducing bandwidth.)
The filter is very effective in sending only those packets that have a good chance to

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 2.25 4.5 6.75 9 11.3 13.5 15.8 18 20.3 22.5 24.8 27 29.3

Frame rates (fps)

P
e

rc
e
n

ta
g

e
 f

ra
m

e
s
 r

e
c

e
iv

e
d

No Adaptation With Adaptation Local Replay

Fig. 7 Distribution of video frame rates for different experiments

16 Multimed Tools Appl (2006) 30: 1–26

Disabled Active
0

200

400

600

800

1000

1200

1400

1600

B
an

dw
id

th
 (

K
bi

t/s
)

Transmit Receive

(a) Bandwidth.

Disabled Active
0

10

20

30

40

50

60

70

80

90

100

F
ra

m
es

 (
%

)

Lost/RemovedDamagedGood

(b) Video frames.

Disabled Active
0

10

20

30

40

50

60

70

80

90

100

A
ud

io
 fr

am
es

 (
%

)

LostGood

(c) Audio frames.

Fig. 8 Effect of packet losses
in testbed

Multimed Tools Appl (2006) 30: 1–26 17

be delivered. The variation in the delivery rate (% received) for different values of �
is masked by the measurement error, but increasing the window size from S ¼ 200
to S ¼ 1000 improves the delivery from 91 to 94%. Although a change in the
percentage of content sent by 3% may not seem interesting, the net effect of
increasing � yields about 4% more good data for S ¼ 200 and 9\% more for
S ¼ 1000.

To further understand the contribution of �, we devise an experiment with
constant competing load. We chose a competing flow with a bandwidth that would
require an adaptation of two levels of filtering. In other words, removing all the B-
frames from this movie should result in a video stream that would fit in a congested
network where the load was constant. Table 2 shows the number of good frames
received for various values of � for one movie (goodtime.mpg). The first row in the
table is provided to allow a comparison with a loss-less scenario.

0

10

20

30

40

0 5 10 15 20 25

P
er

ce
nt

ag
e

of
 c

on
te

nt

alpha

S=200
S=500
S=1000

S=200
S=500
S=1000

with
smoothing

without
smoothing

Fig. 9 Effect of filter (DSL
setup, pittsburgh.mpg)

� Good frames Max filter level

(No traffic) 5,988 0

40 2,580 2

25 2,591 2

15 2,605 3

10 2,555 3

5 2,524 3

2 2,476 4

Table 2 Adaptation evalua-
tion with constant competing
traffic

18 Multimed Tools Appl (2006) 30: 1–26

Reducing � to 2 causes an average frame loss of an additional 2% of the full movie.
To understand the reason behind this behavior we added the third column in the table
(the maximum level of filtering reached). When � is reduced, the system becomes
more sensitive to network losses. A few losses can cause the filter to reduce the
stream further than is needed on average for the current conditions. The bandwidth
will eventually be recaptured, but it will take more time to get to the correct level of
filtering. Once the filter has activated a higher filtering level (removing more
frames) than is needed, the requirement to wait a minimum period S� results in lost
transmission opportunities. As the filter attempts to be TCP friendly, S� increases
with increasing �, so these lost opportunities are the price of TCP friendliness.

For this experiment the optimal � is: 15 � � � 25. However a general char-
acterization of � can only be done with additional experiments, possibly including
additional parameters (e.g., number of hops between the client and filter).
Determining right from the start the best value of � for a given movie and a given
networking environment is still a topic of further research.

Figure 9 also depicts the influence of smoothing. Without smoothing a significantly
smaller portion of the content can be delivered. Another view of smoothing (and the
influence of the window size) is presented in figure 10. This figure depicts what
fraction of all data sent is sent at a specific filtering level. Without smoothing, more
data are sent at higher filtering levels, i.e., the filter adapts faster and stays longer at
a more aggressive level of bandwidth reduction. The same effect is produced by
increasing the window size. In our experiments, with smoothing the filter changes
the level of filtering about twice as often as without smoothing.

As can be seen from figure 11, more than 50% of the data are sent at levels 4 or
higher, so the filter encounters congestion that requires a bandwidth reduction.
Figure 11 (� ¼ 10) shows the losses encountered when the filter operates at a given
level. E.g., 37.0% of all packets sent in level 0 and 99.4% of those sent in level 6
reach the client (S ¼ 500). It is not surprising that packets in levels 0 and 1 are lost
frequently—while at this level, the filter is still trying to identify the appropriate
stable state for this movie and networking scenario. Level 2 shows the benefits of a
lossy memory: with a window size of 200, only packet losses in close formation
trigger a change in filtering level. With a window size of 1,000, packet losses spaced
further apart in time can force a change. However, the discrete nature of filtering

200 (with S) 200 (w/o S) 500 (with S) 500 (w/o S) 1000 (with S) 1000 (w/o S)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 a
ll

by
te

s
se

nt

% bytes at level 0

% bytes at level 1

% bytes at level 2

% bytes at level 3

% bytes at level 4

% bytes at level 5

% bytes at level 6

% bytes at level 7

Fig. 10 Distribution of delivered packets (DSL setup, pittsburgh.mpg)

Multimed Tools Appl (2006) 30: 1–26 19

works well. At level 3, the differences due to window size are small, between 92.7
and 94.3% of all packets arrive at the client.

6.4 Responsiveness

So far we have only considered competing loads that were constant or changing
slowly, so the filter can track the network conditions and in general will be in a
steady state condition. In this section we look at the behavior of the filter when the
competing traffic is very bursty.

We set up a controlled experiment on our testbed where the video stream
competes with a bursty stream on a bottleneck link with 3 Mbits/s of bandwidth. The
video stream has a bandwidth requirement of 1.82 Mbits/s, contains a total of 76.98
MB of MPEG data without filtering, and has 10,140 frames (338 s 30 fps). The
competing stream is an on-off stream consisting of bursts of 2.5 Mbits/s worth of
UDP traffic separated by idle periods. The parameter settings for these experiments
were: sliding window size is 500, low threshold is five, and high threshold is eight.
The results of experiments for several burst and idle periods are summarized in
Table 3.

