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Abstract. In this paper we offer a possible explanation for the empirical finding that the
pollution-income relationship (PIR) for flow pollutants is an environmental Kuznets curve

(EKC), i.e. inverted-U shaped, but that the PIR for stock pollutants is monotonically rising.
We analyse an overlapping generations model with two pollutants: The flow pollutant causes
immediate damages, but the stock pollutant harms the environment only in the future. Hence,

a succession of myopic governments lets stock pollution grow with income. In contrast, the
flow pollutant follows an EKC whose downturn might be caused by the neglect of future
damages and by ever rising stock pollution: Without the stock pollutant the PIR for the flow
pollutant can increase monotonically. We also show that the turning point of the EKC for the

flow pollutant lies at lower levels of income and of flow pollution if stock pollution is high and
harmful. This casts doubts on most empirical EKC studies because they assume that the
turning point occurs at the same income level in all countries. However, it is consistent with

recent empirical findings that the income level at the turning point of the EKC varies across
countries.

Key words: abatement, economic growth, environmental Kuznets curve, flow and stock pol-
lution, myopia

JEL classification: D62, O41, Q20

1. Introduction

In the last decade a vast amount of empirical studies have analysed the
pollution-income relationship (PIR). These studies have tried to find out
whether or not pollution is rising with income at low income levels, but
falling at higher income levels. Such an inverted-U shaped pattern of the PIR
is called an environmental Kuznets curve (EKC). Although empirical studies
could only verify the EKC for a few flow pollutants, the EKC was frequently
interpreted as a reason for optimism or even as an indication that economic
growth will eventually solve all environmental problems. By offering a new
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possible explanation of the EKC we show that these views might be overly
optimistic: In our model the downturn of the EKC for a flow pollutant might
be due to the neglect of future damages and due to ever rising stock pollution.

One of the main purposes of this paper is to find a possible explanation for
the empirical evidence that the PIR is an EKC for flow pollutants, but that
the PIR is monotonically rising for stock pollutants. Although the estimated
turning points of the EKCs differ considerably between studies, almost all
studies agree that there is an EKC for sulphur dioxide (SO2), suspended
particulate matter (SPM), oxides of nitrogen (NOx), carbon monoxide (CO),
and for some (but not all) sorts of river pollution (RP) as shown in Table I.
Although all these pollutants are stock pollutants, they all have short life-
times and can therefore be considered as flow pollutants from a long-run
point of view: In the atmosphere the lifetime of SO2 is 1–4 days, that of NOx

is 2–5 days,1 and that of CO is 1–3months (Liu and Lipták 2000, p. 32 and
IPCC 1996, p. 92, for a definition of lifetime see IPCC 1996, p. 76). SPM is
washed out by rain- and snowfalls (Liu and Lipták 2000, p. 34) and thus has
only a short lifetime. Since rivers are flowing, the concentrations of river
pollutants would quickly decline if emissions stopped. So river pollutants are
short-lived. Thus they can also be considered as flow pollutants. However,
for municipal waste the estimated PIR is monotonically rising (see Table I).
Municipal waste is a stock pollutant since it is deposited and accumulates in
waste disposal sites.2 For the stock pollutant carbon dioxide (CO2) with a
lifetime of about 125 years (Frey et al. 1991, p. 165) the evidence is mixed.
However, as Table I shows the vast majority of researchers finds a mono-
tonically rising PIR or an EKC with a turning point which lies (far) outside
the income sample range.3

To explain this evidence we develop an overlapping generations model
based on the model of John and Pecchenino (1994). While there is only one
pollutant in the model of John and Pecchenino (1994), we extend the model
to two pollutants. To my knowledge this is the first model of the EKC with
two pollutants.

In the model the economy is equipped with a production technology which
causes emissions of a flow and of a stock pollutant. On the one hand, the flow
pollutant has an immediate and only an immediate effect on the environment.
On the other hand, the stock pollutant harms the environment only in the
future since stock pollutants frequently need time to accumulate before the
damage occurs. Furthermore, there are two abatement technologies – one for
each pollutant. Myopic governments never abate the stock pollutant because
the positive effects are only felt in the future which is of no concern for myopic
governments. Therefore we show that on the path followed by a succession of
myopic governments the PIR for the stock pollutant is monotonically rising
while the PIR for the flow pollutant is an EKC. This is consistent with the
empirical evidence. The EKC stems from the fact that myopic governments
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Table I. Empirical results for the PIR of several pollutants

