
Telecommun Syst (2010) 43: 49–58
DOI 10.1007/s11235-009-9196-3

Evaluation of WiseMAC and extensions on wireless sensor nodes

Philipp Hurni · Torsten Braun · Markus Anwander

Published online: 4 September 2009
© Springer Science+Business Media, LLC 2009

Abstract In the past five years, many energy-efficient
medium access protocols for all kinds of wireless networks
(WSNs) have been proposed. Some recently developed pro-
tocols focus on sensor networks with low traffic require-
ments are based on so-called preamble sampling or low-
power listening. The WiseMAC protocol is one of the first
of this kind and still is one of the most energy-efficient MAC
protocols for WSNs with low or varying traffic require-
ments. However, the high energy-efficiency of WiseMAC
has shown to come at the cost of a very limited maximum
throughput.

In this paper, we evaluate the properties and charac-
teristics of a WiseMAC implementation in simulation and
on real sensor hardware. We investigate on the energy-
consumption of the prototype using state-of-the-art evalu-
ation methodologies. We further propose and examine an
enhancement of the protocol designed to improve the traffic-
adaptivity of WiseMAC. By conducting both simulation and
real-world experiments, we show that the WiseMAC exten-
sion achieves a higher maximum throughput at a slightly in-
creased energy cost both in simulation and real-world exper-
iments.

Keywords Wireless sensor networks · Energy efficient
medium access control

P. Hurni (�) · T. Braun · M. Anwander
Institute of Computer Science and Applied Mathematics,
University of Bern, 3012 Bern, Switzerland
e-mail: hurni@iam.unibe.ch

T. Braun
e-mail: braun@iam.unibe.ch

M. Anwander
e-mail: anwander@iam.unibe.ch

1 Introduction

Energy-efficient medium access protocols attempt to only
use the wireless transceiver in an on demand manner. Such
protocols typically switch the radio transceiver hardware be-
tween the costly operation modes receive and transmit, and
an energy-conserving sleep mode. As the transceiver hard-
ware is accountable for a major portion of a WSN node’s
energy consumption, power saving mechanisms switch the
transceiver to an energy conserving sleep state whenever no
traffic needs to be handled.

The majority of existing approaches tries to synchronize
state changes of the nodes in order to exchange pending traf-
fic or control messages in a common interval. Such synchro-
nization, however, is not easy to achieve, especially over
multiple hops. The introduction of periodic control mes-
sages for global or clusterwise synchronization is energet-
ically costly. With low traffic, the energetic overhead for
maintaining synchronization among the nodes and the co-
ordination and assignment of designated slots may exceed
the energy spent for the actual data traffic. Quite a few wire-
less sensor MAC protocols renouncing on global or cluster-
wise synchronization have recently been proposed. The pro-
tocols B-MAC [1], WiseMAC [2], X-MAC [3], C-MAC [4]
are based on asynchronous wake intervals and have proven
to be very energy-efficient in low-traffic scenarios.

WiseMAC [2] is one of the most established protocols
of this kind, and currently one of the most energy-efficient
medium access control protocols for scenarios with low or
variable traffic requirements. With sparse traffic, WiseMAC
comes close to the theoretically achievable lower bounds
of energy-efficiency in case of unicast point-to-point trans-
missions. However, the high energy-efficiency of WiseMAC
comes at the cost of a very limited maximum throughput and
packet loss occurring with rather low traffic rates. This can

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159152685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:hurni@iam.unibe.ch
mailto:braun@iam.unibe.ch
mailto:anwander@iam.unibe.ch

50 P. Hurni et al.

be observed in many typical wireless sensor network sce-
narios, e.g. if many sensors simultaneously detect and report
data to the base station. One reason is that in tree-based wire-
less sensor network scenarios, WiseMAC nodes receiving
traffic from several sources become throughput-restraining
bottleneck nodes. Reference [5] proposed a mechanisms
to increase the adaptivity of the WiseMAC protocol in re-
spect to changing traffic requirements. The mechanism al-
lows bottleneck nodes to temporarily abandon their energy-
conserving wake-up pattern by perceiving and reacting to
signs of increasing load. This paper evaluates the properties
and characteristics of WiseMAC and the proposed extension
in simulation and on a real sensor hardware testbed.

