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Abstract The relationships between stratigraphic and
tectonic setting, recharge processes and underground
drainage of the glacierised karst aquifer system ‘Tsan-
fleuron-Sanetsch’ in the Swiss Alps have been studied by
means of various methods, particularly tracer tests (19
injections). The area belongs to the Helvetic nappes and
consists of Jurassic to Palaeogene sedimentary rocks.
Strata are folded and form a regional anticlinorium.
Cretaceous Urgonian limestone constitutes the main karst
aquifer, overlain by a retreating glacier in its upper part.
Polished limestone surfaces are exposed between the
glacier front and the end moraine of 1855/1860 (Little
Ice Age); typical alpine karrenfields can be observed
further below. Results show that (1) large parts of the area
are drained by the Glarey spring, which is used as a
drinking water source, while marginal parts belong to the
catchments of other springs; (2) groundwater flow towards
the Glarey spring occurs in the main aquifer, parallel to
stratification, while flow towards another spring crosses
the entire stratigraphic sequence, consisting of about
800m of marl and limestone, along deep faults that were

probably enlarged by mass movements; (3) the variability
of glacial meltwater production influences the shape of the
tracer breakthrough curves and, consequently, flow and
transport in the aquifer.
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Introduction

The Alps are often considered as the ‘water towers of
Europe’. Just as in most other high mountain areas, annual
precipitation is substantially higher than in the surround-
ing lowlands; the snow that falls in the cold season is
retained in snowfields and glaciers, from which it is
slowly released during warmer periods to provide large
volumes of freshwater to springs, streams, rivers and
aquifers (e.g. Viviroli and Weingartner 2004).

Nowhere in Central Europe is climate change so
obvious as in the Alps, where rapidly retreating glaciers
are the most visible expression of a changing climate
(Greene et al. 1999; Paul et al. 2004). Relatively little
research has been done on the current and future impacts
of climate change on the alpine water resources. Available
studies suggest that, during the winter, warmer temper-
atures and more precipitation in the form of rain instead of
snow are likely to result in more available freshwater,
while less rain in summer, along with the shrinking or
disappearance of glaciers, may result in local, temporary
water shortage, particularly in late summer (Kleinn et al.
2005; Schaefli et al. 2007; Seidel et al. 1998).

There are few places in the Alps where the interrela-
tions between climate change, retreating glaciers, ground-
water resources and freshwater supply are so immediate as
in the Tsanfleuron-Sanetsch region in western Switzer-
land, where a rapidly retreating glacier (Tsanfleuron
glacier) directly overlies and recharges the upper part of
a large regional karst aquifer (Fig. 1), which is drained at
its lowest point by a spring (Glarey spring) used for the
drinking water supply of a community (Conthey), as well
as for irrigation purpose. Therefore, a research project was
set up to study this alpine glacier and karst aquifer system.
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A few available studies focus on glacier-groundwater
interactions, mostly numerical modelling of large-scale
flow beneath recent or Pleistocene ice shields (Flowers et
al. 2003; Boulton et al. 1993), as well as long-term
simulations evaluating the role of infiltrating meltwaters
for the cooling of alpine massifs (Maréchal et al. 1999).
Very few researchers have studied the relations between
alpine glaciers and connected karst aquifers (Smart 1996).

The Tsanfleuron-Sanetsch area belongs to a long chain
of karst aquifer systems developed in the Helvetic zone of
the Alps, mostly in a Cretaceous limestone formation
known as Schrattenkalk (German) or Urgonian (French).
Well-studied examples include the Muotathal area, which
encompasses the Hölloch, the longest cave in the Alps
(Jeannin 2001); the Siebenhengste-Hohgant area with the
second longest cave in the Alps (Häuselmann et al. 2003);
and the Hochifen-Gottesacker area, a prime example of a
karst system where fold structures were demonstrated to
have a major influence upon the underground drainage
pattern (Goldscheider 2005). The Tsanfleuron-Sanetsch
area, on the other hand, has received little attention from
hydrogeologists, while glaciologists and sedimentologists
have studied the glacier and its forefield (Fairchild et al.
1999; Hubbard 2002; Hubbard et al. 2003; Hubbard et al.
2000).

The relationships between geological structure and
underground drainage pattern of this test site were studied
during a first project phase from 2004 to 2008. The
fieldwork included geological mapping, hydrological
observations, and 19 tracer injections. The primary goals
were to identify the main karst springs, to delineate their
catchment areas and to determine linear groundwater flow
velocities. The study has also revealed new insights into
the influence of nappe boundaries, folds structures and
deep faults on groundwater flow, as well as insights into

the unique recharge processes in glacierised karst aquifer
systems. Furthermore, several observations indicate deep
infiltration into large, gravity-driven flow systems, in
accordance with the conceptual models proposed by Toth
(1963, 1999).

On this basis, a second project phase will focus on the
influence of the glacier and snowmelt on the diurnal and
seasonal variability of groundwater flow and glacier-born
turbidity. The third project phase will aim to make
prognoses concerning the possible impact of climate-
change induced glacier retreat on aquifer dynamics and
freshwater availability.

Geologic setting and karst development

Geologic framework and nappe tectonics
The Tsanfleuron-Sanetsch area belongs to the Helvetic
domain of the Alps and is formed by a pile of several
nappes made of Mesozoic and Paleogene rocks, among
which limestones play an important role. The region is a
classical example of nappe tectonics (Lugeon 1914). The
present geologic knowledge and terminology were estab-
lished by Lugeon (1940), Badoux et al. (1959, 1990),
Escher et al. (1993) and Steck et al. (1999, 2001).

Large parts of the study area are formed by the
Diablerets nappe, while the adjacent areas to the N, E
and SE belong to the overlying Mont-Gond nappe (Figs. 2
and 3). In the study area, the Diablerets nappe is generally
little deformed, while the Mont-Gond nappe has a thin and
strongly deformed overturned limb that is connected to the
Diablerets nappe by an isoclinal syncline. Its hinge is
clearly discernible south of Tsanfleuron near the Glarey
spring (Fig. 3).