Flow pollutants

Stock

pollutants

SO2 SPM NOx CO RP Waste CO2

Grossman and Krueger (1993) _ �
Selden and Song (1994) _ _ _ is

Shafik (1994) _ _ � % %
Grossman (1995) � _ _ _

Grossman and Krueger (1995) � _ _

Holtz-Eakin and Selden (1995) %
Panayotou (1995) _ _ _

Carson et al. (1997) _ _ _ _ _

Cole et al. (1997) _ _ _ _ _ % %
Lim (1997) _ _ _ _ %
Moomaw and Unruh (1997) �
Panayotou (1997) �
Roberts and Grimes (1997, p. 192) %
Kaufmann et al. (1998) �
Schmalensee et al. (1998) _

Scruggs (1998) _ _

Torras and Boyce (1998) � _ _

Wu (1998) _

Agras and Chapman (1999) _/%
Barrett and Graddy (2000) � _ _

Cavlovic et al.(2000) _ _ _ _ _ %
Cole (2000, p. 112) _ _

Dinda et al.(2000) _ �
Hettige et al. (2000) _

List and Gerking (2000) _ _

Perrings and Ansuategi (2000) _ %
Halkos and Tsionas (2001) %
Heil and Selden (2001) %
Minliang et al. (2001) %
Roca et al. (2001) � is %
Stern and Common (2001) _/% %
Hill and Magnani (2002) _ _ _/%
Friedl and Gletzner (2003) �
Millimet et al. (2003) _ _

Note: SPM – suspended particulate matter; RP – river pollution; _ – EKC; % – the PIR is
monotonically rising or the EKC has an out-of-sample turning point. � – the PIR is N-shaped
(first rising, then falling, and finally rising again) with both turning points inside the sample
range. is – insignificant. _ = % results of two different estimations.
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abate flow pollution in order to keep the aggregate damage of both pollutants
at a reasonably low level. Because stock pollution increases, abatement of the
flow pollutant rises so fast that flow pollution declines.

If there is no stock pollutant, however, it is possible that flow pollution
rises monotonically with income. Thus the growth of the stock pollutant can
actually cause the EKC for the flow pollutant. Without the stock pollution
we are back at a one-pollutant model. In this case the model for the flow
pollutant is very similar to the model of Lieb (2002) and Stokey (1998): We
find an EKC for the flow pollutant when the tendency to satiation in con-
sumption is sufficiently strong. Otherwise, the PIR is monotonically rising.

A further aim of the paper is to give a possible explanation for some
additional empirical findings: Recent studies show that the turning point of
the EKC occurs at different income levels in different countries (Koop and
Tole 1999; List and Gallet 1999; de Bruyn 2000, pp. 105–106). This is exactly
what we find in the model: The location of the turning point of the EKC for
the flow pollutant depends on the level and harmfulness of stock pollution,
the (‘‘greenness’’ of the) utility function, the level of flow pollution and the
production function of the polluting industry. All these parameters tend to be
different in different countries. Thus the income level at the turning point of
the EKC for the flow pollutant may differ across countries because stock
pollution varies across countries and because stock pollution drives abate-
ment of the flow pollutant.

We only analyse the myopic solution in this paper. There are good rea-
sons to focus on the myopic solution: It is impossible to internalize all
environmental damages, first, because of coordination problems and trans-
action costs (Smulders 2000, pp. 641–642) which make it simply infeasible to
closely monitor all (potential) pollutants4 and, second, because some dam-
ages are difficult to measure, in particular soil erosion (van Kooten and
Bulte 2000, p. 387), desertification, pollution and depletion of groundwater
aquifers, biodiversity loss (Cole 1999, p. 95), acidification (Neumayer 1998,
p. 168), extinction of animal and plant species, climate change, and the risk
of nuclear power stations. So there are always unregulated pollutants.5

These pollutants tend to be stock pollutants since the incentives to monitor
them are smaller than for flow pollutants (Arrow et al. 1995, p. 92). Hence,
the myopic solution of our model might be closer to reality than the far-
sighted one. In fact, the myopic solution is consistent with the empirical
evidence.

Abatement of flow, but not of stock pollutants might also be the outcome
of a lobbying process: To pacify the ‘‘green’’ lobby the government cannot be
inactive. To lose as little votes as possible the government abates flow pol-
lutants because the improvements can immediately be discerned while the
abatement of stock pollutants would not be perceived by the uninformed
electorate.
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In this paper we concentrate attention on flow and stock pollutants.
However, similar results as derived in this paper might also be found in other
situations: local pollutants might be abated while emissions of transboundary
or global pollutants increase. Or there might be a rise in emissions of a
(hitherto not emitted) chemical substance whose effects on the environment
are not yet known (de Bruyn 2000, p. 87). Energy gained from fossil fuels
might also be replaced by nuclear power – an energy source with its own
problems (Scruggs 1998, pp. 269–271). Finally, pollution might only be
relocated: The polluting firms in high-income countries might just migrate to
lower income countries (Arrow et al. 1995; Saint-Paul 1995).