Section 2 describes the basic WiseMAC protocol with the
existing more bit mechanism. Section 3 introduces the ex-
tended more bit mechanism. Section 4 presents simulation
results, while Sect. 5 discusses performance evaluation re-
sults from real-world experiments. Section 6 concludes the
paper.

2 Wireless sensor MAC (WiseMAC)

WiseMAC [2] is based on short, unsynchronized duty cy-
cles and the so-called preamble sampling technique. When
transmitting a frame, nodes prepend preambles of variable
length, in order to alert the targeted receivers in their par-
ticular wake-up interval and to signalize that they shall not
return to the sleep state but stay awake for the upcoming
frame transmission.

When the receiver’s wake-up pattern is still unknown, the
duration of the preamble equals the full basic cycle dura-
tion T , as illustrated in Fig. 1 in the first transmission. The
own schedule offset is then piggybacked to the frame and
transmitted to the receiver. After successful frame reception,
the receiver node piggybacks its own schedule to the respec-
tive frame acknowledgement. Received schedule offsets of
all neighbor nodes are subsequently kept in a table and are
updated whenever frames and schedules are exchanged or
possibly overheard. Based on the schedule-offset table, a
node can determine the wake-up intervals of all its neighbors
and minimize the preamble length for upcoming transmis-
sions. If a node needs to send a frame to an already known

receiver, it waits for the receiver’s wake-up (keeping its own
transceiver in the sleep state) and transmits the frame just in
the appropriate moment. It only prepends a small preamble
that compensates for the maximum clock drift that the two
involved nodes’ clocks may have developed since the last
schedule exchange. The duration of the preamble calculates
as

PWiseMAC = min(4θL,T) (1)

where θ denotes the quartz oscillator clock’s drift, L the
time since the last update of the neighbor’s wake pattern and
T the common basic cycle interval duration.

2.1 WiseMAC more bit scheme

WiseMAC suggests an optional fragmentation scheme call-
ed more bit mode in [6], which succeeds in increasing the
maximum achievable throughput in point-to-point scenar-
ios. The scheme consists in setting a flag (the more bit) in
a unicast MAC frame whenever the sender has more pack-
ets to send. The more bit in the frame header signals to the
receiving node that it shall not turn off the transceiver after
receiving the frame, but switch to the receive mode again
after frame acknowledgement in order to receive the next
packet in line, as depicted in Fig. 2.

This scheme achieves that when a sender node has mul-
tiple packets to send to the same node, it does not need to
wait for the next wake-up of the receiver for each frame, but
can transmit all packets in one burst, which increases the
achievable WiseMAC throughput. The scheme proved to be
effective in scenarios with varying traffic, especially with
packet bursts generated by single nodes. However, the more
bit scheme only includes one sender and one destination.
Basically, it only attempts to improve the traffic adaptivity
along one link. The improvement of the traffic adaptivity
is therefore rather limited to point-to-point scenarios with
transmissions along one link or linear link chains.

In large multi-hop wireless sensor network topologies,
the typical situation is that nodes closer to the base station
need to forward data from large sub-trees. As schematically
depicted in Fig. 3, such bottleneck nodes have to forward

Fig. 1 WiseMAC

Evaluation of WiseMAC and extensions on wireless sensor nodes 51

Fig. 2 WiseMAC more bit
mode

Fig. 3 Bottleneck node in a
source-to-sink tree structure

messages generated by many other nodes (e.g. nodes A, B
and C and their subtrees) towards one or a few base stations.
The more bit scheme does not help at all if several nodes
aim to simultaneously transmit packets to the same bottle-
neck node. If each node has one or a few packets to pending
for the bottleneck node, one node after the other will have to
wait for one particular wake-up of the bottleneck node. The
more bit scheme achieves that one node after the other can
transmit a burst of packets, but the duty-cycle of the receiv-
ing bottleneck node is not prolonged at all.

3 Extended WiseMAC more bit scheme

We worked on a scheme to increase the traffic-adaptivity
of WiseMAC, such that under increasing load, the proto-
col adaptively reacts on the changing traffic conditions and
permits to achieve higher maximum throughput rates. We
proposed a scheme that allows nodes to automatically stay
awake for a longer time than just the awake period when
more traffic has to be handled, and to tell this to all nodes
waiting to forward traffic to it in [5]. For this purpose, we
extended the semantics of the more bit to a so-called stay
awake promise bit. This is also called extended more bit
hereafter.

Figure 4 depicts both schemes, the WiseMAC more bit
(Fig. 4a) scheme as well as our proposed extended more bit
(Fig. 4b). The figure illustrates how the mechanisms react in
a situation where two sources SRC1 and SRC2 simultane-
ously need to transmit some packets to the same node DST,
possibly because an event has occurred in their vicinity.

If SRC1 and SRC2 both aim to reach DST in the same
wake interval, the so-called medium reservation preamble,
the contention mechanism of WiseMAC, will decide who is

first. SRC1 wins the contention and sends its first two frames
with the more bit set. The destination node acknowledges
the more bit in the ACK packet and stays awake for at least
a basic wake interval T . As SRC2 has lost the contention,
it will wait and overhear the transmission from SRC1 to
DST. By hearing the stay awake promise in the ACK, SRC2
knows that it can start sending its own data frames right after
SRC1 has finished its transmissions.

The advantage of the extended more bit scheme is that no
time is wasted with the receiver switching to the sleep state
while other nodes are still buffering packets destined to it.
Notice that the transmission of SRC2 can start immediately
after the transmissions of node SRC1. The mechanism how-
ever is only activated when there is a node buffering more
than one frame. If a node requests its destination to stay
awake for one next packet (as done in the original more bit
scheme), the receiver node treats this more bit request as an
indication of increased load. The scheme is not applied after
every unicast transmission, as transmissions of single pack-
ets are frequent in wireless sensor networks, and do not yet
indicate increasing load. The scheme is activated whenever
bursts of packets occur.

4 WiseMAC and extensions in simulation

4.1 Simulation environment and scenario

For performance evaluation by simulation, we chose a sce-
nario of 90 nodes uniformly distributed across an area of
300 m × 300 m. We implemented the WiseMAC protocol
[2] in the OMNeT++ Network Simulator [7] using the wire-
less channel model of the Mobility Framework [8], which
supports simulations of wireless ad hoc and mobile networks
on top of OMNeT++.

Investigations on energy-efficient MAC mechanisms re-
quire a fine-grained model for the energy-consumption of
sensor node in their different states. Reference [9] models
the energy consumption of a IEEE 802.11 wireless device
with a transceiver state model consisting in the states sleep,
idle, receive and transmit. Experimental results in [9] con-
firm the adequateness of the state model with three different
energy consumption levels. As many low-power and low-
bandwidth transceivers used in sensor networks are of very

52 P. Hurni et al.

Fig. 4 WiseMAC more bit and extended more bit

low complexity, the energy consumption in idle and receive
mode is often almost equal and thus do not need to be treated
differently.

Pursuing the same methodology as [9], we modeled the
energy consumption of the sensor nodes with a state model
with respect to the time spent in three operation modes sleep,
receive and transmit, weighted with the respective energetic
costs. The energy consumption during the state transition is
assumed to be equal to the consumption of the respective
higher state.

We applied the transceiver parameters of the TR1001
low-power radio transceiver module [10] (transmission rate,
state transition delays, power consumption). The TR1001 is
the radio chip of quite a few sensor nodes, including our
own sensor hardware testbed. The parameters of the simu-
lation environment, energy consumption model and trans-
ceiver specific settings, as well as WiseMAC-specific para-
meters are listed in Table 1.

Traffic using a Poisson model is generated for 1 hour at
each node with increasing traffic intensity λ, and sent to-
wards one single sink in the corner at position (0,0). We
use static shortest path routing. Nodes are assumed to know

their hop-count optimal parents and forward their packets
over these gateways during the entire simulation run.

4.2 Simulation results

Figure 5 depicts the aggregated energy consumption of the
entire network at the end of the simulation. Figure 6 illus-
trates the throughput received at the sink station, in terms
of incoming payload. As one can clearly see in Fig. 5,
WiseMAC (without the more bit) is both energy-efficient
and traffic adaptive for rates of λ in between [0,0.05].
With no traffic, the energy consumption remains very low.
As WiseMAC does not rely on a global wake-up scheme
which needs to be actively maintained by synchronization,
its idle power consumption remains very low. With linear
increase of traffic, WiseMAC is able to react with a more
or less linear increase of the total energy consumption.
Unfortunately, throughput stalls at a very low traffic rate of
λ = 0.05 already. As nodes only transmit one packet per
wake-up, the throughput is limited by the duration of the
sleep interval. Exceeding that limit results in higher packet
loss as nodes need to drop packets due to buffer overflow.

Evaluation of WiseMAC and extensions on wireless sensor nodes 53

Table 1 OMNeT++ simulation
parameters OMNeT++ parameters:

path loss coefficient α 3.5 sensitivity −101.2 dB m

carrier frequency 868 MHz carrier sense sensitivity −112 dB m

transmitter power 0.1 mW communication range 50 m

SNR threshold 4 dB carrier sensing range 100 m

transceiver parameters:

supply voltage 3 V recv to transmit 12 µs

transmit current 12 mA transmit to recv 12 µs

recv current 4.5 mA recv to transmit 518 µs

sleep current 5 µA recv to sleep 10 µs

WiseMAC parameters:

basic interval duration T 250 ms maximum retries 3

duty cycle 5% packet size (header + payload) 160 (80 + 80) bit

packet queue length 15

Fig. 5 Energy consumption

Fig. 6 Throughput

As one can clearly see in Fig. 6, the introduction of the
WiseMAC more bit option improves the throughput by a
factor of ∼2. The ability to transmit a burst of buffered pack-

ets to the intended receiver allows to reach a much higher
throughput. The more bit scheme massively improves the
traffic-adaptivity of the WiseMAC protocol, as it allows to
achieve a higher maximum throughput with a high efficiency
for rates of λ in between [0,0.1], but remains very efficient
in case of low or no traffic.

Figure 6 further proves that an increase of maximum
throughput is possible with the extended more bit. As nodes
stay awake for a certain time interval after receiving a packet
burst, even if no other node needs to transmit packets, the
improved throughput comes with slightly increased energy
costs. When we consider the ratio of throughput and energy,
the extended scheme however is even better than the more
bit scheme for high traffic (λ ≥ 0.1).

5 WiseMAC and extensions on real sensor hardware

5.1 WiseMAC implementation on embedded sensor boards

The simulation environment described in Sect. 4.1 is an at-
tempt to model a wireless sensor network, with respect to
effects of signal dispersion, environmental noise, bandwidth
limitation, energy constraints, clock drifts and much more.
Yet, many other aspects that may play a role for wireless
sensor networks are still left aside. In order to examine the
real-world behavior of the simulated wireless sensor net-
work mechanisms, we implemented the original WiseMAC
mechanism and the (extended) more bit on Embedded Sen-
sor Boards (ESB) [11]. ESB nodes run the sensor node op-
erating system ScatterWeb OS [12] and are equipped with a
micro-controller MSP430, various sensors and communica-
tion interfaces such as the 868.35 MHz wireless transceiver
TR1001 [10]. The different sensors and the communication
interfaces can be turned on and off, which results in different
levels of energy consumption. The implementation parame-
ters of the power saving WiseMAC protocol on ESB nodes

54 P. Hurni et al.

listed in Table 2 led to stable and quite robust functioning of
the prototype implementation on the ESB.

5.1.1 Preamble sampling and frame transmission

If a node does not recognize the start byte sequence within
its duty cycle �t = T · duty cycle = 5 ms, it immediately
returns to the sleep state until the next wake interval. If it
recognizes the start byte sequence, it stays in the receive
state until preamble and frame are correctly received. Af-
ter reception, the node checks the type of the frame. In case
of a broadcast frame, the node immediately returns to the
sleep state. In case of a unicast frame, it returns a 10-byte
acknowledgement and goes back to the sleep state.

When a packet has to be sent, the network handler deter-
mines whether the frame receiver is already known and its
schedule offset is already stored in the WiseMAC table. If
this is the case, the node waits for the receiver’s wake-up,
switches the transceiver and transmits preamble and frame
subsequently. If the medium is not free, the node turns to
the sleep state again and schedules the next transmission at-
tempt. In case the receiver is unknown yet, the transmission
attempt is initiated immediately with a full-cycle preamble.

We further implemented the more bit scheme and the ex-
tended more bit scheme using the stay awake promise on
ESB nodes. Sender nodes intending to transmit a burst of
packets alter one single bit in the MAC header, thereby sig-
naling to the receiver nodes to stay awake for the next packet
in line.

Table 2 WiseMAC on ESB nodes: basic prototype parameters

basic interval duration T 500 ms

duty cycle 1%

baud rate 19200 bps

bit rate 9600 bps

minimum preamble 5 ms

medium reservation preamble uniform [0,6] ms

MAC header 104 bit

payload 96 bit

packet queue length 20

maximum retries 3

The buffer space for storing packets has been rather lim-
ited due to the small RAM in ESBs, and allows to store 20
frames. In case of buffer overflows, packets passed from the
application layer are discarded.

5.2 Retransmissions

MAC layer protocols generally schedule retransmissions
when no acknowledgement is received within a certain
time, sometimes with a slight change in parameters in or-
der to increase the probability that the next attempt suc-
ceeds. WiseMAC does not address the topic of retransmis-
sions in [2]. We designed an own automatic repeat request
(ARQ) scheme in the ESB WiseMAC prototype, c.f. Fig. 7.
For the first transmission, the preamble size is chosen ac-
cording to WiseMAC to be Tpreamble = min(4θL,T). If the
first attempt fails, the station receiving no acknowledgement
within ∼50 ms starts with a second transmission attempt. In
the second attempt, the initial preamble is doubled. In the
third attempt, the initial preamble is tripled. Finally, in the
last attempt, a full-cycle preamble is prepended to the ac-
tual frame. Using this retransmission strategy, delivery prob-
ability for transmissions between two nodes reached nearly
100% within a range of some meters. Cases where this re-
transmission technique failed occurred rather infrequently,
as it corrects the most frequent cause of transmission fail-
ures on the ESB platform, namely the imprecisenesses of
the software-based timers.

5.3 Measurement methodologies

Different methodologies to assess on the energy consump-
tion of very small low-power devices have been tested dur-
ing the past decade. As pointed out in [13], equipping nodes
with replaceable or rechargeable AA batteries is no reason-
able approach, as battery capacities have a huge variance.
Furthermore, low-power sensor nodes would be able to live
for days, weeks, or even months from fully charged batter-
ies, which is clearly too impractical to conduct measure-
ments. In recent experimental studies on the energy con-
sumption of sensor network devices, researchers have either
used cathode ray oscilloscopes to measure the current draw,
or used capacitors to conduct measurements on node life-
times.

Fig. 7 Retransmissions in
WiseMAC on ESBs

Evaluation of WiseMAC and extensions on wireless sensor nodes 55

5.3.1 GoldCap capacitors

We investigated the energy consumption of ESB nodes via
measurements on the node lifetime. This methodology is
widely accepted and has been used in [13, 14]. It consists in
charging so-called GoldCap capacitors and measuring the
time a node can live on this given charge. These capaci-
tors come with high capacity of 1 Farad in our case, can
be charged quite quickly and power a sensor node for some
minutes. When being charged with the same initial amount
of energy, a node with a lower overall energy consumption
can life longer of the energy it is equipped with, which al-
lows evaluating the nodes’ energy consumption in small-
scale test scenarios. The methodology allows answering the
question how much energy could actually be saved when
applying energy-efficiency measures on the ESBs in small
test-scenarios.

Shutting down all sensors and unplugging the nodes from
the RS232 interface makes sure that only CPU and trans-
ceiver consume energy, besides some small amount of en-
ergy spent for the circuits on the board. We observed the
supply voltage of the capacitor with a customary multi-
meter. When unplugging the capacitor from the charging
source, the voltage of the capacitor continuously decreases.
We measured the time until the voltage drops below 3 V,
which is the supply voltage the embedded voltage controller
requires to power the node. Below this threshold, the node
still runs for some small amount of time, but its behavior is
unpredictable. Applying this methodology, we obtained ro-
bust results with low variance.

In a first step, we measured the node’s lifetime in the
three different states of the transceiver (sleep, receive, trans-
mit). Figure 8 depicts the lifetimes of nodes in the partic-
ular states. The first bar illustrates the lifetime of an ESB
node with a permanently turned-off transceiver. The second
bar illustrates the lifetime of an ESB node running Scat-
terWeb CSMA, which keeps the transceiver permanently in
the receive state. The third bar corresponds to a node in the
most costly transmit state. As ESB nodes apply on-off keyed
(OOK) modulation, the signal is simply turned on and off
for bits to send ‘1’ and ‘0’, respectively. We therefore mea-
sured the transmit state (third bar) when sending a strictly
alternating sequence of ‘1’ and ‘0’.

In regard of Fig. 8, we can conclude that the energy con-
sumption of the entire ESB node is highest in the transmit
state. Receiving is almost equally expensive, and approx-
imately twice as costly as the sleep state. The lifetime of
nodes being constantly in the sleep state gives us the upper
bounds for the lifetime with an energy-efficient MAC proto-
col.

5.3.2 Cathode ray oscilloscope

The energy consumption of sensor nodes can further be
measured by sampling the current draw in the circuit us-

Fig. 8 Lifetimes of ESB nodes in different states

ing cathode-ray oscilloscopes (CRO) and integrating it over
time. CROs can be used to measure the voltage draw across
a shunt resistor with low impedance that is inserted in series
with the device. Ohm’s law then permits to infer the current
in the test circuit.

Reference [9] applies this methodology to a 802.11 wire-
less interface card, and [15] examines the energy consump-
tion of TelosB [16] nodes in different operation modes ap-
plying the same methodology. The drawback of this method-
ology is that (a) the fluctuations in the measured current can
be very high and that (b) CROs only record the measured
signal during a couple of seconds at maximum. In order
to test and quantify the performance of an energy efficient
MAC protocol, one needs to conduct measurements over a
longer time period, definitely more than a few seconds.

Applying the CRO-technique however yields the oppor-
tunity to get interesting insights into the impact of the pro-
tocol mechanisms to the current draw in real-time. It allows
visualizing the mechanisms, which can be further useful for
debugging purposes. We therefore applied the CRO method-
ology with a shunt resistor of 2 � to the ESB nodes running
the WiseMAC prototype.

5.4 Measurement results

5.4.1 Power consumption via node lifetime

The fourth bar in Fig. 8 illustrates the lifetime of WiseMAC
nodes in the absence of traffic. It becomes obvious that the
WiseMAC implementation on the ESB with only 1% duty
cycle leads to a very low idle energy consumption. Its life-
time is almost equal to the lifetime of a node with the perma-
nently turned-off transceiver. We measured a mean lifetime
reduction of 0.47% with a standard deviation of 1.19% in
respect to the average lifetime in the sleep state.

Comparing the lifetime of the WiseMAC node to the life-
time of simple ScatterWeb CSMA, the lifetime could be in-
creased by approximately 120%. Considering that the mech-
anism still allows reaching nodes within 500 ms, the cost

56 P. Hurni et al.

for this connectivity is quite reasonable. To our knowledge,
the WiseMAC prototype on the ESB is currently the imple-
mentation with the lowest duty cycle and lowest idle power
consumption that has been implemented on the ESB nodes
research platform.

5.4.2 Current

Figures 9 and 10 depict the current draw of an ESB node
running WiseMAC measured with the CRO methodology
explained in Sect. 5.3.2. In Fig. 10, the node samples the
medium (every T = 500 ms) for incoming traffic. At the 2nd
wake-up in the figure it receives a frame from a neighboring
node. One can clearly see that with WiseMAC, transmis-
sion and reception is very efficient. The node only spends
very little time in one of the expensive transceivers states
receive and transmit. The receiver recognizes the preamble
signal, receives frame, transmits acknowledgement and sub-
sequently returns to the sleep state.

In Fig. 10, we measured the current on the transmitting
node during one packet transmission. One clearly recognizes
the transceiver being switched to the costly receive state for
checking the carrier, then transmitting the frame and receiv-
ing the acknowledgement.

5.4.3 Lifetime vs. traffic rate

We measured the lifetime of WiseMAC in a chain scenario
consisting of six nodes, where traffic is generated at the
first node and send towards the last node of the chain. Fig-
ure 11 depicts the lifetime of an intermediate node that for-
wards packets along the chain, measured with the GoldCap
methodology.

Fig. 9 WiseMAC with packet reception at 2nd wake-up

With an increase of the traffic rate at the sender (x axis),
the node’s energy consumption increases accordingly. A more
or less linear decrease of the node’s lifetime can be ob-
served. The lower curve in Fig. 11 displays the lifetime of
a node using ScatterWeb CSMA. ScatterWeb CSMA keeps
the transceiver constantly in the receive state, applying no
energy conserving measures, such as periodic switching be-
tween sleep and active states. As sending and receiving is
more or less equally expensive, the traffic has no big impact
on the measured lifetime of the node.

5.4.4 Throughput

We measured the throughput of the two schemes WiseMAC
more bit and our proposed extended more bit scheme when
generating traffic of equal rate from two senders (SRC1,
SRC2) towards one receiver (DST), the same scenario setup
as depicted in Fig. 4. When both senders concurrently for-
ward packets to the receiver, the receiver with its limited
wake-ups becomes a bottleneck. The (extended) more bit

Fig. 10 Packet transmission

Fig. 11 Lifetime curve with increasing traffic

Evaluation of WiseMAC and extensions on wireless sensor nodes 57

Fig. 12 Throughput for WiseMAC, more bit and extended more bit on
ESBs

scheme alleviates the impact of this problem. We imple-
mented both the original WiseMAC more bit and the our
extended more bit scheme. In our extended more bit scheme
implementation, the receiver node promises to stay awake
for T = 500 ms by a single bit in the acknowledgement
frame.

Figure 12 shows the measured throughput in the given
scenarios. The x-axis corresponds to the traffic generated by
each of the two nodes. As we can clearly see in Fig. 12, the
WiseMAC protocol without the more bit can only deliver
one packet per wake-up, and therefore, throughput is lim-
ited to two packets per second (= 1/T). When increasing
the rate, packets are subsequently queued in the buffer and
dropped when the buffer is full. When two stations apply the
(extended) more bit scheme, they can alternately empty their
transmit buffers with a burst of packets. The sending sta-
tion receives packets from its application layer and buffers
them until the receiver node’s next wake-up. The sender then
transmits frames with the more bit set, listens for the ac-
knowledgement and continues sending the next packet in
line, until its buffer is empty.

By applying the (extended) more bit scheme, we could
increase the throughput to much higher values. In regard
of Fig. 12, we conclude that the extended more bit scheme
basing on the stay-awake promise is superior to the orig-
inal WiseMAC more bit in respect to the achieved maxi-
mum throughput. The throughput reaches nearly 8 packets
per second for the more bit scheme, and exceeds 10 packets
for the extended more bit scheme. The throughput increase
for the extended more bit scheme compared to the original
more bit scheme exceeds 20%. The superior performance of
roughly 20 has been found similar in both simulation and
real-world experiments.

6 Conclusions

The paper evaluated WiseMAC and extensions on ESB sen-
sor nodes. The measurement results underline and useful-
ness of the energy-conserving WiseMAC compared to a
MAC scheme without integrated power saving mechanism.
The paper evaluated two schemes to improve throughput in
scenarios with multiple senders and bottleneck destination
nodes. The results obtained in simulation and sensor test-
bed confirm that the extended more bit basing on the so-
called stay-awakepromise performs better than the original
WiseMAC more bit scheme. The superior performance of
20% has been found similar in both simulation and real-
world experiments.

References

1. Polastre, J., Hill, J., & Culler, D. (2004). Versatile low power me-
dia access for wireless sensor networks. In ACM conference on
embedded networked sensor systems (SenSys).

2. El-Hoiydi, A., & Decotignie, J.-D. (2004). Wisemac: an ultra low
power mac protocol for multihop wireless sensor networks. In AL-
GOSENSORS.

3. Buettner, M., Anderson, E., & Han, R. (2006). X-mac: a short
preamble mac protocol for duty-cycled wireless sensor networks.
In SenSys ’06: proceedings of the 4th international conference on
embedded networked sensor systems.

4. Liu, S., Fan, K.-W., & Sinha, P. (2007). Cmac: an energy efficient
mac layer protocol using convergent packet forwarding for wire-
less sensor networks. In 4th IEEE conference on sensor, mesh and
ad hoc communications and networks (SECON) ’07.

5. Hurni, P., & Braun, T. (2008). Increasing throughput for wisemac.
In IEEE/IFIP conference on wireless on demand network systems
and services (WONS).

6. El-Hoiydi, A. (2005). Energy efficient medium access control
for wireless sensor networks. PhD thesis, École Polytechnique
Fédérale de Lausanne.

7. Varga, A. (2001). The OMNET++ discrete event simula-
tion system. European Simulation Multiconference. http://www.
omnetpp.org.

8. Drytkiewicz, W., Sroka, S., Handziski, V., Koepke, A., & Karl, H.
(2003). A mobility framework for omnet++. In 3rd International
OMNeT++ workshop.

9. Feeney, L., & Nilsson, M. (2001). Investigating the energy con-
sumption of a wireless network interface in an ad hoc networking
environment. In IEEE conference on computer communications
(INFOCOM).

10. RF Monolithics. Tr1001 hybrid transceiver. http://www.rfm.com/
products/data/TR1001.pdf.

11. Schiller, J., Liers, A., Ritter, H., Winter, R., & Voigt, T. (2005).
Scatterweb: low power sensor nodes and energy aware routing.
In 38th annual Hawaii international conference on system sci-
ences.

12. Schiller, J. H., Liers, A., & Ritter, H. Scatterweb: a wireless sen-
sornet platform for research and teaching. Computer Communica-
tions.

13. Ritter, H., Schiller, J., Voigt, T., Dunkels, A., & Alonso, J. (2005).
Experimental evaluation of lifetime bounds for wireless sensor
networks. In European workshop on wireless sensor networks
(EWSN).

http://www.omnetpp.org
http://www.omnetpp.org
http://www.rfm.com/products/data/TR1001.pdf
http://www.rfm.com/products/data/TR1001.pdf

58 P. Hurni et al.

14. Staub, T., Bernoulli, T., Anwander, M., Waelchli, M., & Braun, T.
(2006). Experimental lifetime evaluation for mac protocols on real
sensor hardware. In ACM workshop on real-world wireless sensor
networks (REALWSN).

15. Panthachai, Y., & Keeratiwintakorn, P. (2007). An energy model
for transmission in Telos-based wireless sensor networks. In In-
ternational joint conference on computer science & software en-
gineering (JCSSE2007).

16. Polastre, J., Szewczyk, R., & Culler, D. E. (2005). Telos: enabling
ultra-low power wireless research. In International symposium on
information processing in sensor networks (IPSN).

Philipp Hurni received his B.S. and
M.S. degree in 2006 and 2008 from
University of Bern, Switzerland. He
has been a visiting Researcher at
Purdue University in Winter/Spring
2008. Since April 2008, he is work-
ing towards Ph.D. in the field of
energy-efficient MAC and routing
protocols in wireless ad hoc and sen-
sor networks at University of Bern.

Torsten Braun received diploma
and Ph.D. degrees from the Univer-
sity of Karlsruhe, Germany, in 1990
and 1993, respectively. From 1994
to 1995, he was a guest scientist
with INRIA Sophia Antipolis. From
1995 to 1997, he worked as a project
leader and senior consultant at the
IBM European Networking Center,
Heidelberg, Germany. Since 1998,
he has been a full professor of com-
puter science at University of Bern,
Switzerland, heading the Computer
Networks and Distributed Systems
Research group.

Markus Anwander got his diploma
degree from the University of Bern,
Switzerland, in 2006. Since October
2006, he is working as a research
assistant and Ph.D. student in the
Computer Networks and Distributed
Systems research group at the Uni-
versity of Bern. His research inter-
ests include mobile ad-hoc networks
and wireless sensor networks.

	Evaluation of WiseMAC and extensions on wireless sensor nodes
	Abstract
	Introduction
	Wireless sensor MAC (WiseMAC)
	WiseMAC more bit scheme

	Extended WiseMAC more bit scheme
	WiseMAC and extensions in simulation
	Simulation environment and scenario
	Simulation results

	WiseMAC and extensions on real sensor hardware
	WiseMAC implementation on embedded sensor boards
	Preamble sampling and frame transmission

	Retransmissions
	Measurement methodologies
	GoldCap capacitors
	Cathode ray oscilloscope

	Measurement results
	Power consumption via node lifetime
	Current
	Lifetime vs. traffic rate
	Throughput

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