Fig. 1 Impression of the upper part of the Tsanfleuron-Sanetsch area, where the rapidly retreating Tsanfleuron glacier directly overlies and
recharges the Cretaceous limestone karst aquifer (photo: N. Goldscheider)
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The basal thrust of the Diablerets nappe follows a
Middle Jurassic (Aalenian) clay formation known for its
ductility and low permeability (e.g. Crespo-Blanc et al.
1995). The tectonic complex below includes parts of the
Morcles nappe and several other units. The top of the
Morcles nappe is formed by thick and clayey Oligocene
flysch. For these reasons, it can be assumed that the

Diablerets and Morcles nappes form two separated hydro-
geologic systems.

The entire pile of nappes is gently folded and forms a
huge anticlinorium in the Tsanfleuron-Sanetsch area
(Steck et al. 2001). The axial plunge of this structure is
between 5 and 10° to the ENE. The dips of the strata
rarely exceed 10° to the NW and 25° to the SE.

Fig. 2 Geologic map of the Tsanfleuron-Sanetsch area (with Swiss coordinates). Large parts of the study area belong to the Diablerets
nappe and mainly consist of Cretaceous Urgonian limestone. The stratigraphy of the over- and underlying nappes is strongly simplified.
Relevant springs and streams are also shown; elevations are in meters above sea level
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Stratigraphy, paleokarst development, and rockfall
The Diablerets nappe below the Tsanfleuron karrenfield
(lapiaz) is ∼1,200 m thick; 150 m are due to tectonic
repetition by an internal low-angle thrust that obliquely
cuts most of the series (Fig. 3). The stratigraphy is well
exposed in the high cliff SW of the lapiaz and comprises
Middle and Upper Jurassic, Lower Cretaceous and
Tertiary sedimentary formations.

The sequence starts with 60–100 m of Middle Jurassic
(Dogger) black pelites (Aalenian), clayey siltstones, fine-
grained sandstones and calcarenites. The overlying Upper
Jurassic and Cretaceous series is principally composed of
four limestone formations (two of which are in direct
contact) separated by two thick marly formations, de-
scribed, from base to top, as follows:

– Massive, micritic limestone of 200 m thickness (Malm)
– With a sharp stratigraphic contact follows a 200–250 m

thick alternation of marls and mudstones of earliest
Cretaceous age (Berriasian)

– This alternation gradually passes into a 150 m thick
formation of bioclastic calcarenites (Late Berriasian to
Valanginian)

– Above a sharp contact follows 150 m thick siliceous
limestone (Hauterivian)

– With clear contact follows a 100 m thick alternation of
marls and marly limestones (Early Barremian)

– This alternation passes upwards into the 120-m-thick
Urgonian formation (Late Barremian to Early Aptian),
consisting of massive and pure limestone that is quite
resistant to mechanical erosion, but highly karstifiable,
as discussed in the introduction

A major stratigraphic gap, resulting from uplift and
regression starting at the beginning of the Palaeogene,
separates the Urgonian from the overlying Eocene to
Oligocene formations. The ensuing erosion removed the
entire Upper Cretaceous, leaving the Urgonian lime-
stone exposed at the surface. The overlying sediments
represent a marine transgression and include, from base
to top: sporadic continental (karstic and lacustrine)
deposits; brackish sediments (Weidmann et al. 1991);
shallow marine sandstones and nummulitic limestones
(Menkveld-Gfeller 1994); Globigerina marls; and finally
flysch, consisting of sandstone with abundant volcanic
rock debris. The nummulitic limestone looks similar to

Fig. 3 Cross-sections of the test site area towards the Glarey spring, where the isoclinal syncline connecting the Diablerets nappe and the
Mt. Gond nappe is clearly visible. Note that the Cretaceous stratigraphy is more detailed than in the geological map (Fig. 2), which also
shows the cross-section trace
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the Urgonian limestone and is also karstifiable, but can
be distinguished by means of fossils. In the study area,
the total thickness of the Palaeogene sediments never
exceeds 100 m.

Sporadic but sometimes spectacular paleokarst can
be observed both on top and inside the Urgonian
limestone. It formed during the continental period
preceding the Eocene transgression mentioned above.
Paleodolines, karren and solutionally-enlarged fractures
are filled by continental (often residual) sediments such
as fine-grained, iron-rich sandstones (Wieland 1976).
Similar paleokarst phenomena have been studied more
thoroughly in the Morcles nappe (Masson et al. 1980;
Linder 2005).

At its SW margin, the Tsanfleuron karrenfield breaks
off in steep cliffs from 2,900 m to 1,400 m asl, exposing
the entire stratigraphic sequence (Fig. 2). A rockfall of
5 × 106 m3 precipitated from these cliffs in 1714,
destroying the village of Derborance. The Swiss writer
C. F. Ramuz wrote a novel about this disaster (Derbor-
ance), but there is little scientific literature available.

Fault tectonics
Fractures of different types and age are numerous in the
study area (Franck et al. 1984). The oldest are synsedi-
mentary, revealed by abrupt variations of layer thickness
and, occasionally, by the presence of pebbles and blocks.
These fractures were active before and during the
deposition of the Eocene sediments and have influenced
paleokarst development, as demonstrated by paleodolines
in the Urgonian limestone aligned along an ENE direction.
Paleokarst development was stopped by the marine
transgression, and then by the thrusting of the overlying
nappes. Kinematic reconstructions suggest a tectonic
overburden of 12 to 14 km (Escher et al. 1993).

The Rhône-Simplon Line is a major tectonic disconti-
nuity, which follows the Rhône valley and splits into a
number of ENE–WSW to E–W dextral strike-slip faults
(Steck and Hunziker 1994; Steck et al. 1999). Some of
these faults nearly reach the study area such as a
prominent 15 km long fault known as the “CCA fault”,
which has a displacement of 200 m east of Tsanfleuron
and branches westward into a multitude of minor fractures
(Badoux et al. 1959).