This paper is organized as follows. Section 2 presents the assumptions of
the model. In Section 3 we solve the model and derive the phase diagram with
which we examine the optimal path followed by of a succession of myopic
governments in Section 4. Two important consequences of this path are
discussed in Section 5. Section 6 concludes.

2. The Model

To analyse the interaction of stock and flow pollutants an overlapping
generations model is used. The model is an extension to two pollutants of the
model of John and Pecchenino (1994). In every period a new generation is
born which lives for two periods. The population size of each generation is
assumed to be constant at L. In each period there are people of two different
generations: The young and the old. While only the young are working and
get a wage in return, only the old derive utility from consumption c and suffer
from pollution P (small letters indicate per capita values).6 Utility u of the
representative consumer is given by uðc;PÞ for each generation where uc > 0
and uP < 0. The marginal rate of substitution is defined by MRS ¼
�uc=uP > 0. We assume that consumption and environmental quality (or
�P) are both normal goods. This can be written as (see Lieb 2002, pp. 432–
433)7

MRSc ¼
oMRS

oc
¼ �uccuP þ uPcuc

u2P
< 0

MRSP ¼ oMRS

oP
¼ �ucPuP þ uPPuc

u2P
< 0:

Competitive firms produce output Y using capital K and labour L in a
Cobb–Douglas production function with constant returns to scale. Thus in
period t we have Yt ¼ FðKt;LtÞ ¼ bKa

t L
1�a
t , where 0 < a < 1. Dividing the

production function by L we obtain yt ¼ fðktÞ ¼ bkat , where y ¼ Y=L and
k ¼ K=L are per capita values.8 Firms maximize their profits (where the
consumption good is the numeraire good)
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max
K;L

bKa
t L

1�a
t � wtLt � rtKt � dKt

taking as given the wage w, the interest rate r, and the depreciation rate of
capital d. Solving this problem we find

rt ¼ abK a�1
t L1�a

t � d ¼ abka�1
t � d; ð1Þ

wt ¼ ð1� aÞbK a
t L

�a
t ¼ ð1� aÞbkat : ð2Þ

As labour is supplied inelastically by the young, the wage adjusts to ensure
equilibrium in the labour market. The capital market is discussed below.

Since it is argued that pollution as perceived by the general public is an
aggregate measure (Wu 1998), we assume that pollution P is the sum of the
two pollutants P1 and P2, P ¼ P1 þ kP2, where k is a constant describing
how harmful the two pollutants are.9 If k > 1, P2 is more harmful and if
k < 1, P1 has more damaging effects.

Pollutant P1 is a flow pollutant. The flow of P1 in period t is given by10

P1
t ¼ gðkt; a1t Þ

where a1 are the abatement expenditures used to abate the flow pollutant
P1.11 Higher capital increases pollution and marginal pollution, gk > 0 and
gkk � 0.12 Higher abatement expenditures decrease pollution, but by an ever
smaller degree because the cheapest abatement opportunities are first
exploited, ga < 0 and gaa > 0 (for empirical evidence see Faber et al. 1996,
p. 272). Contrary to the bulk of the literature which for simplicity assumes
gak ¼ 0,13 we assume gak ¼ gka � 0 which is more general and plausible:
With more capital (more emissions) abatement expenditures are more effi-
cient (gak) or with higher abatement expenditures the polluting effect of
more capital is smaller (gka).

14 A further assumption is that
lima1!0 jgað�; a1Þj < 1. If capital (emissions) is equal to zero, there is no
pollution, gð0; �Þ ¼ 0. Finally, P1 � 0 must always hold: We assume
lima1!1 gð�; a1Þ ¼ 0. This is not unreasonable, since the marginal costs of
reducing pollution rise steeply as pollution tends towards zero (Neumayer
1998, p. 166).

The second pollutant is a stock pollutant. The stock of P2 in period t is
given by

P2
t ¼ hP2

t�1 þ hðkt�1; a
2
t�1Þ ð3Þ

where a2 are the abatement expenditures used to abate the stock pollutant P2.
Nature assimilates a constant share of last period’s stock of P2, ð1� hÞP2

t�1

where 0 < h < 1. But the stock of P2 increases because of emissions h where
hk > 0 and ha < 0.15 The negative external effect of emissions h are only felt
one period later because P2 needs time to accumulate and because the
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damage needs time to materialize.16 So P2
t is given in period t and cannot be

altered by actions taken in period t. Finally, we assume hð0; �Þ ¼ 0.
Following John et al. (1995) we assume a government which collects a per

capita tax st�1 on the wage of the young. The government uses the tax
revenues to construct abatement technologies for P1 and P2 which are used in
the next period, st�1 ¼ a1t þ a2t . To simplify we assume that at the end of
period t the abatement technologies are fully worn out, i.e. the depreciation
rate for the abatement technology is 100%. The young lend all their after tax
wages, their savings st�1 ¼ wt�1 � st�1, to the firms. Since consumers give
their savings inelastically to the firms, the interest rate r (given in (1)) must
adjust to ensure market clearing, st�1 ¼ kt. In the next period the firms pay
their capital stock, including interest rates, back to the now old who use their
savings for consumption, ct ¼ ð1þ rtÞst�1. The firms receive new capital from
the next generation.

In this paper we analyse how the economy develops when in each period a
myopic government is in office. In setting the tax rate, st�1, and choosing a1t
and a2t the myopic government of period t� 1 maximizes the utility of all
people living in period t� 1. However, the utility of the old is not influenced
by this decision as capital and abatement only change in the next period. So
the government actually maximizes the utility that the young of period t� 1
will derive in period t when they are old. Another possibility for setting the
wage tax is that there is a vote about how high it should be. Then the old do
not vote. Thus it is assumed that all intra-generational externalities are
internalized whereas the inter-generational externalities are not. Since P2

t is
given for generation t, this model analyses what can happen when the
externality of one pollutant is internalized and the externality of another is
not. The government’s problem in period t� 1 is to maximize the utility of
the generation which is old in period t,

max
a1t ;a

2
t

uðct;P1
t þ kP2

t Þ

subject to st�1 ¼ a1t þ a2t ð4Þ
st�1 ¼ wt�1 � st�1 ð5Þ
kt ¼ st�1 ð6Þ
rt ¼ abka�1

t � d ð7Þ
ct ¼ ð1þ rtÞst�1 ð8Þ
P1
t ¼ gðkt; a1t Þ ð9Þ

a1t � 0; a2t � 0 ð10Þ

taking as given wt�1 and P2
t since wt�1 is determined by kt�1 (see (2)) and since

P2
t cannot be influenced anymore (see (3)). Note finally that feasibility requires
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fðktÞ ¼ dkt þ ct þ a1tþ1 þ a2tþ1 þ ðktþ1 � ktÞ;

i.e. output fðktÞ is used to finance capital depreciation, dkt, consumption in
this period, ct, abatement in the next period, a1tþ1 þ a2tþ1, and growth of the
capital stock, ktþ1 � kt.

3. Derivation of the Phase Diagram

We first study the solution in a given period, i.e. the solution the government
chooses given P2

t and kt�1. Then we derive the phase diagram in the P2
t – kt�1

space.
Since a2t does not show up in the utility function and since it competes with

a1t and kt for the use of wt�1ðwt�1 ¼ a1t þ a2t þ ktÞ, it is clear that a2t ¼ 0: The
myopic government in period t� 1 never abates the stock pollutant because
this has only an effect on P2 in period tþ 1 which the myopic government
neglects. Instead it abates the flow pollutant which has an immediate effect or
it lets capital grow which increases consumption: Inserting (6) and (7) into (8)
we can write consumption as a function of the capital stock,

ct ¼ c ðktÞ ¼ ð1� dÞkt þ abkat ;

ck ¼ dc=dk ¼ 1� dþ a2bka�1
t > 0; ckk ¼ a2ða� 1Þbka�2

t < 0:
ð11Þ

Setting a2t ¼ 0 it follows that maximizing with respect to a1t is equivalent to
maximizing with respect to kt because wt�1 ¼ a1t þ kt where wt�1 is given.
Inserting (4) – (6), (9) and (11) into the utility function, the problem of the
myopic government simplifies to

max
kt

u½c ðktÞ; gðkt;wt�1 � ktÞ þ kP2
t � þ /ðwt�1 � ktÞ

where / is the multiplier of the nonnegativity constraint a1t � 0. Dividing the
first order condition by �uP we find17

MRS � ck ¼ gk � ga � /=uP: ð12Þ
Next we analyse how the solution changes either when stock pollution P2

t is
higher or when last period’s capital stock kt�1 (and thus last period’s wage
wt�1) is higher. For an interior solution (with a1 > 0 and / ¼ 0) we find the
following Lemma:

Lemma 1. If P2
t rises, the capital stock, kt, falls, but abatement expenditures,

a1t , grow in the optimum. If kt�1 rises, the optimal level of kt and a1t both
increase.