The results for relatively short burst and idle periods (rows 1–3 in Table 3) are
very similar. The filter aggressively drops frames (i.e., it uses a high filtering level),
and as a result, very few packets are lost on the bottleneck link and the receiver
receives few bad frames. This behavior is a direct result of the filter algorithm. At a
beginning of a burst of competing traffic, the filter quickly increases the filtering
level, thus matching the video bandwidth to the available bandwidth (about 0.5 MBs
in this case). When the burst is over, the filter will slowly increase the frame rate to
make use of the higher available bandwidth. However, it does this fairly slowly and
the 5 s of idle time between bursts only allows it to reclaim some of the bandwidth.
As a result, the video quality remains fairly stable around the quality supported by a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 500 1000

F
ra

ct
io

n
 r

ec
ei

ve
d

(o
f b

yt
es

 s
en

t)

Windowsize (S)

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Fig. 11 Network effect on packets (DSL setup, pittsburgh.mpg)

20 Multimed Tools Appl (2006) 30: 1–26

little bit over 0.5 MBs of bandwidth. Note that the buffering inside the network
helps in absorbing the impact of the bursts, which helps the video in achieving a
throughput higher than 0.5 MBs.

When we increase the length of the idle period (rows 4–5 of Table 3), the
behavior of the filter changes dramatically. With an idle period of 7 s or higher (for
this set of parameters), the filter has enough time to reduce the filter level to 0. This
results in many fewer dropped frames and a higher bandwidth consumption on the
bottleneck link. We also see an increase in a number of bad frames, because at the
start of every burst there will be mismatch between the video bandwidth (1.82 MBs)
and the available bandwidth (0.5 MBs).

The filter behavior for bursty competing traffic is exactly what we want. For very
bursty traffic with only short periods of high available bandwidth, we want the filter
to settle on a frame rate that can be sustained. As the high bandwidth periods
increase, we want the filter to start improving the video quality during these periods.
We can argue that the results for rows 4–5 are not optimal (video quality changes
too quickly). However, the competing flow is a worst-case scenario, and for purely
reactive control, there will always be such a worst-case scenario. Moreover, we can
always change the filter parameters to lengthen the high bandwidth period that is
required to improve video quality.

6.5 Bandwidth sharing

In the next set of experiments we start to characterize how the adaptive video
application shares bandwidth with other network users. We use our testbed and we
set up a pipe with a bandwidth of 1.2 Mbit/s.

In the first experiment, we have an FTP stream compete with the streaming of a
1.5 Mbit/s movie for bandwidth on the 1.2 Mbit/s pipe. FTP is started first and can
use the available bandwidth (1.2 Mbit/s). When the video streaming starts, the FTP
stream slows down considerably as a result of packet loss and timeouts, as one
would expect. After a while, FTP grabs back some of the bandwidth, and it peaks at
about 600 Kbit/s. This competing FTP stream reduces the effective frame rate to
7.58 fps, compared to about 10 fps without a competing TCP (FTP) stream.

In the second experiment we have two video streams competing for the 1.2 Mbit/s
of available bottleneck bandwidth. Under steady state conditions, the first stream
gets about one third of the bandwidth and the second stream two thirds.

These results show that the video streaming filter leaves bandwidth to other
users. While it appears that the video streaming is more aggressive than TCP, more
experiments are needed to characterize this property more precisely.

Table 3 Filter behavior with bursty competing traffic

Burst

period

(s)

Idle

period

(s)

Dropped

frames (#)

Bad

frames

(#)

Sent MPEG

data (MB)

Received MPEG

data (MB)

2 5 8,078 214 27.29 26.76

3 5 8,354 178 23.35 22.99

5 5 8,535 167 21.92 21.09

5 7 2,257 1,356 69.37 63.81

5 9 2,453 1,287 68.41 62.64

Multimed Tools Appl (2006) 30: 1–26 21

7 Related work

Many researchers have looked at the problem of how to transmit multimedia data
over best-effort networks. While all approaches use a filter that removes data as
needed, they differ in a number of areas: (i) location of the filter, (ii) type of filtering
applied, (iii) error recovery scheme, and (iv) adaptation algorithm. In this section
we discuss related work along those four dimensions.

Location of filter. A filter can be placed either in the network or in the end-system.
A number of researchers [2, 4, 26] present filters for video data that are located in the
network. Since different applications require different filtering strategies, such network
nodes need some knowledge about the type of data being filtered. Also, strategies that
allow a client to find out about the location of filter nodes must be developed. RTP [21]
proposes Fmixers_ and Ftranslaters_, which are placed in the network. The former ones
mix streams and perform conversion between encoding formats; the latter ones trans-
late across transport protocols (e.g., tunneling of a multicast stream into several unicast
streams).

Berkeley’s Continuous Media Player [17], OGI’s distributed video player [6], and
the Vosaic player [10] use the end-system to filter video data: frames can be dropped
either at the sender (in case of a shortage of network resources) or at the receiver
(in case timely display is impossible). An alternative is to have the adjustment of the
frame rate done by the encoder [20], so video quality can be optimized using a priori
knowledge of the available bandwidth. Finally, filtering can be done both at the
server and in the network in a coordinated fashion [27].

Type of filtering. There are several ways to filter a video stream and to reduce its
bandwidth: frame-dropping [4, 6, 10, 17, 26], low-pass filtering [26], color reduction
[26], re-quantization [9, 26], and transcoding [2, 26]. Another approach is hierarchical
filtering: the layering coding scheme for MPEG presented by Li et al. [15] multicasts
three video streams. Each receiver subscribes to the base stream consisting of the I-
frames. Depending on its capabilities, a receiver can additionally subscribe to the
stream transmitting the P-frames or even to the stream containing the B-frames.

A number of researchers have also developed content-sensitive filters. Examples
include adapting the filtering strategy to video contents [25], e.g., reducing frame
resolution for high motion video while reducing frame rate for low motion video,
and considering video contents when deciding what frames to drop [24], e.g., always
keeping the first frame of a cut.

Error recovery. Lost data packets can be ignored, retransmitted, or recovered by a
Forward Error Correction (FEC) scheme. The filter by Yeadon et al. [26] and OGI’s
player [6] ignore lost packets. The Continuous Media Player [17] pursues the second
strategy by employing Cyclic UDP [22], which retransmits lost high priority data (i.e.,
I-frames in the case of MPEG video) to give them a better chance to reach the
destination. In the Vosaic player [10] and in Columbia’s VoD testbed [9], a client can
demand retransmission of a lost frame. FEC is applied by Nonnenmacher et al. [18],
where requests for retransmissions are handled by FEC transmissions.

Adaptation algorithms. Filter adaptation algorithms can be driven by video consid-
erations (discussed here), while other work has more of a network focus (discussed below).

22 Multimed Tools Appl (2006) 30: 1–26

The Vosaic player [10] continually measures the rate of frames dropped by the
receiver due to missing CPU power. If this rate exceeds 15% or falls below 5%, the
server is instructed to lower, respectively, to increase, the frame rate. To cope with
network congestion, the rate of frames dropped by the network is also measured and
fed back to the server every 30 frames.

The player of Li et al. [15] also uses two thresholds to decide whether a client
should subscribe to an additional multicast layer or whether it should drop one. The
decision is made after receiving a GOP. In addition to the packet loss ratio, the
number of late frames is also taken into account.

In Columbia’s VoD testbed [9], the occupancy of the sender buffer is measured
over 5 or 10 s intervals. In this way, momentary fluctuations due to the varying sizes
of the different MPEG frame types can be overcome. The current occupancy is
compared to the occupancy from the previous measurement. If necessary, the
bitrate of the movie is adapted. Special care is taken to achieve convergence and to
avoid oscillations around the desired rate.

In OGI’s player [6], every component (server, network, client) can drop frames
in case of missing resources. Additionally, the (filtered) display frame rate at the
receiver is compared to the sending frame rate. If the difference is large, the
sending frame rate is (linearly) decreased. In case of a small difference, the rate is
(linearly) increased. The SCP (Streaming Control Protocol) [7] in OGI’s player
includes a TCP-like (window-based) congestion control to address the issue of
TCP-friendliness.

Congestion control. A final area of related work is congestion control. The goal of
congestion control is to ensure that traffic sources limit their transmission rate so they
do not flood the network and bandwidth is shared by users in a reasonably fair
fashion. Given that most of the traffic in the Internet uses the TCP transport
protocol, the adaptation algorithm must guarantee that the video flows can coexist in
a fair way with TCP flows. This idea of FTCP-friendly_ protocols, which was first
mentioned by Mathis et al. [16], is at the heart of congestion for streaming media
applications (e.g., work by Padhye et al. [19]). A flow is TCP-friendly if its arrival rate
does not exceed the bandwidth of a conformant TCP connection in the same
circumstances.

TCP uses an Badditive increase, multiplicative increase^ (AIMD) adaptation
algorithm to deal with congestion [1, 11]. Specifically, it cuts its transmission rate in
half when it experiences congestion and it periodically increases its transmission rate
by a fixed increment to probe for more bandwidth. This adaptation algorithm does
not work for streaming media applications since the multiplicative rate reductions
will result in sudden drops in video quality that are very distracting to the viewer.
For this reason, we use an Badditive increase, additive decrease^ (AIAD) algorithm
that will result in more gradual changes in video quality. However, AIAD is much
more aggressive than AIMD, so it would not coexist fairly with TCP. For this reason,
we use the aging mechanism described in Section 4.3 to reduce the aggressiveness of
the additive increase. Other groups have recently proposed similar techniques for
TCP-friendly adaptation for streaming media applications, e.g. the SQRT algorithm
in [3].

All of the projects described so far deal either only with video data or they transmit
video and audio in two separate streams, thus requiring additional synchronization
information for their playback at the receiver. Transmitting video and audio data in

Multimed Tools Appl (2006) 30: 1–26 23

one stream, as supported by the concept of MPEG System streams, has not yet been
reported; this approach is at the core of the system that is described in this paper.

8 Concluding remarks

The MPEG format presents a number of challenges to a system that attempts to
deliver MPEG System streams over a best effort network. However, given the
amount of MPEG-1 movies available, supporting their delivery in their original
format (without conversion or transcoding) is an attractive solution. The system
presented here gives us an opportunity to evaluate an adaptive filter in scenarios
with vastly different characteristics. The MPEG System sensitive filter provides an
efficient solution that can be hosted on current mid-range PCs. Although we have an
operational filter that performs as designed, a number of parameters deserve further
study.

As new mid-range communication services (like DSL) become available to
residential customers, an adaptive filter as presented here provides a cost-effective
solution to allow homes to receive standard continuous media. The adaptation
algorithm presented here is deliberately slower to recover bandwidth after congestion
than it backs off in the presence of congestion, to ensure BTCP-friendly^ behavior.
Experiments with sharing have confirmed the importance of this design decision;
cooperation with other network users is an essential property to scale up to Internet-
wide deployment.

References

1. Allan M, Paxson V, Stevens W (1999, April) Rfc 2581: Tcp congestion control
2. Amir E, McCanne S, Katz R (1998, September) An active service framework and its application

to real-time multimedia transcoding. In: Proceedings of ACM SIGCOMM ’98. Vancouver,
Canada, pp 178–189

3. Bansal D, Balakrishnan H (2001, April) Binomial congestion control algorithms. In: Infocom
2001. IEEE, Anchorage, Alaska, pp 631–640

4. Bhattacharjee S, Calvert KL, Zegura EW (1996) On active networking and congestion.
Technical Report GIT-CC-96/02, Georgia Institute of Technology

5. Boyce JM, Gaglianello RD (1998, September) Packet loss effects on MPEG video sent over the
public internet. In: Proceedings of ACM MULTIMEDIA ’98. Bristol, England, pp 181–190

6. Cen S, Pu C, Staehli R, Cowan C, Walpole J (1995, April) A distributed real-time MPEG video
audio player. In: Proceedings of NOSSDAV’95. Durham, New Hampshire, pp 18–21

7. Cen S, Pu C, Walpole J (1998) Flow and congestion control for internet media streaming
applications. In: Proceedings multimedia computing and networking 1998 (MMCN98), pp 3310–
3320

8. Chandra P, Fisher A, Kosak C, Ng TSE, Steenkiste P, Takahashi E, Zhang H (1998) Darwin:
resource management for value-added customizable network services. In: Sixth International
Conference on Network Protocols. IEEE, Austin

9. Chang S-F, Eleftheriadis D, Anastassiou D, Jacobs S, Kalva H, Zamora J (1997) Columbia’s
VOD and multimedia research testbed with heterogeneous network support. Journal on
Multimedia Tools and Applications 5(2):171–184

10. Chen Z, Tan S-M, Campbell RH, Li Y (1995, December) Real time video and audio in the
world wide web. In: Proceedings of Fourth International World Wide Web Conference. Boston,
Massachusetts

11. Chiu D, Jain R (1989) Analysis of the increase and decrease algorithms for congestion
avoidance. Comput Netw ISDN Syst 17(1):1–14

24 Multimed Tools Appl (2006) 30: 1–26

12. Christel M, Kanade T, Mauldin M, Reddy R, Sirbu M, Stevens S, Wactlar H (1995, April)
Informedia digital video library. Comm. ACM 38(4):57–58

13. Karrer R, Gross T (2002, July) Location selection for active services. Cluster Comput (3):365–
376. An earlier version appeared in Proc. 10th IEEE Symp. High-Performance Distr. Comp

14. Kozen D, Minsky Y, Smith B (1998, March) Efficient algorithms for optimal video transmission.
In: Data compression conference

15. Li X, Paul S, Pancha P, Ammar M (1997, May) Layered video multicast with retransmission
(LVMR): evaluation of error recovery schemes. In: Proceedings of NOSSDAV’97. St. Louis,
Missouri

16. Mathis M, Semke J, Mahdavi J, Ott T (1997, July) The macroscopic behavior of the tcp
congestion avoidance algorithm. Comput Commun Rev 27(3):67–82

17. Mayer-Patel K, Rowe LA (1997, February) Design and performance of the Berkeley continuous
media toolkit. In: SPIE Proceedings Vol. 3020. San Jose, California, pp 194–2006

18. Nonnenmacher J, Biersack E, Towsley D (1997, September) Parity-based loss recovery for
reliable multicast transmission. In: Proceedings of ACM SIGCOMM ’97. Cannes, France, pp
298–300

19. Padhye J, Firoiu V, Towsley D, Kurose J (1998, September) Modeling tcp throughput: a simple
model and its empirical validation. In: ACM SIGCOMM’98. ACM

20. Ramkishor K, Mammen J (2002, January) Bandwidth adaptation for MPEG-4 video streaming
over the internet. In: 6th Digital Image Computing Techniques and Applications (DICTA).
IEEE

21. Schulzrinne H, Casner SL, Frederick R, Jacobson V (1996, January) RFC 1889: RTP: a transport
protocol for real-time applications. Request for Comments

22. Smith BC (1994) Implementation techniques for continuous media systems and applications.
PhD thesis, University of California at Berkeley

23. Stoica I, Zhang H (1997) A hierarchical fair service curve algorithm for link-sharing, real-time
and priority services. In: Proc. SIGCOMM’97, Cannes, SIGCOMM, ACM

24. Tan K, Ribier R, Liou S (2001, October) Content-sensitive video streaming over low bitrate and
lossy wireless network. In: ACM Multimedia. ACM

25. Tripathi A, Claypool M (2002, March) Improving multimedia streaming with content-aware
video scaling. In: Proceedings of the Second International Workshop on Intelligent Multimedia
Computing and Networking (IMMCN). AIM

26. Yeadon N, Garcia F, Hutchison D, Shepherd D (1996, September) Filters: QoS support
mechanisms for multipeer communications. IEEE J Sel Areas Commun 14(7):1245–1262

27. Zheng B, Atiquzzaman M (2001, May) TSFD: two stage frame dropping for scalable video
transmission over data networks. In: IEEE Workshop on High Performance Switching and
Routing. IEEE, pp 43–47

Michael Hemy is the President of CompuWiz Inc., which has been providing leading IT services in the

greater Pittsburgh area since 1996. Prior to joining CompuWiz, Mr. Hemy was the President of

Cineflo, a company providing streaming media solutions based on research performed at Carnegie

Mellon University. Up until 2000, Mr. Hemy was a research scientist at Carnegie Mellon University

where he supervised the development of networked applications in various fields such as medical

imaging, chemical process optimization and video streaming. Mr. Hemy’s work in the video streaming

field was awarded a patent in 2004.

Multimed Tools Appl (2006) 30: 1–26 25

Peter Steenkiste is a Professor of Computer Science and of Electrical and Computer Engineering at

Carnegie Mellon University. His research interests include networking, distributed systems, and

pervasive computing. He received an MS and PhD in Electrical Engineering from Stanford University

and an Engineering degree from the University of Gent, Belgium. You can learn more about his

research from his home page http://www.cs.cmu.edu/~prs

Thomas R. Gross is a Professor of Computer Science at ETH Zurich, Switzerland and an Adjunct

Professor in the School of Computer Science at Carnegie Mellon University. He joined CMU in 1984

after receiving a Ph.D. in Electrical Engineering from Stanford University. In 2000, he became a Full

Professor at ETH Zurich. He is interested in tools, techniques, and abstractions for software

construction and has worked on many aspects of the design and implementation of programs.

Thomas Gross has been involved in several projects that straddle the boundary between applications

and compilers. And since many programs are eventually executed on real computers, he has also

participated in the past in the development of several machines: the Stanford MIPS processor, the

Warp systolic array, and the iWarp parallel systems. His current work in computer systems

concentrates on networks.

I

26 Multimed Tools Appl (2006) 30: 1–26

http://www.cs.cmu.edu/~prs
http://www.cs.cmu.edu/~prs
http://www.cs.cmu.edu/~prs

	Adaptive filtering of MPEG system streams �in IP networks
	Abstract
	Introduction
	Background
	MPEG-1 System
	Error susceptibility of MPEG-1 streams in best-effort networks

	Architecture
	Filter design
	Frame removal algorithm
	Efficient filtering of MPEG-1 System streams
	Adaptation algorithm
	Data streaming and smoothing

	Implementation
	Client
	Filter
	Transport protocol
	Control protocol

	Evaluation
	Experimental setup
	Evaluation of video quality
	Parameter sensitivity
	Responsiveness
	Bandwidth sharing

	Related work
	Concluding remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AardvarkPSMT
 /AceBinghamSH
 /AddisonLibbySH
 /AGaramond-Italic
 /AGaramond-Regular
 /AkbarPlain
 /Albertus-Bold
 /AlbertusExtraBold-Regular
 /AlbertusMedium-Italic
 /AlbertusMedium-Regular
 /AlfonsoWhiteheadSH
 /Algerian
 /AllegroBT-Regular
 /AmarilloUSAF
 /AmazoneBT-Regular
 /AmeliaBT-Regular
 /AmerigoBT-BoldA
 /AmerTypewriterITCbyBT-Medium
 /AndaleMono
 /AndyMacarthurSH
 /Animals
 /AnneBoleynSH
 /Annifont
 /AntiqueOlive-Bold
 /AntiqueOliveCompact-Regular
 /AntiqueOlive-Italic
 /AntiqueOlive-Regular
 /AntonioMountbattenSH
 /ArabiaPSMT
 /AradLevelVI
 /ArchitecturePlain
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMTBlack-Regular
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeLight
 /ArialUnicodeLight-Bold
 /ArialUnicodeLight-BoldItalic
 /ArialUnicodeLight-Italic
 /ArrowsAPlentySH
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /Asiana
 /AssadSadatSH
 /AvalonPSMT
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BankGothicBT-Light
 /BankGothicBT-Medium
 /Baskerville-Bold
 /Baskerville-Normal
 /Baskerville-Normal-Italic
 /BaskOldFace
 /Bauhaus93
 /Bavand
 /BazookaRegular
 /BeauTerrySH
 /BECROSS
 /BedrockPlain
 /BeeskneesITC
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /BennieGoetheSH
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /Bethel
 /BibiGodivaSH
 /BibiNehruSH
 /BKenwood-Regular
 /BlackadderITC-Regular
 /BlondieBurtonSH
 /BodoniBlack-Regular
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /BodoniBT-Bold
 /BodoniBT-BoldItalic
 /BodoniBT-Italic
 /BodoniBT-Roman
 /Bodoni-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Regular
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolFive
 /BookshelfSymbolFour
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /BookwomanDemiItalicSH
 /BookwomanDemiSH
 /BookwomanExptLightSH
 /BookwomanLightItalicSH
 /BookwomanLightSH
 /BookwomanMonoLightSH
 /BookwomanSwashDemiSH
 /BookwomanSwashLightSH
 /BoulderRegular
 /BradleyHandITC
 /Braggadocio
 /BrailleSH
 /BRectangular
 /BremenBT-Bold
 /BritannicBold
 /Broadview
 /Broadway
 /BroadwayBT-Regular
 /BRubber
 /Brush445BT-Regular
 /BrushScriptMT
 /BSorbonna
 /BStranger
 /BTriumph
 /BuckyMerlinSH
 /BusoramaITCbyBT-Medium
 /Caesar
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-Italic
 /CalligrapherRegular
 /CameronStendahlSH
 /Candy
 /CandyCaneUnregistered
 /CankerSore
 /CarlTellerSH
 /CarrieCattSH
 /CaslonOpenfaceBT-Regular
 /CassTaylorSH
 /CDOT
 /Centaur
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturyOldStyle-BoldItalic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Cezanne
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGOmega-Regular
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /Charting
 /ChartreuseParsonsSH
 /ChaseCallasSH
 /ChasThirdSH
 /ChaucerRegular
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /ChildBonaparteSH
 /Chiller-Regular
 /ChuckWarrenChiselSH
 /ChuckWarrenDesignSH
 /CityBlueprint
 /Clarendon-Bold
 /Clarendon-Book
 /ClarendonCondensedBold
 /ClarendonCondensed-Bold
 /ClarendonExtended-Bold
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /ClaudeCaesarSH
 /CLI
 /Clocks
 /ClosetoMe
 /CluKennedySH
 /CMBX10
 /CMBX5
 /CMBX7
 /CMEX10
 /CMMI10
 /CMMI5
 /CMMI7
 /CMMIB10
 /CMR10
 /CMR5
 /CMR7
 /CMSL10
 /CMSY10
 /CMSY5
 /CMSY7
 /CMTI10
 /CMTT10
 /CoffeeCamusInitialsSH
 /ColetteColeridgeSH
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialPiBT-Regular
 /CommercialScriptBT-Regular
 /Complex
 /CooperBlack
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CooperPlanck2LightSH
 /CooperPlanck4SH
 /CooperPlanck6BoldSH
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /CopticLS
 /Cornerstone
 /Coronet
 /CoronetItalic
 /Cotillion
 /CountryBlueprint
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CSSubscript
 /CSSubscriptBold
 /CSSubscriptItalic
 /CSSuperscript
 /CSSuperscriptBold
 /Cuckoo
 /CurlzMT
 /CybilListzSH
 /CzarBold
 /CzarBoldItalic
 /CzarItalic
 /CzarNormal
 /DauphinPlain
 /DawnCastleBold
 /DawnCastlePlain
 /Dekker
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Denmark
 /Desdemona
 /Diploma
 /DizzyDomingoSH
 /DizzyFeiningerSH
 /DocTermanBoldSH
 /DodgenburnA
 /DodoCasalsSH
 /DodoDiogenesSH
 /DomCasualBT-Regular
 /Durian-Republik
 /Dutch801BT-Bold
 /Dutch801BT-BoldItalic
 /Dutch801BT-ExtraBold
 /Dutch801BT-Italic
 /Dutch801BT-Roman
 /EBT's-cmbx10
 /EBT's-cmex10
 /EBT's-cmmi10
 /EBT's-cmmi5
 /EBT's-cmmi7
 /EBT's-cmr10
 /EBT's-cmr5
 /EBT's-cmr7
 /EBT's-cmsy10
 /EBT's-cmsy5
 /EBT's-cmsy7
 /EdithDaySH
 /Elephant-Italic
 /Elephant-Regular
 /EmGravesSH
 /EngelEinsteinSH
 /English111VivaceBT-Regular
 /English157BT-Regular
 /EngraversGothicBT-Regular
 /EngraversOldEnglishBT-Bold
 /EngraversOldEnglishBT-Regular
 /EngraversRomanBT-Bold
 /EngraversRomanBT-Regular
 /EnviroD
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErasITC-Ultra
 /ErnestBlochSH
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EuroRoman
 /EuroRomanOblique
 /ExxPresleySH
 /FencesPlain
 /Fences-Regular
 /FifthAvenue
 /FigurineCrrCB
 /FigurineCrrCBBold
 /FigurineCrrCBBoldItalic
 /FigurineCrrCBItalic
 /FigurineTmsCB
 /FigurineTmsCBBold
 /FigurineTmsCBBoldItalic
 /FigurineTmsCBItalic
 /FillmoreRegular
 /Fitzgerald
 /Flareserif821BT-Roman
 /FleurFordSH
 /Fontdinerdotcom
 /FontdinerdotcomSparkly
 /FootlightMTLight
 /ForefrontBookObliqueSH
 /ForefrontBookSH
 /ForefrontDemiObliqueSH
 /ForefrontDemiSH
 /Fortress
 /FractionsAPlentySH
 /FrakturPlain
 /Franciscan
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FranklinUnic
 /FredFlahertySH
 /Freehand575BT-RegularB
 /Freehand591BT-RegularA
 /FreestyleScript-Regular
 /Frutiger-Roman
 /FTPMultinational
 /FTPMultinational-Bold
 /FujiyamaPSMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /GabbyGauguinSH
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garcia
 /GarryMondrian3LightItalicSH
 /GarryMondrian3LightSH
 /GarryMondrian4BookItalicSH
 /GarryMondrian4BookSH
 /GarryMondrian5SBldItalicSH
 /GarryMondrian5SBldSH
 /GarryMondrian6BoldItalicSH
 /GarryMondrian6BoldSH
 /GarryMondrian7ExtraBoldSH
 /GarryMondrian8UltraSH
 /GarryMondrianCond3LightSH
 /GarryMondrianCond4BookSH
 /GarryMondrianCond5SBldSH
 /GarryMondrianCond6BoldSH
 /GarryMondrianCond7ExtraBoldSH
 /GarryMondrianCond8UltraSH
 /GarryMondrianExpt3LightSH
 /GarryMondrianExpt4BookSH
 /GarryMondrianExpt5SBldSH
 /GarryMondrianExpt6BoldSH
 /GarryMondrianSwashSH
 /Gaslight
 /GatineauPSMT
 /Gautami
 /GDT
 /Geometric231BT-BoldC
 /Geometric231BT-LightC
 /Geometric231BT-RomanC
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeorgeMelvilleSH
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansBC
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSansCondensed-Bold
 /GillSansCondensed-Regular
 /GillSansExtraBold-Regular
 /GillSans-Italic
 /GillSansLight-Italic
 /GillSansLight-Regular
 /GillSans-Regular
 /GoldMinePlain
 /Gonzo
 /GothicE
 /GothicG
 /GothicI
 /GoudyHandtooledBT-Regular
 /GoudyOldStyle-Bold
 /GoudyOldStyle-BoldItalic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleExtrabold-Regular
 /GoudyOldStyle-Italic
 /GoudyOldStyle-Regular
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GraceAdonisSH
 /Graeca
 /Graeca-Bold
 /Graeca-BoldItalic
 /Graeca-Italic
 /Graphos-Bold
 /Graphos-BoldItalic
 /Graphos-Italic
 /Graphos-Regular
 /GreekC
 /GreekS
 /GreekSans
 /GreekSans-Bold
 /GreekSans-BoldOblique
 /GreekSans-Oblique
 /Griffin
 /GrungeUpdate
 /Haettenschweiler
 /HankKhrushchevSH
 /HarlowSolid
 /HarpoonPlain
 /Harrington
 /HeatherRegular
 /Hebraica
 /HeleneHissBlackSH
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HenryPatrickSH
 /Herald
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HogBold-HMK
 /HogBook-HMK
 /HomePlanning
 /HomePlanning2
 /HomewardBoundPSMT
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /IBMPCDOS
 /IceAgeD
 /Impact
 /Incised901BT-Bold
 /Incised901BT-Light
 /Incised901BT-Roman
 /Industrial736BT-Italic
 /Informal011BT-Roman
 /InformalRoman-Regular
 /Intrepid
 /IntrepidBold
 /IntrepidOblique
 /Invitation
 /IPAExtras
 /IPAExtras-Bold
 /IPAHighLow
 /IPAHighLow-Bold
 /IPAKiel
 /IPAKiel-Bold
 /IPAKielSeven
 /IPAKielSeven-Bold
 /IPAsans
 /ISOCP
 /ISOCP2
 /ISOCP3
 /ISOCT
 /ISOCT2
 /ISOCT3
 /Italic
 /ItalicC
 /ItalicT
 /JesterRegular
 /Jokerman-Regular
 /JotMedium-HMK
 /JuiceITC-Regular
 /JupiterPSMT
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /KarlaJohnson5CursiveSH
 /KarlaJohnson5RegularSH
 /KarlaJohnson6BoldCursiveSH
 /KarlaJohnson6BoldSH
 /KarlaJohnson7ExtraBoldCursiveSH
 /KarlaJohnson7ExtraBoldSH
 /KarlKhayyamSH
 /Karnack
 /Kartika
 /Kashmir
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KeplerStd-Black
 /KeplerStd-BlackIt
 /KeplerStd-Bold
 /KeplerStd-BoldIt
 /KeplerStd-Italic
 /KeplerStd-Light
 /KeplerStd-LightIt
 /KeplerStd-Medium
 /KeplerStd-MediumIt
 /KeplerStd-Regular
 /KeplerStd-Semibold
 /KeplerStd-SemiboldIt
 /KeystrokeNormal
 /Kidnap
 /KidsPlain
 /Kindergarten
 /KinoMT
 /KissMeKissMeKissMe
 /KoalaPSMT
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /Kristin
 /KunstlerScript
 /KyotoSong
 /LainieDaySH
 /LandscapePlanning
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /Latha
 /LatinoPal3LightItalicSH
 /LatinoPal3LightSH
 /LatinoPal4ItalicSH
 /LatinoPal4RomanSH
 /LatinoPal5DemiItalicSH
 /LatinoPal5DemiSH
 /LatinoPal6BoldItalicSH
 /LatinoPal6BoldSH
 /LatinoPal7ExtraBoldSH
 /LatinoPal8BlackSH
 /LatinoPalCond4RomanSH
 /LatinoPalCond5DemiSH
 /LatinoPalCond6BoldSH
 /LatinoPalExptRomanSH
 /LatinoPalSwashSH
 /LatinWidD
 /LatinWide
 /LeeToscanini3LightSH
 /LeeToscanini5RegularSH
 /LeeToscanini7BoldSH
 /LeeToscanini9BlackSH
 /LeeToscaniniInlineSH
 /LetterGothic12PitchBT-Bold
 /LetterGothic12PitchBT-BoldItal
 /LetterGothic12PitchBT-Italic
 /LetterGothic12PitchBT-Roman
 /LetterGothic-Bold
 /LetterGothic-BoldItalic
 /LetterGothic-Italic
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Regular
 /LibrarianRegular
 /LinusPSMT
 /Lithograph-Bold
 /LithographLight
 /LongIsland
 /LubalinGraphMdITCTT
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /LydianCursiveBT-Regular
 /Magneto-Bold
 /Mangal-Regular
 /Map-Symbols
 /MarcusHobbesSH
 /Mariah
 /Marigold
 /MaritaMedium-HMK
 /MaritaScript-HMK
 /Market
 /MartinMaxxieSH
 /MathTypeMed
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MaudeMeadSH
 /MemorandumPSMT
 /Metro
 /Metrostyle-Bold
 /MetrostyleExtended-Bold
 /MetrostyleExtended-Regular
 /Metrostyle-Regular
 /MicrogrammaD-BoldExte
 /MicrosoftSansSerif
 /MikePicassoSH
 /MiniPicsLilEdibles
 /MiniPicsLilFolks
 /MiniPicsLilStuff
 /MischstabPopanz
 /MisterEarlBT-Regular
 /Mistral
 /ModerneDemi
 /ModerneDemiOblique
 /ModerneOblique
 /ModerneRegular
 /Modern-Regular
 /MonaLisaRecutITC-Normal
 /Monospace821BT-Bold
 /Monospace821BT-BoldItalic
 /Monospace821BT-Italic
 /Monospace821BT-Roman
 /Monotxt
 /MonotypeCorsiva
 /MonotypeSorts
 /MorrisonMedium
 /MorseCode
 /MotorPSMT
 /MSAM10
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MSReference1
 /MSReference2
 /MTEX
 /MTEXB
 /MTEXH
 /MT-Extra
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MTSYN
 /Music
 /MVBoli
 /MysticalPSMT
 /NagHammadiLS
 /NealCurieRuledSH
 /NealCurieSH
 /NebraskaPSMT
 /Neuropol-Medium
 /NevisonCasD
 /NewMilleniumSchlbkBoldItalicSH
 /NewMilleniumSchlbkBoldSH
 /NewMilleniumSchlbkExptSH
 /NewMilleniumSchlbkItalicSH
 /NewMilleniumSchlbkRomanSH
 /News702BT-Bold
 /News702BT-Italic
 /News702BT-Roman
 /Newton
 /NewZuricaBold
 /NewZuricaItalic
 /NewZuricaRegular
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NigelSadeSH
 /Nirvana
 /NuptialBT-Regular
 /OCRAbyBT-Regular
 /OfficePlanning
 /OldCentury
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OpenSymbol
 /OttawaPSMT
 /OttoMasonSH
 /OzHandicraftBT-Roman
 /OzzieBlack-Italic
 /OzzieBlack-Regular
 /PalatiaBold
 /PalatiaItalic
 /PalatiaRegular
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PalmSpringsPSMT
 /Pamela
 /PanRoman
 /ParadisePSMT
 /ParagonPSMT
 /ParamountBold
 /ParamountItalic
 /ParamountRegular
 /Parchment-Regular
 /ParisianBT-Regular
 /ParkAvenueBT-Regular
 /Patrick
 /Patriot
 /PaulPutnamSH
 /PcEncodingLowerSH
 /PcEncodingSH
 /Pegasus
 /PenguinLightPSMT
 /PennSilvaSH
 /Percival
 /PerfectRegular
 /Pfn2BlackItalic
 /Phantom
 /PhilSimmonsSH
 /Pickwick
 /PipelinePlain
 /Playbill
 /PoorRichard-Regular
 /Poster
 /PosterBodoniBT-Italic
 /PosterBodoniBT-Roman
 /Pristina-Regular
 /Proxy1
 /Proxy2
 /Proxy3
 /Proxy4
 /Proxy5
 /Proxy6
 /Proxy7
 /Proxy8
 /Proxy9
 /Prx1
 /Prx2
 /Prx3
 /Prx4
 /Prx5
 /Prx6
 /Prx7
 /Prx8
 /Prx9
 /Pythagoras
 /Raavi
 /Ranegund
 /Ravie
 /Ribbon131BT-Bold
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RobWebsterExtraBoldSH
 /Rockwell
 /Rockwell-Bold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /RomanC
 /RomanD
 /RomanS
 /RomanT
 /Romantic
 /RomanticBold
 /RomanticItalic
 /Sahara
 /SalTintorettoSH
 /SamBarberInitialsSH
 /SamPlimsollSH
 /SansSerif
 /SansSerifBold
 /SansSerifBoldOblique
 /SansSerifOblique
 /Sceptre
 /ScribbleRegular
 /ScriptC
 /ScriptHebrew
 /ScriptS
 /Semaphore
 /SerifaBT-Black
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Sfn2Bold
 /Sfn3Italic
 /ShelleyAllegroBT-Regular
 /ShelleyVolanteBT-Regular
 /ShellyMarisSH
 /SherwoodRegular
 /ShlomoAleichemSH
 /ShotgunBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SignatureRegular
 /Signboard
 /SignetRoundhandATT-Italic
 /SignetRoundhand-Italic
 /SignLanguage
 /Signs
 /Simplex
 /SissyRomeoSH
 /SlimStravinskySH
 /SnapITC-Regular
 /SnellBT-Bold
 /Socket
 /Sonate
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /SpruceByingtonSH
 /SPSFont1Medium
 /SPSFont2Medium
 /SPSFont3Medium
 /SpsFont4Medium
 /SPSFont4Medium
 /SPSFont5Normal
 /SPSScript
 /SRegular
 /Staccato222BT-Regular
 /StageCoachRegular
 /StandoutRegular
 /StarTrekNextBT-ExtraBold
 /StarTrekNextPiBT-Regular
 /SteamerRegular
 /Stencil
 /StencilBT-Regular
 /Stewardson
 /Stonehenge
 /StopD
 /Storybook
 /Strict
 /Strider-Regular
 /StuyvesantBT-Regular
 /StylusBT
 /StylusRegular
 /SubwayRegular
 /SueVermeer4LightItalicSH
 /SueVermeer4LightSH
 /SueVermeer5MedItalicSH
 /SueVermeer5MediumSH
 /SueVermeer6DemiItalicSH
 /SueVermeer6DemiSH
 /SueVermeer7BoldItalicSH
 /SueVermeer7BoldSH
 /SunYatsenSH
 /SuperFrench
 /SuzanneQuillSH
 /Swiss721-BlackObliqueSWA
 /Swiss721-BlackSWA
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721-LightObliqueSWA
 /Swiss721-LightSWA
 /Swiss911BT-ExtraCompressed
 /Swiss921BT-RegularA
 /Syastro
 /Sylfaen
 /Symap
 /Symath
 /SymbolGreek
 /SymbolGreek-Bold
 /SymbolGreek-BoldItalic
 /SymbolGreek-Italic
 /SymbolGreekP
 /SymbolGreekP-Bold
 /SymbolGreekP-BoldItalic
 /SymbolGreekP-Italic
 /SymbolGreekPMono
 /SymbolMT
 /SymbolProportionalBT-Regular
 /SymbolsAPlentySH
 /Symeteo
 /Symusic
 /Tahoma
 /Tahoma-Bold
 /TahomaItalic
 /TamFlanahanSH
 /Technic
 /TechnicalItalic
 /TechnicalPlain
 /TechnicBold
 /TechnicLite
 /Tekton-Bold
 /Teletype
 /TempsExptBoldSH
 /TempsExptItalicSH
 /TempsExptRomanSH
 /TempsSwashSH
 /TempusSansITC
 /TessHoustonSH
 /TexCatlinObliqueSH
 /TexCatlinSH
 /Thrust
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-ExtraBold
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Times-Semibold
 /Times-SemiboldItalic
 /TimesUnic-Bold
 /TimesUnic-BoldItalic
 /TimesUnic-Italic
 /TimesUnic-Regular
 /TonyWhiteSH
 /TransCyrillic
 /TransCyrillic-Bold
 /TransCyrillic-BoldItalic
 /TransCyrillic-Italic
 /Transistor
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /TranslitLS
 /TranslitLS-Bold
 /TranslitLS-BoldItalic
 /TranslitLS-Italic
 /TransRoman
 /TransRoman-Bold
 /TransRoman-BoldItalic
 /TransRoman-Italic
 /TransSlavic
 /TransSlavic-Bold
 /TransSlavic-BoldItalic
 /TransSlavic-Italic
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TribuneBold
 /TribuneItalic
 /TribuneRegular
 /Tristan
 /TrotsLight-HMK
 /TrotsMedium-HMK
 /TubularRegular
 /Tunga-Regular
 /Txt
 /TypoUprightBT-Regular
 /UmbraBT-Regular
 /UmbrellaPSMT
 /UncialLS
 /Unicorn
 /UnicornPSMT
 /Univers
 /UniversalMath1BT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Italic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-CondensedOblique
 /UniversExtended-Bold
 /UniversExtended-BoldItalic
 /UniversExtended-Medium
 /UniversExtended-MediumItalic
 /Univers-Italic
 /UniversityRomanBT-Regular
 /UniversLightCondensed-Italic
 /UniversLightCondensed-Regular
 /Univers-Medium
 /Univers-MediumItalic
 /URWWoodTypD
 /USABlackPSMT
 /USALightPSMT
 /Vagabond
 /Venetian301BT-Demi
 /Venetian301BT-DemiItalic
 /Venetian301BT-Italic
 /Venetian301BT-Roman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /VinetaBT-Regular
 /Vivaldii
 /VladimirScript
 /VoguePSMT
 /Vrinda
 /WaldoIconsNormalA
 /WaltHarringtonSH
 /Webdings
 /Weiland
 /WesHollidaySH
 /Wingdings-Regular
 /WP-HebrewDavid
 /XavierPlatoSH
 /YuriKaySH
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Medium
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZappedChancellorMedItalicSH
 /ZurichBT-BlackExtended
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