In the Tsanfleuron area, just as in the entire region, the
main system of relatively young (i.e. post-nappe) exten-
sional fractures and small-scale conjugate shear zones
indicates a stress field with a NW–SE (130–160°)
maximum compression. This stress field is still active
today, as revealed by focal mechanisms of numerous
micro-earthquakes recorded along a seismic zone approx-
imately following the CCA fault (Pavoni 1980; Franck et
al. 1984; Pavoni et al. 1997). The influence of this fault
zone on groundwater circulation can be observed in a
nearby gallery (Rawil), which encountered a zone of
water-bearing fissures between two dry sectors when
crossing the CCA fault (Badoux 1982).

Geomorphologic zones of karst development
The Urgonian limestone outcrops of the Tsanfleuron area
can be subdivided into three zones of karst development,
also characterised by different recharge processes (see
Fig. 4 and the following). Zone I is where the retreating
glacier overlies the limestone. Zone II is located between
the glacier front and the end moraine of 1855/1860, which
indicates the glacier front during the ‘Little Ice Age’
(Greene et al. 1999; Hubbard et al. 2000). This zone offers
the opportunity to observe limestone recently exposed by
the glacier and to infer the structure of the ice–rock
interface below the glacier. Polished rock surfaces
predominate, partly covered by some rock debris repre-
senting a thin and patchy melt-out till. There are also
meander karren, solutionally enlarged faults, vertical
shafts, and large rocky depressions, often hundreds of
meters wide and tens of meters deep. Conspicuous
elongated calcite crystals on the limestone surface near
the glacier front have formed below the ice, as described
by Hubbard and Hubbard (1998).

Zone III, below the end moraine, constitutes a typical
alpine karrenfield that formed since the end of the
Pleistocene glaciations, uninterrupted by the Little Ice
Age, similar to many other alpine karst systems. A great
variety of karren and other karst landforms can be
observed, with a soil and vegetation cover that increases
with decreasing altitude. The differences between zones II
and III are not only due to the Little Ice Age but also
reflect a general change in karst development with altitude
and temperature. Small lakes in zone II and small
wetlands in zone III are due to paleodolines filled with
low permeability deposits, as described above.

There are about 100 caves in the area, most of which
are very small but some approach 1 km in length. With
one exception, none of these caves reaches the active
conduit network of the karst aquifer. Although caving
teams have done much work, the regional speleological
inventory is far from being completed. Most caves
developed in Urgonian limestone, but some are also
present in Eocene limestone. Cave entrances often consist
of vertical shafts, but many caves also include sub-
horizontal passages, parallel to the stratification.

Hydrogeology

Hydrostratigraphy: aquifers and aquicludes
The sequence of aquifers and aquicludes can be inferred
from the stratigraphy described above and illustrated in
Fig. 3, complemented by field observations. The most
important aquifer is the pure, competent, intensively
fractured and karstified Urgonian limestone, which out-
crops on large parts of the land surface. The limestone
within the locally overlying Eocene and Oligocene
formations is also karstified. Hydrological and speleolog-
ical observations indicate that the two limestones form a
connected karst aquifer.

The underlying Barremian marls constitute a regional
aquiclude in other parts of the Helvetic zone (e.g.

1837

Hydrogeology Journal (2009) 17: 1833–1848 DOI 10.1007/s10040-009-0485-4



Goldscheider 2005). However, the thickness of this
formation is only 100 m in the Tsanfleuron area and has
partly been reduced due to tectonic movements as can be
seen in the profile in Fig. 3; furthermore, the vertical
displacements of some faults exceeds the thickness of this
formation. Therefore, the hydraulic effectiveness of this
formation as an aquiclude is not immediately apparent.

Below the Barremian marls follow Hauterivian sili-
ceous limestone, Late Berriasian to Valanginian limestone
(bioclastic calcarenites), Berriasian marl, and Malm
limestone. In other regions of the Alps and Jura
Mountains, the Malm forms a major regional karst aquifer
(e.g. Herold et al. 2000); however, it is not immediately
obvious if the Malm limestone and the Berriasian to
Hauterivian limestones are actually karstified in the
Tsanfleuron region. Karstification requires water circula-
tion, but the entire sequence below the Barremian marls
appears to be largely shielded against recharge and
outcrops only in the steep cliffs south of the Tsanfleuron
karrenfields (Fig. 2). However, springs that emerge from
these limestone formations indicate karstification (see the
following). Deep sub-vertical faults might form hydraulic
connections from the land surface down towards the
deeper limestone aquifers, across the entire stratigraphic
sequence—a hypothesis that was later confirmed by tracer
tests.

Recharge processes
A great variety of recharge processes can be observed in
the Tsanfleuron-Sanetsch area (Fig. 4), some of which are
specific to glacierised karst aquifer systems and have
rarely or never been described in the literature. The
recharge processes are related to the geomorphologic
zones of the Urgonian limestone described above, and
are closely linked to the meltwater production and
drainage system of the Tsanfleuron glacier.

Glaciers typically consist of an accumulation zone and
an ablation zone. During the past few years, the entire
surface of the Tsanfleuron glacier often acted as an
ablation zone, i.e. the firn line was above the highest
point of the glacier, which means that the glacier is not
simply retreating but vanishing. The northern sector of the
glacier has a pronounced glacier tongue, and a glacier
mouth that gives rise to the principal glacier stream, the
Lachon. The southern sector consists of a shallow ice
sheet on top of the karst limestone (Hubbard et al. 2000).

Numerous meltwater streams can be observed at the
glacier surface during summer (supra-glacial drainage).
Some of them sink into so-called moulins (glacial swallow
holes). The moulins in the northern sector are probably
connected to the glacier mouth and are thus tributary to
the Lachon stream, while those in the southern sector are
most likely connected to swallow holes below the glacier,
i.e., the meltwater contributes to subglacial point recharge
of the karst aquifer. Many paleo-subglacial swallow holes
can be observed below the recent glacier front.

The Lachon glacier stream displays significant seasonal
and diurnal discharge variations. Below the glacier mouth,

it first flows over moraine and then over Urgonian
limestone, where it sinks underground via swallow holes
at different places, depending on the hydrologic condi-
tions (Fig. 4). Only during the maximum early-summer
snowmelt or storm rainfall does it form a continuous
stream, ultimately a tributary of the Rhone River.

In the southern sector, many supra-glacial meltwater
streams reach the glacier front, where they join with
emerging subglacial meltwaters that flow at the ice–rock
interface, sometimes as sheet flow. Below the glacier
front, these meltwater streams first flow over limestone for
short distances (typically tens of meters), often via
meander karren or over polished rock surfaces, and then
sink into swallow holes, often in the form of vertical
shafts (Fig. 5). Due to the rapid glacier retreat, this is the
most rapidly changing zone in the entire area.

Similar recharge processes can be observed in the
entire zone II during snowmelt or intense rainfall, when
innumerable streams flow over limestone for short
distances before sinking underground via swallow holes.
This is a fundamental difference between zone II and zone
III, where all water immediately infiltrates though the
epikarst zone. The diffuse infiltration and percolation of
water through soil and epikarst has already been studied
(e.g. Pronk et al. 2009), while recharge into glacier-
polished limestone has rarely been described in detail.

The karst aquifer also receives allogenic recharge from
the adjacent non-karst area to the east, mostly via streams
that sink underground when they reach the karst area
(Fig. 4). As this zone is used for cattle pasture, the
swallow holes represent a potential source of microbial
spring water contamination, as was demonstrated for other
karst systems (Pronk et al. 2006).

Main springs
Five main springs drain the Tsanfleuron-Sanetsch karst
aquifer system (Fig. 4). Small springs that are not relevant
for regional drainage are not described here.

The Glarey spring—Swiss Coordinates: 589’650;
128’650; altitude: 1,553 m asl—is situated on the axis of
the syncline connecting the Diablerets and Mont-Gond
nappes (Fig. 3). It is used as a drinking water source for
the community of Conthey, and for irrigation. Water from
the Urgonian-Eocene karst aquifer is captured by means of
a 30-m-long artificial drainage gallery with multiple
branches. In winter, the mean discharge and specific
electrical conductivity (SEC) are 30 L/s and 450 μS/cm,
respectively, while higher mean discharge (180 L/s) and
lower SEC (100 μS/cm) occur during summer, due to
snow and glacier melt; the water temperature is relatively
stable at 4°C. When the discharge of the main spring
exceeds 40 L/s, an overflow spring becomes active,
directly discharging into the Lachon stream 100 m
upstream of the main spring. Both springs show identical
diurnal variations of physicochemical characteristics. The
discharge of the overflow can exceed 3,000 L/s, but has
only been measured continuously by means of a pressure
probe since 2008. For earlier years, it is possible to
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reconstruct estimates of the overflow discharge using an
empirical relation between the discharge of the main
spring and the overflow that has been established in 2008.

Tschoetre spring—585′375; 127′075; 1,500 m—and
Marnes spring—586′070; 127′150; 1,650 m—are located

near the limit between the Malm karst aquifer and the
Dogger aquiclude, which outcrops twice due to tectonic
repetition (Fig. 2). Lizerne spring—586′355; 127′195;
1,725 m—discharges from the base of the Valanginian
limestone. The mean annual SEC and temperature of the

Fig. 5 Swallow hole directly below the glacier front in the southern sector of the Tsanfleuron glacier, where it forms a shallow ice sheet.
Due to rapid glacier retreat, new swallow holes are exposed every year, while previously active swallow holes get disconnected from the
glacier (photo: N. Goldscheider)

Fig. 4 Generalised hydrological map of the Tsanfleuron-Sanetsch area, showing the glacier and its moulins, the different recharge processes,
the surface streams, swallow holes and springs. Roman numbers indicate the geomorphologic and recharge zones: I limestone covered by
glacier, II polished limestone recently exposed by retreating glacier, III typical alpine karrenfield, below the end moraine of 1855/1860
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Tschoetre spring are 200 μS/cm and 5°C, respectively. As
the spring forms a waterfall in a steep gorge, discharge
measurements are difficult. The estimated mean discharge
during summer is 500 L/s. The two other springs directly
discharge into the Lizerne stream; measurements of
electrical conductivity, temperature and discharge are not
available.

The Sarine spring—588′400; 131′900; 2,135 m—is
located north of the Sanetsch pass and seems to discharge
from Berriasian marl near the base of the Mt. Gond nappe,
not far from the thrust contact to the tectonically
underlying Urgonian limestone of the Diablerets nappe.
The mean spring discharge is 150 L/s; much higher than
could be expected from a marl formation, suggesting
inflow from a karst aquifer. However, the discharge is
stable, and SEC (200 μS/cm) and water temperature (3°C)
show no significant variability. All springs show similar
chemical composition, with Ca2+, Mg2+ and HCO3− as the
main ions, which is typical for groundwater from
limestone and marl stratigraphy.

Tracer tests

Overview and experimental design
Between 2005 and 2008, 19 tracer injections were carried
out in the Tsanfleuron area, in order to delineate the
catchments of the five main springs, to determine transit
times and flow velocities, to obtain information about
interactions between the glacier, surface waters and
groundwater, and to assess the possible impacts of
contaminant releases on the Glarey spring.

Four different fluorescent dyes were used as tracers,
due to their favourable properties (Käss 1998): Uranine,
Sulforhodamine B and G, and Tinopal. Uranine was the
preferred choice for single tracer tests, but Sulforhod-
amine B or G was used when two injections were too
close in time. Uranine and Sulforhodamine B were used
for multi-tracer tests with two injection points; Tinopal
was used as the third tracer. Table 1 summarises the
injection points (Nos. 1–19), the tracer types and
quantities, and the experimental conditions. Figure 6
shows the location of the injection points, along with the
results that will be discussed in the next section.

Injection No. 1 is the release of Tinopal into a cave
stream that seems to show relatively little flow variations.
The injection was done by a speleologist. Tracer test No. 2
is the injection of Uranine into the washbasin of the
Prarochet mountain hut. Systematic flushing with tap
water lasted only about 30 min; afterwards, flushing
occurred in an irregular manner, as a function of the use
of the washbasin. This tracer test also aimed at assessing
the potential impact of the mountain hut on the Glarey
spring.

Injection points No. 3–5, 12, 13, 17 and 18 are located
near the southern and eastern margin of the glacier, where
numerous small meltwater streams sink into karstified
limestone. At several other sites, naturally flowing water is
usually not available. Injection points No. 6–8 are dry

dolines, shafts or inactive swallow holes. For the tracer
injections, several m3 of flushing water were delivered by
tank trucks. Sites No. 9 and 10 are inaccessible for
vehicles so that the injections were done during rainfall
and snowmelt.

On four occasions, a tracer was injected into the main
glacial stream (Lachon) at the glacier mouth (injections
No. 11 and 14–16) in order to determine transit times
between the glacier and the Glarey spring during different
flow conditions. The main swallow holes are 3 km
downstream (Fig. 4) so the tracers were exposed to
sunlight and, thus, photolytic decay. Therefore, calculated
tracer recoveries represent minimum values, as indicated
in Table 1. A degradation experiment at this altitude
revealed an Uranine loss of 40% in 5 h under sunlight. As
a function of the different hydrological and meteorological
conditions, degradation was lower for injection No. 11 but
very high for injection No. 16. Sulforhodamine G, used
for injection No. 15, is known to be less sensitive to
daylight (Käss 1998). Experiment No. 19 is the injection
of Uranine directly into the main swallow holes of the
glacial stream, in order to avoid photolytic decay and to
obtain realistic values of tracer recovery.

Springs were sampled for up to three weeks after
injection, which is sufficient in this karst area where
transit times are very short. Automatic samplers (ISCO),
manual sampling, field fluorimeters (GGUN-FL30) and
charcoal bags were used for monitoring. All water and
charcoal samples were analysed in the CHYN laboratory
(Neuchâtel, Switzerland) with a spectrofluorimeter (Perkin
Elmer LS 50 B). The field fluorimeters measure the dye
concentration in the spring water at user-selectable time
intervals ranging from 2 s to 15 min.

Presentation and discussion of the tracer results
Positive results were obtained for all of the 19 tracer tests.
Table 1 presents a summary with the times of maximum
concentration (peak times), the maximum normalised
concentrations, the tracer recoveries and the linear
distances between injection and sampling points. Figure 6
shows the connections demonstrated by tracer tests, and
the peak times.

Only a few tracers arrived at more than one spring at
the same time such as the Uranine injected into No. 7,
which was detected both at the Glarey spring and the
Sarine spring. Most other injection points are connected to
one spring only; furthermore, the tracer flow paths do not
cross each other, i.e., most proven connections are simple
point-to-point connections. This helps to delineate the
spring catchment areas, as shown in Fig. 6.

The tracer tests demonstrate that the catchment of the
Glarey spring comprises large parts of the Tsanfleuron
karrenfield and glacier, while the four other springs
(Sarine, Marnes, Lizerne, and Tschoetre) drain only very
marginal parts of the karrenfield with very small contri-
bution of the meltwater from the glacier.

The transit times in the conduit system, obtained from
the peaks of the breakthrough curves, are very short,

1840

Hydrogeology Journal (2009) 17: 1833–1848 DOI 10.1007/s10040-009-0485-4



T
ab

le
1

S
um

m
ar
y
of

th
e
ex
pe
ri
m
en
ta
l
se
tu
p
an
d
re
su
lts

of
th
e
tr
ac
er

te
st
s
in

th
e
T
sa
nfl

eu
ro
n
ar
ea

In
je

ct
io

n
1

2
3

4
5

6
7

8
9

10
12

13
17

18
19

D
at

e
03

 S
ep

20
05

18
 S

ep
20

05
02

 A
ug

20
06

13
 A

ug
20

06
15

 A
ug

20
06

24
 J

ul
20

07
29

 A
ug

20
07

30
A

ug
20

07
11

 S
ep

20
07

26
 J

ul
20

08
07

 A
ug

20
08

26
 A

ug
 

20
08

A
lti

tu
de

(m
)

2,
30

0
2,

55
5

2,
84

7
2,

70
0

2,
84

5
2,

12
8

2,
24

9
2,

28
4

2,
19

7
2,

46
0

2,
43

9
2,

53
2

2,
60

3
2,

43
9

2,
38

2
2,

43
9

2,
84

0
2,

19
6

2,
19

6
T

ra
ce

r
T

in
U

r
SB

SB
U

r
T

in
U

r
SB

U
r

SB
U

r
SB

T
in

U
r

SG
U

r
U

r
SB

U
r

M
as

s(
g)

2,
00

0
20

0
45

0
50

0
50

0
2,

00
0

30
0

50
0

1,
00

0
1,

00
0

20
0

50
0

2,
00

0
30

0
70

0
60

0
1,

00
0

1,
00

0
20

0
Pr

ec
ip

it
at

io
n

-
-

-
-

-
+

+
+

+
+

+
+

+
+

+
+

-
-

-
-

Sa
m

pl
in

g
si

te
(a

lt
it

ud
e)

R
es

ul
ts

 f
ro

m
 t

ra
ce

r 
in

je
ct

io
n 

n˚
Q

ua
nt

it
y

(u
ni

t)
1

2
3

4
5

6
7

8
9

10
12

13
17

18
19

G
la

re
y

sp
ri

ng
(1

,5
53

 m
)

2,
50

0
4,

40
0

N
D

5,
90

0
N

D
2,

00
0

3,
15

0
N

D
N

D
N

D
5,

21
3

4,
94

5
5,

19
6

4,
84

8
5,

21
3

6,
25

0
N

D
2,

27
4

d 
(m

)

31
.4

54
.8

57
33

.0
29

.5
5.

8
10

.3
12

.8
5.

4
15

.3
12

.9
6.

1
t (

h)
 

88
.8

8.
93

70
.5

2.
9

3.
3

31
.4

1.
8

29
.9

7.
4

46
.1

69
.8

~ 
80

~ 
50

~ 
95

~ 
65

~ 
20

~ 
50

 
~ 

5 
~ 

55
~ 

20
 

~ 
40

 
~ 

75
R

 (
%

)

S
ar

in
e

sp
ri

ng
(2

,1
35

 m
)

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

59
0

1,
22

7

N
S

N
S

N
D

N
D

N
D

X
N

D
N

D
N

S
N

S
N

S

d 
(m

)
37

.0
11

.5
t (

h)
 

2.
9

24
0

0.
8

71
.4

R
 (

%
)

T
sc

ho
et

re
 

sp
ri

ng
(1

,5
00

 m
)

2,
90

0

N
D

3,
10

0

N
S

N
S

N
S

N
S

N
S

N
D

N
D

N
D

N
S

N
S

N
S

N
D

N
D

N
S

d 
(m

)
16

.2
32

.3
t (

h)
 

17
21

.2
~ 

47
~ 

35
R

 (
%

)
M

ar
ne

s 

(1
,6

50
 m

)
N

S
N

S
N

S
N

S
N

S
N

S
N

S
N

S
X

X
N

S
N

S
N

S
N

S
N

S
N

S
N

D
X

N
S

L
iz

er
ne

sp
ri

ng
(1

,7
25

 m
)

N
S

N
S

N
S

N
S

N
S

N
S

N
S

N
S

X
X

N
S

N
S

N
S

N
S

N
S

N
S

N
D

N
S

N
S

11
a

14
a

15
a

16
a

11
a

14
a

15
a

16
a

N
D

c

?b
c/

M
 (

10
-6

m
-3

)

?b

c/
M

 (
10

-6
m

-3
)

c/
M

 (
10

-6
m

-3
)

sp
ri

ng

T
ra
ce
rs
:
Ti
n
T
in
op

al
,U

r
U
ra
ni
ne
,S

B
/S
G

S
ul
fo
rh
od

am
in
e
B
/G
.P

re
ci
pi
ta
tio

n:
–,

+
an
d
+
+
m
ea
n
no
,m

od
er
at
e
an
d
in
te
ns
e
ra
in
fa
ll,

re
sp
ec
tiv

el
y.
R
es
ul
ts
in
cl
ud
e
tr
ac
er

re
co
ve
ry

(R
),
tim

e
of

m
ax
im

um
co
nc
en
tr
at
io
n
(t
),
no

rm
al
is
ed

m
ax
im

um
co
nc
en
tr
at
io
n
(c
/M

)
an
d
di
st
an
ce

(d
).
N
D

sa
m
pl
ed

bu
t
no

t
de
te
ct
ed
.
X
co
nn

ec
tio

n
de
m
on

st
ra
te
d
by

m
ea
ns

of
ch
ar
co
al

ba
gs
.
N
S
no

t
sa
m
pl
ed

a
E
xp

os
ur
e
to

su
nl
ig
ht

an
d
ph

ot
ol
yt
ic

de
ca
y.

R
ec
ov

er
ie
s
ar
e
m
in
im

um
va
lu
es

b
D
ue

to
in
te
rf
er
en
ce
s
w
ith

or
ga
ni
c
ca
rb
on

,
T
in
op

al
co
nc
en
tr
at
io
ns

an
d
re
co
ve
ry

ca
nn

ot
be

de
te
rm

in
ed

c
D
ue

to
ve
ry

hi
gh

fl
ow

ra
te
s,
th
e
m
ai
n
sw

al
lo
w

ho
le

of
th
e
L
ac
ho

n
st
re
am

pr
ob

ab
ly

ac
te
d
as

a
sp
ri
ng

,
so

th
at

th
e
tr
ac
er

di
d
no

t
en
te
r
th
e
aq
ui
fe
r

1841

Hydrogeology Journal (2009) 17: 1833–1848 DOI 10.1007/s10040-009-0485-4



ranging from 5.4 to 57 h. The shortest times were
observed between the main glacier stream (Lachon) and
the Glarey spring (injections No. 11, 15 and 19),
suggesting that the principal swallow hole of this stream
is connected to a well-developed karst conduit. In the
catchment of the Glarey spring, there is no correlation
between distance and transit time, which illustrates the
high degree of heterogeneity that is characteristic for karst
aquifer systems. For example, the tracer injected at site
No. 1 took 31.4 h for a 2,500 m linear distance, while
tracer No. 17 took 12.9 h for 6,250 m (Table 1; Fig. 6).

Tracer recoveries at the Glarey spring (including the
contribution of the overflow), range from ∼5% (No. 12) to
∼96% (No. 4). High recoveries indicate a straightforward
conduit connection between the injection point and the
spring. Lower recoveries may have different reasons, such
as photolytic decay for injections No. 11, 15 and 16, or
tracer loss at the injection site due to the absence of
naturally flowing water (Nos. 6 and 7). However, when a
conservative tracer is directly injected into the conduit
network, typically via a swallow hole, recoveries can be
used to obtain additional information on the underground
flow system. Recoveries lower than 100% mean that the
missing part of the tracer and water went elsewhere. In the
present case, the low recoveries for some of the injected

tracers may indicate deep infiltration into subvertical
fractures and/or continued flow in the Urgonian karst
aquifer towards the east, where the Diablerets nappe
plunges under the tectonically higher nappes.

The rapid connections from injection points Nos. 3 and
5, located at the top of the Urgonian limestone karrenfield
at ∼2,850 m altitude, towards the Tschoetre spring, which
discharges from the Malm aquifer at 1,500 m, shows that
deep infiltration via fractures does actually occur across
the entire stratigraphic sequence.

Some breakthrough curves (BTCs) show multiple peaks
with 24-h periodicity, indicating an influence of glacier
melt. Figure 7 presents two BTCs observed at the Glarey
spring during the same multi-tracer test, i.e. during identical
hydrological conditions. Uranine was injected into the
washbasin of the mountain hut (No. 2), and Tinopal into a
cave stream (No. 1). Both tracers arrived at the spring after
about 30 h (time of first detection); the Tinopal BTC
essentially shows a single peak, while Uranine displays at
least six peaks in 24-h intervals. It is hypothesised that the
Uranine was transported through the unsaturated zone
towards an active karst conduit directly connected to the
glacier. The diurnal variability of water level and flow rate
in this conduit causes a stepwise mobilisation of the tracer;
intense rainfall on the eighth day seemed to wash out the

Fig. 6 Underground connections demonstrated by tracer tests with peak times and catchments boundaries. See also Fig. 4 legend
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remaining tracer, illustrated by an additional and final
Uranine peak. Tinopal, on the other hand, was transported
in a cave stream far away from the glacier without
intermediate storage in the unsaturated zone and without
significant diurnal variability.

The connections from injection points No. 9, 10 and 18
to the Marnes spring were established by very high tracer
concentrations found in charcoal bags placed downstream
in the Lizerne River. Tracers No. 9 and 10 were also
detected in a charcoal bag that was placed upstream from
the spring, but at lower concentration levels. This finding
pointed to the presence of an important spring farther
upstream, the Lizerne spring, which was previously
unknown.

Although discharge is not monitored at the inaccessible
Tschoetre spring, the multi-peak Uranine BTC resulting
from injection No. 5 clearly illustrates the influence of the
diurnal variability of glacier melt on this spring (Fig. 8).
The tracer pathway crosses several unsaturated limestone
and marl formations, obviously along deep vertical
fractures, before it reaches the active flow system of the
Marl karst aquifer. Intermediate tracer storage in the
unsaturated zone and periodic flushing by meltwater can
explain the observed BTC.

The tracer injections in the Lachon stream near the
glacier mouth made it possible to better characterise the
glacier–stream–aquifer–spring relations during different
hydrologic conditions (Fig. 9). As just described, the
tracers were exposed to daylight between the injection site
and the swallow hole so that partial photolytic decay had

occurred. During low-flow conditions (injection No. 16),
the tracer peaked after 15 h but the recovery was only
∼20%, indicating substantial photolytic decay in the slow-
flowing surface stream. During high-flow conditions (No.
11), the maximum tracer concentration occurred only 5 h
after injection and the recovery was substantially higher
(50%) indicating less tracer loss by photolytic decay due
to shorter residence times in the stream. Due to the short
transit times (the breakthrough was largely completed
within about 15 h), the BTC from this injection shows no
discernible influence of the diurnal glacier-melt variations,
unlike the BTCs presented in Figs. 7 and 8. During very

Fig. 8 Uranine breakthrough curve monitored at Tschoetre spring,
resulting from injection No. 5. The multi-peak behaviour is
attributed to the diurnal variability of glacial meltwater production

Fig. 7 Breakthrough curves monitored at the Glarey spring, along with recoveries and daily precipitation, resulting from the injection of
Tinopal (injection No. 1 in Table 1 and Fig. 6) and Uranine (No. 2) on the same day. Both tracers were first detected after about 30 h.
Uranine shows several peaks in 24-h intervals, indicating influence of the diurnal variations of glacier melt; further explanations in the text
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high flow conditions, when little photolytic decay is
expected, the tracer did not arrive at the spring, indicating
that the swallow holes were not active but probably
transformed into springs, i.e. they act as estavelles.

Conceptual model of karst drainage

Based on geological considerations, hydrologic observa-
tions and tracer test results, a conceptual model of the
underground drainage pattern of this glacierised karst
aquifer system was established as illustrated in two
hydrogeological sections (Figs. 10 and 11).

The Urgonian and Eocene limestones constitute the
main regional karst aquifer. The underlying Barremian
marl forms an aquiclude, which is, however, relatively
thin (∼100 m). Various processes contribute to aquifer
recharge, including sinking streams from adjacent non-
karst areas (allogenic recharge), diffuse infiltration of rain
and snowmelt water, infiltration of glacial meltwater
underneath the glacier and near its front, as well as
sinking of the main glacier stream far downstream from
the glacier mouth (autogenic recharge).

Large parts of the area are mainly drained by the
Glarey spring, but marginal zones drain towards four other
springs (Fig. 6). Structurally, the aquifer forms a large
anticlinorium with a poorly defined axis and a wide crest,

Fig. 9 Discharge monitored at the Glarey spring and the Lachon stream (if available) during three different tracer tests carried out during
different hydrologic conditions, and resulting Uranine BTCs, monitored at the Glarey spring: a injection No. 16, b injection No. 11 and c
injection No. 14 (see also Table 1 and Fig. 6). During high-flow conditions, shorter transit times and a higher recovery were observed than
during low-flow. During very high flow conditions, the tracer did not reach the spring as the swallow holes were obviously not active. c/M
is the uranine concentration normalized by the injected mass
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plunging towards the ENE below tectonically higher
nappes, with an axial plunge of 5–10°. The southward
adjacent isoclinal syncline, on the other hand, has a well-
defined axis and forms a narrow trough. The Glarey spring
is located where a deeply incised valley cuts this syncline
at a low topographic position (1,553 m).

It is assumed that underground drainage essentially
occurs near the base of the shallow karst aquifer, on top of
the underlying marl, and follows the fracture network and
the dip of the strata (Fig. 10). The karst waters partly flow
towards the ENE, following the gentle plunge of the
anticlinorium, but eventually turn southward, where the
isoclinal syncline acts as a major drainage structure,
collecting and conveying the water towards the Glarey
spring.

Some tracer tests resulted in high recoveries, indicating
straightforward connection between the respective swal-
low holes and the Glarey spring, via well-developed
conduits. Other tracers, although directly injected into the
conduit network via swallow holes, reappeared at sub-
stantially lower recoveries (sometimes only 5%), suggest-
ing that the remaining part of the tracer and, thus, an
important part of the water, went elsewhere. It is generally
known that high mountain areas often act as recharge
zones for large, deep groundwater circulation systems
(Toth 1963, 1999). However, infiltration into these
systems can rarely be directly observed. In the Tsan-
fleuron-Sanetsch area, two types of deep infiltration can be

hypothesised, supported by geological and hydrological
considerations, and tracer test evidence:

1. Continued groundwater flow in the Urgonian-Eocene
karst aquifer following the general plunge of the
Diablerets nappe towards the ENE

2. Deep infiltration via subvertical fractures and faults,
across the relatively thin Barremian marl aquiclude and
the underlying formations

The first type can only be indirectly deduced from the
geological structure and the low tracer recoveries, but
cannot be observed directly, because the Diablerets
plunges below tectonically higher nappes east of the
Sanetsch pass and there are no accessible sampling points
farther to the east where the re-emergence of groundwater
from the study area could be observed.

The second type of deep infiltration, however, is
confirmed by the two positive tracer tests between the
surface of the Urgonian-Eocene karst aquifer and the
Tschoetre spring, which discharges from the Malm karst
aquifer, 1,350 m below (Fig. 11). Between the injection
points and the spring, the tracers crossed about 800m of marl
and limestone stratigraphy in less than 2 days, which is only
possible via open, subvertical fractures and faults. As a
consequence of the steep topography in this part of the area,
fractures probably opened by gravitation, enabling rapid
water percolation. The catastrophic rockfalls, which plunged

Fig. 10 Conceptual model of karst drainage from the Tsanfleuron glacier and karrenfield towards the Glarey spring, confirmed by tracer
tests (injection points No. 1 and 2 are shown, also see Fig. 6). Water flow occurs near the base of the Urgonian-Eocene karst aquifer on top
of the underlying Barremian marl towards the isoclinal syncline that collects all water and conveys it to the spring. Infiltration into deeper
aquifers along faults is assumed (section line see Fig. 2)
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from these cliffs in 1714 and 1749, further support the
supposed existence of open fractures.

Both the Tschoetre and the Glarey springs receive
inflow from the glacier and rapidly react on the temper-
ature-driven diurnal variations of meltwater production.
Flow towards the Lizerne and Marnes springs follows
pathways similar to those towards the Tschoetre spring,
i.e. from the main karst aquifer along fractures across marl
aquicludes towards Valanginian and Malm limestone
aquifers, respectively.

The Sarine spring, located near the tectonic contact
between two nappes, seems to discharge from Berriasian
marl but receives inflow from the Tsanfleuron karst area,
as demonstrated by tracer tests. The crest of the
anticlinorium, although not precisely defined, acts as a
water divide between the catchments of the Sarine spring
and Glarey spring. One tracer injection went to both
springs; during high flow conditions, there is also inflow
from the glacier stream to the Sarine spring. The spring is
characterised by high but stable discharge, and stable
physicochemical parameters. It is hypothesised that the
spring is connected to a karstified limestone imbricate

thrust that drains the surrounding marl aquitards and is
also connected to the main aquifer. More research is
necessary to confirm this hypothesis.

Conclusions and outlook

Apart from the immediate relevance of a better under-
standing of regional hydrogeology and for the delineation
of protection zones for the Glarey spring, the study also
allows several conclusions of more general relevance to be
drawn. Groundwater flow in alpine karst aquifer systems
consisting of marl and limestone formations often follows
the stratification. Therefore, fold structures have a major
influence on groundwater flow in shallow karst systems,
as already demonstrated by means of tracer tests in several
alpine karst systems (e.g. Goldscheider 2005). Butscher
and Huggenberger (2007) used geologic three-dimension-
al modelling in combination with a conceptual flow model
approximating underground drainage of shallow karst
systems by open surface flow on top of the underlying
aquiclude. In the Tsanfleuron-Sanetsch karst system, the

Fig. 11 Conceptual model of flow from the upper part of the Tsanfleuron glacier and karrenfield towards the Tschoetre spring, confirmed
by tracer tests (injection point No. 3 is shown; see also Fig. 6). The tracer crossed the entire stratigraphic sequence, including several marl
formations, in less than two days along deep fractures that opened due to the steep topography (glacier projected into section, see Fig. 2)
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anticlinorium is part of the continental water divide
between the catchments of the Rhone and Rhine rivers;
the isoclinal syncline acts as a regional drainage structure,
conveying water towards the Glarey spring.

Due to the presence of fractures and faults, there is also
flow across the stratification. It was possible to demon-
strate rapid flow across an 800 m sequence of marls and
limestone, towards the Tschoetre spring, in less than
2 days. Catastrophic rockfalls occurred in this part of the
area in historic times. The tracer tests indicate the presence
of open fractures and thus the risk of future rockfalls,
enhanced by permafrost thawing and glacier retreat.

Not all recharge water reappears at accessible springs,
but a part of the water feeds deeper and larger regional flow
systems. In the Tsanfleuron-Sanetsch area, two types of
deep infiltration can be supposed, and partly demonstrated:
(1) parallel to the stratification, following the plunge of the
Diablerets nappe towards the ENE below tectonically
higher nappes, and (2) across the stratification, along
subvertical fractures, at least down to Malm limestone.

Intense interactions between the glacier and the karst
aquifer, including specific recharge processes, were ob-
served. The diurnal variations of the glacial meltwater
production influence tracer transport in the aquifer, con-
firming the importance of hydrologic variability for
contaminant transport processes in karst aquifer systems
(Göppert and Goldscheider 2008). On the basis of this
study, future research in this test site will focus on a better
characterisation of the influence of the diurnal and seasonal
variability of glacier melt upon groundwater flow (and
sediment transport) in the aquifer using simple modelling
approaches (e.g. Fleury et al. 2007). Finally, the project will
develop prognoses for the impacts of climate-change
induced glacier retreat on the availability and quality of
freshwater from the spring.
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