The proof is given in Appendix A. Intuitively, as P2
t rises, the marginal

damage of pollution rises so that we abate more. Since a1t þ kt equals wt�1, a
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higher a1t implies a smaller kt. Furthermore, if the wage (or kt�1) rises, capital
and abatement increase since consumption and environmental quality (or
�P) are both normal goods.

For every given level of kt�1 and P2
t we can therefore determine the

optimal level of kt and a1t . Then (3) gives the stock of P2
tþ1. Hence, using a

phase diagram in the P2
t – kt�1 space we can analyse how the economy

evolves over time when the government of each period t� 1 myopically
maximizes the utility of period t.

Before we derive the phase diagram note that we have so far assumed that
abatement expenditures are positive. However, the economy can be so poor
and endowed with such a small stock of P2 inherited from earlier generations
that it is not worth to abate any flow pollution P1. Thus we can find a line in
the phase diagram – the a1t ¼ 0-line – below which abatement expenditures
are optimally chosen to be zero.

Lemma 2.Abatement expenditures, a1t , are zero at low levels of kt�1 and of P2
t ,

i.e. below the a1t ¼ 0-line in Figure 1. The a1t ¼ 0-line is downward sloping.

The proof is provided in Appendix A. Intuitively, with a higher stock of
pollution abatement is more attractive and thus starts to increase at a lower
level of capital.

To analyse the myopically optimal path in the phase diagram we have to
derive the �k-line on which capital stays constant, kt ¼ kt�1, and the �P2-line on
which the stock of P2 stays constant, P2

tþ1 ¼ P2
t . To characterize the �k-line we

need an additional assumption:

Figure 1. The phase diagram.
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Assumption 1. Along the �k-line okt=okt�1 < 1 is satisfied. In other words,

X :¼ MRScc
2
k þMRSckk þMRSPckgk � gkk þ gak

þ ð1� wkt�1
Þðgak � gaa �MRSPckgaÞ < 0

holds, where wkt�1
¼ dwt�1=dkt�1.

Note that assumption 1 is surely satisfied if 1� wkt�1
� 0. This is the case

for large k. In the proof of Lemma 3 we show that assumption 1 is not
restrictive.

Lemma 3. (1) Below the a1t ¼ 0-line the �k-line is vertical at k� where

k� ¼ ½ð1� aÞb�
1

1�a: ð13Þ

Above the a1t ¼ 0-line the �k-line is negatively sloped if assumption 1 holds.
To the left (right) of the �k-line capital rises (falls) as indicated by the
arrows in Figure 1.

(2) The �P 2-line is positively sloped, but becomes flatter when it crosses the
a1t ¼ 0-line from below. To the left (right) of the �P2-line P2 falls (rises) as
shown in Figure 1.

The proof is relegated to Appendix A. The �k-line is downward sloping be-
cause kt rises less than proportionally with kt�1 according to assumption 1.
So P2

t must fall to ensure that kt increases at the same speed as kt�1. The �P2-
line is upward sloping because with a higher stock of P2

t nature assimilates
more (ð1� hÞP2

t ) and thus emissions generated by capital can be higher.
There is exactly one intersection of the �k- and the �P2-line, i.e. exactly one
steady state. The steady state capital stock is kSS. We will not analyse the
steady state more closely since it will turn out that the steady state is not
important for our argument.

4. The Equilibrium Path of Myopic Governments

Let us now analyse what the equilibrium path of a succession of myopic
governments looks like. To analyse the interesting case in which an EKC
might emerge we assume that the steady state lies above the a1t ¼ 0-line and
that we start below the a1t ¼ 0-line, i.e. we assume that we start with small
levels of capital and of the stock pollutant. The optimal path is depicted in
the lower panel of Figure 2. Since the main purpose of this model lies in the
explanation of the empirical evidence and since empirically capital is always
growing, we only analyse the path until the maximal capital stock is reached.
Considering this part of the path we can now prove one of the main results of
this paper:
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Proposition 1. The flow pollutant P1 first rises and then falls: There is an EKC
for P1. The stock pollutant P2, however, rises throughout.

Proof. We first show that P2 rises. