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Abstract In the Information Embedding Problem one is given a piece of data which
can be altered only conditionally, for example only at certain places. One is then asked
to embed an arbitrary message into the data by only applying admissible changes to
the data. These changes lead to a distortion which is to be kept low. In this short note,
we introduce an “asymmetric” version of information embedding in which the file
is regarded as a string over a finite alphabet, and admissible changes on the alpha-
bet elements are modeled by a directed graph. We introduce embedding techniques
based on list-decoding algorithms for algebraic–geometric codes, and analyze their
performance.

1 Introduction

Let G = (V, E) be a directed graph in which for all v ∈ V we have (v, v) ∈ E ,
and let Ĝ be its transitive closure. An example is the q-line consisting of q nodes
0, 1, . . . , q − 1 such that there is an edge between i and i + 1 for i = 0, . . . , q − 2.
Figure 1 gives an example for the case q = 5.

Let P(S) denote the set of subsets of a set S. An Information Embedding Scheme
(IES) of signature (n, k; G), denoted IES(n, k; G), consists of a pair (E, D) of poly-
nomial time computable functions E : F

n
q × F

k
q → F

n
q and D : F

n
q → P(Fk

q) called
encoding and decoding functions, such that:

1. For all v ∈ F
k
q and x ∈ F

n
q and all i = 1, . . . , n we have that (yi , xi ) ∈ E , where

y = E(x, v).
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Fig. 1 (a) The 5-line and (b) its transitive closure

2. There exist δ, γ > 0 (depending possibly on q but not on n or k) such that if
v ∈ F

k
q and x ∈ F

n
q are chosen uniformly at random, then Pr[v �∈ D(E(v, x))] ≤

γ exp(−nδ).

We call the quantity k/n the “rate” of IES(n, k; G). We are interested in IESs of high
rate. More precisely, we would like to find the value of A(G), where

A(G) := sup{R | ∃ Information Embedding scheme of rate R for G}.

It is possible that for some graphs there is no IES. For example, suppose that the
graph has only self-loops and no edges between the nodes. Then, the only encoding
function is the one mapping (v, x) to x , regardless of v. As a result, a given x does
not convey any information about v; the decoder D can only guess the value of v,
with error 1 − 1/2k . This error does not decay polynomially in n, hence there is no
matching decoding function for E.

In this paper, we will always assume that the vertex set V of the graph G is a set
with q elements, and denote this set either by {0, . . . , q − 1} (as in the case of the
q-line) or by the field Fq . Moreover, our encoding function E is composed of two
functions: an encoding function ϕ which maps v to an element c = ϕ(v) of a suitably
chosen linear [n, k]q -code C , and a map π which maps the pair (x, c) to the vector
(y1, . . . , yn), where

yi =
{

xi if (ci , xi ) �∈ E
ci else.

In other words, whenever we are allowed to replace xi with ci , we will do so oppor-
tunistically. Whether this scheme is successful or not depends on the statistics of x ,
and that of c. For example, suppose that the underlying graph is the q-line, and that
c = (q − 1, q − 1, . . . , q − 1). Then E(x, c) = x for all x , and hence E(x, c) conveys
essentially no information about c.

We will therefore assume that we know something about the statistics of c. More
precisely, we assume that we know the signature of c, defined as the real vector
(sβ | β ∈ Fq) such that

sβ = #{i | ci = β}
n

.
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Asymmetric Information embedding 231

Since in our definition of the IES we assume v to be chosen uniformly at random, it
follows that the vector c = ϕ(v) is chosen uniformly at random from C . The following
theorem which will be proved in Sect. 2 shows that the signature of c is close to uniform.

Theorem 1 Suppose that C is an [n, k]q-code with dual distance d. Then, for any
ε > 0 we have

Pr

[∣∣∣∣sign(c) − 1

q
(1, 1, . . . , 1)

∣∣∣∣
1

> ε

]
≤ 2q

⌈
n

d − 1

⌉
exp

(
− (d − 1)3ε2

4qn2

)
,

where sign(c) is the signature of c, the probability is with respect to the uniform
random choice of c ∈ C, and |x |1 is the 1-norm of the vector x.

If the signature of c is not badly chosen, then E(x, c) conveys some information
about c. For example, we are able to determine the statistics of the number of positions
in which E(x, c) and c coincide. Using this statistics, the Guruswami–Sudan list-
decoding algorithm [2], and sequences of asymptotically good AG-codes [5,1], we
will be able to obtain good decoding algorithms for the proposed encoding algorithm.
All this will be done in Sect. 3 along with the proof of the following theorem and its
corollary.

Theorem 2 Suppose that c has signature (sβ | β ∈ Fq), and suppose further that q
is the square of a prime power. Then, for any ε > 0 there exists n0 such that for all
n ≥ n0, if

k

n
<

1

q2

⎛
⎝ ∑

β∈Fq

sβoutdeg(β)

⎞
⎠

2

− 1√
q − 1

− ε,

then there is an explicit IES(n, k; G), where outdeg(β) is the out-degree of β in the
graph G.

Corollary 1 Let G = (Fq , E) be a directed graph, and q be a square of a prime
power. Then

A(G) ≥ |E |2
q4 − 1√

q − 1
.

The theorem is rather “generic”, in the sense that the particular structure of the
underlying graph has not been taken into account (except of course the number of
edges.) A more refined approach is obtained by considering that different entries of
E(x, v) may provide “soft” information about the entries of v. For example, consider
again the case of the q-line, and assume that one of the entries, say the i th, of E(x, v)

is 0. Then, if ci �= 0, then xi has to be 0, where c = ϕ(v). Since xi is zero only
with probability 1/q (because of the uniform random choice of x), and under the
assumption that c is chosen uniformly at random from the code, it follows that the
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232 A. Shokrollahi

probability that ci = 0 is 1 − 1/q2 + 1/q, which is much larger than the probability
that ci �= 0.

This approach and a close-to-optimal assignment of the multiplicities in the
Guruswami–Sudan algorithm yield the following more refined result, which will be
proved in Sect. 4, along with its corollary.

Theorem 3 Suppose that c has signature (sβ | β ∈ Fq) and that this signature is
known to the decoder. Further, suppose that q is a square of a prime power. Then for
any ε > 0 there exists n0 such that for all n ≥ n0, if

k

n
<

1

q2

∑
β∈Fq

s2
β

τβ

outdeg(β)2 − 1√
q − 1

,

then there is an explicit IES(n, k; G), where

τβ := 1

q

⎛
⎝sβoutdeg(β) +

∑
(γ,β) �∈E

sγ

⎞
⎠ .

Corollary 2 Let G = (Fq , E) be a directed graph, and suppose that q is the square
of a prime power. Then

A(G) ≥ 1

q2

∑
β∈Fq

outdeg(β)2

q + outdeg(β) − indeg(β)
− 1√

q − 1
,

where indeg(β) is the in-degree of the node β.

It is not immediately clear that Corollary 2 is stronger than Corollary 1 (though this
will be clear after the proofs are presented). We illustrate the difference in strength
with the following example: suppose that G is the transitive closure of the q-line.
The number of edges in G equals

∑q−1
i=0 (q − i) = q(q + 1)/2. Therefore, the bound

of Corollary 1 is

A(G) ≥ (q + 1)2

4q2 − 1√
q − 1

= 1

4
− 1√

q − 1
+ 1

2q
+ 1

4q2 .

The out-degree of i , i ∈ {0, . . . , q −1} is q − i , while its in-degree is i +1. Therefore,

q−1∑
i=0

outdeg(i)2

q + outdeg(i) − indeg(i)
= 1

2

q−1∑
i=0

(q − i)2

q − i − 0.5
≥ q2

(
1

4
+ 1

2q
+ ln(q)

8q2

)
.
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Asymmetric Information embedding 233

The bound of Corollary 2 implies

A(G) ≥ 1

4
− 1√

q − 1
+ 1

2q
+ ln(q)

8q2 .

This shows that Corollary 2 is (in this case marginally) better than Corollary 1.
This note is devoted to a theoretical analysis of information hiding, and no claim

is made as to whether the introduced asymmetric version has practical applications.
In fact, we are aware only of very contrived applications at this point. It would be
interesting to explore possible applications of such asymmetric embedding schemes.

2 Proof of Theorem 1

We start with a well-known general Chernoff type bound:

Proposition 1 Suppose that T1, . . . , Tm are i.i.d. random variables over {0, 1}, and
that Pr[Ti = 1] = p > 0. Further, let T := ∑m

i=1 Ti . Then for any positive δ < p/2
we have

Pr[|T − mp| ≥ δm] ≤ 2 exp

(
−mδ2

4p

)
.

Proof By [4, Theorem 4.1] we have for any ε > 0

Pr[T > (1 + ε)mp] ≤
(

eε

(1 + ε)1+ε

)mp

.

Note that (1 + ε)1/ε ≥ e1−ε/2, so that (1 + ε)1+ε ≥ eε+ε2(1−ε)/2. Therefore, for
ε > 1/2 we have

Pr[T > (1 + ε)mp] ≤ exp

(−ε2(1 − ε)mp

2

)
< exp

(−ε2mp

4

)
.

Setting ε = δ/p, we see that

Pr[T > (1 + ε)mp] ≤ exp

(
−mδ2

4p

)
.

On the other hand, by [4, Theorem 4.2] we have

Pr[T < (1 − ε)mp] ≤ exp

(
−mpε2

2

)
< exp

(
−mpε2

4

)
.

A union bound on the two assertions yields the result. �	
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234 A. Shokrollahi

The next (also well-known) result shows that if c is a word chosen uniformly at
random from C and C has dual distance d, then any set of d − 1 coordinates of c are
independent random variables.

Proposition 2 Suppose that C is an [n, k]q -code of dual distance d, and let I ⊂
{1, . . . , n} be any subset of size d − 1. Further, let c be chosen uniformly at random
from C. Then the random variables ci , i ∈ I , are independent.

Proof Let the k × n-matrix G be a generator matrix for C , and let H be the matrix
obtained by selecting the columns corresponding to I from G. Then (ci | i ∈ I ) =
(X1, . . . , Xk) · H , where X1, . . . , Xk are i.i.d. uniformly distributed random variables
over Fq . Since C has dual distance d, the matrix H has rank d −1, hence the ci , i ∈ I ,
are independent. �	

The proof of Theorem 1 proceeds as follows. We subdivide the coordinate positions
of a codeword c into �n/(d − 1)� disjoint subsets of which all (but at most one) have
size d − 1. Using Chernoff bounds, we prove that if c is chosen uniformly at random,
then on each of these subsets the signature of c is close to uniform with very high
probability. We then apply a union bound to prove that the signature of the entire
vector c is close to uniform with high probability.

To this end, we introduce some notation. For simplicity, we assume that n is divisible
by d − 1. Obvious and easy modifications are necessary if this is not the case. Let
I j := { j (d − 1), j (d − 1)+ 1, . . . , ( j + 1)(d − 1)− 1} for 0 ≤ j < n/(d − 1). For a
codeword c ∈ C let c j denote the vector obtained by projecting c into the coordinate
positions given by I j . Then sign(c j ) is the signature of the (d −1)-dimensional vector
c j . The first proposition we prove shows that this signature vector is close to uniform.

Proposition 3 Notation as above, we have for all 0 ≤ j < n/(d − 1) and all ε > 0:

Pr

[∣∣∣∣sign(c j ) − 1

q
(1, 1, . . . , 1)

∣∣∣∣
1

> ε

]
< 2q exp

(
− (d − 1)ε2

4q

)
.

Proof Let β ∈ Fq and Ti,β , i ∈ I j , be i.i.d. random variables over {0, 1} with
Pr[Ti,β = 1] = 1/q. Let (σβ | β ∈ Fq) denote the signature of c j . Then (d − 1)σβ =∑

i∈i j
Ti,β , and by Proposition 1 we have

Pr[|σβ − 1/q| > ε] ≤ 2 exp

(
− (d − 1)qε2

4

)
.

Therefore,

Pr

[∣∣∣∣sign(c j ) − 1

q
(1, 1, . . . , 1)

∣∣∣∣
1

> ε

]
≤

∑
β∈Fq

Pr

[∣∣∣∣σβ − 1

q

∣∣∣∣ >
ε

q

]

≤ 2q exp

(
− (d − 1)ε2

4q

)
,

which proves the assertion. �	
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Proof of Theorem 1 Note that by the previous proposition

Pr

[∣∣∣∣sign(c) − 1

q
(1, 1, . . . , 1)

∣∣∣∣
1

> ε

]

≤
n/(d−1)−1∑

j=0

Pr

[∣∣∣∣sign(c j ) − 1

q
(1, 1, . . . , 1)

∣∣∣∣
1

>
d − 1

n
ε

]

≤ 2q
n

d − 1
exp

(
− (d − 1)3ε2

4qn2

)
,

which is equivalent to the assertion of the theorem when d − 1 divides n. If not, then
obvious modifications to the proof will yield the result. �	

3 Proof of Theorem 2

As mentioned in Sect. 1, we are going to use the list-decoding algorithm of Guruswami–
Sudan. Suppose that C is an AG-code constructed from the irreducible nonsingular
curve X of genus g over Fq using the divisor αQ, where Q ∈ X (Fq). We will use the
same multiplicity, r , for all the coordinate positions. We regard E(x, c) as a corrupted
version of the vector c. To apply the list decoding algorithm, we denote by t the number
of agreements of E(x, c) with c. Then, as long as

(r t − 1 − g)2 ≥ nα(r + 1)2,

we can list-decode E(x, c) and obtain a short list which will contain c. (See the
algorithm on p 1766 of [2].) The condition is equivalent to

α

n
≤

(
r

r + 1

t

n
− g + 1

nr

)2

.

By choosing r large enough, this condition translates to

α

n
<

(
t

n

)2

,

or

k

n
<

(
t

n

)2

− g

n
.

Recall from [5,1] that for q a perfect square, there are sequences of algebraic curves
over Fq for which the ratio between the genus g and the number of Fq -rational points
N of the curve converges to the value 1/(

√
q − 1). By choosing AG-codes from

such curves, the second term on the right hand side can be made arbitrarily close to
1/(

√
q − 1).
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236 A. Shokrollahi

It suffices now to show that with very high probability

∣∣∣∣∣∣
t

n
− 1

q

⎛
⎝sβoutdeg(β) +

∑
(γ,β) �∈E

sγ

⎞
⎠

∣∣∣∣∣∣ < δ

for any δ > 0 if n is large enough. Fix β ∈ Fq . We will count the number Aβ of
agreements between E(x, c) and c on all the positions i for which ci = β. Note that if
a is chosen uniformly at random from Fq , then Pr[(β, a) ∈ E] = outdeg(β)/q =: p.
Let T1, . . . , Tsβn be i.i.d. random variables on {0, 1} such that Pr[Ti = 1] = p. Then
Aβ = ∑

i Ti , and Proposition 1 implies that

Pr

[∣∣∣∣Aβ − sβn
outdeg(β)

q

∣∣∣∣ > εn

]
< 2 exp

(
− sβnqε2

outdeg(β)

)
.

The number of agreements between E(x, c) and c equals
∑

β Aβ . We have

Pr

⎡
⎣

∣∣∣∣∣∣
∑
β

Aβ − n

q

∑
β

sβoutdeg(β)

∣∣∣∣∣∣ > εn

⎤
⎦

≤
∑
β

Pr

[∣∣∣∣Aβ − sβn
outdeg(β)

q

∣∣∣∣ >
εn

q

]

≤ 2q exp

(
− sβnε2

qoutdeg(β)

)
.

It follows that t/n is sharply concentrated around its mean value which is
∑

β sβ

outdeg(β)/q, and the result of the theorem follows.

Proof of Corollary 1 The AG-code C used in the proof of Theorem 2 is the image
of the linear space of αQ under evaluation on points P1, . . . , Pn of X (Fq). The dual
distance of this code is at least k − g + 1, where k is the dimension of the code C ,
and g is the genus of the curve X . Since we are using sequences of optimal AG-codes,
and since the rate of the original code is fixed, it follows that for any positive ε > 0
the signature of a randomly chosen codeword in the code is ε-close to the uniform
signature, with very high probability. As a result, by making ε small enough, the upper
bound for the rate in Theorem 2 can be made arbitrarily close to

1

q2

⎛
⎝∑

β

1

q
outdeg(β)

⎞
⎠

2

− 1√
q − 1

= |E |2
q4 − 1√

q − 1
,

since
∑

β outdeg(β) is the number of edges in the graph G. �	
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Asymmetric Information embedding 237

4 Proof of Theorem 3

The idea of the proof is to assign different multiplicities to different symbols of E(x, c).
In that respect, the approach is somewhat similar to that of Kötter and Vardy [3].
We will assign higher multiplicities to regions of E(x, c) with lower fidelity, and
lower multiplicities to regions with higher fidelity. By optimizing the multiplicity
assignments we will be able to obtain the best upper bound attainable by this method.

More precisely, let y := E(x, c), and let tβ be the number of positions i such that
yi = ci , given that yi = β. Furthermore, let µβn be the number of positions i such
that yi = β. Then, using multiplicity rβ whenever yi = β, we obtain the following
bounds for successful list decoding of the vector E(x, c):

∑
β∈Fq

tβrβ > 


(
 − g)2 > 2nα
∑
β∈Fq

µβ

(
rβ + 1

2

)

where g is the genus of the curve X . Choosing

rβ := r
tβ

nµβ

− 1,

we obtain the inequality

√
α

n
≤

∑
β

tβ
n

(
tβ

nµβ
− 1

r

)
√∑

β

t2
β

n2µβ

− g + 1

nr

√∑
β

t2
β

n2µβ

.

Fix ε > 0. By choosing r large enough, we can assume that

α

n
≤

∑
β

t2
β

n2µβ

− ε.

(A more detailed analysis reveals that r = O(1/ε); since the decoding algorithm is
polynomial in r , we need to make sure that ε is not too small in order to keep the
running time polynomial.)

To show the assertion of Theorem 3, it suffices to show that, with high probability
for any δ > 0

∣∣∣∣ tβ
n

− sβoutdeg(β)

q

∣∣∣∣ < δ (1)
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238 A. Shokrollahi

∣∣∣∣∣∣µβ − 1

q

⎛
⎝sβoutdeg(β) +

∑
(γ,β) �∈E

sγ

⎞
⎠

∣∣∣∣∣∣ < δ. (2)

To this end, let y := E(x, c), γ, β ∈ Fq , and let

Tβ,γ := #{i | ci = γ & yi = β}.
Then we have

tβ = Tβ,β

µβ = 1

n

∑
γ∈Fq

Tβ,γ .

Let pβ,γ := Pr[yi = β | ci = γ ], and let T1, . . . , Tsγ n be i.i.d. random variables on
{0, 1} with Pr[T
 = 1] = pβ,γ . Then Tβ,γ = ∑


 T
, and by The Chernoff bound of
Proposition 1

Pr
[|Tβ,γ − sγ npβ,γ | > δsγ n

] ≤ 2 exp

(
− sγ nδ2

2pβ,γ

)
.

Assertions (1) and (2) would therefore follow from

pβ,β = outdeg(β)

q
(3)

pβ,γ = 1

q
for (γ, β) �∈ E (4)

pβ,γ = 0 for γ �= β, (γ, β) ∈ E . (5)

All these assertions follow from the fact that the vector x has been chosen uniformly
at random: Pr[yi = β | ci = β] is the probability that xi is chosen so that (β, xi ) ∈ E ,
which is equal to outdeg(β)/q. The probability Pr[yi = β | ci = γ ] is clearly 0 if
(γ, β) ∈ E , and γ �= β, because of the way our encoding works. The same probability
is 1/q if (γ, β) �∈ E . This concludes the proof of Theorem 3.

Proof of Corollary 2 The proof follows the same lines as that of Corollary 1. Since c
is chosen uniformly from C , its signature is very close to the uniform one. Plugging
the uniform signature into the formula of Theorem 3 yields the result. �	

Acknowledgments The author is indebted to Rüdiger Urbanke for his help in proving Theorem 1.
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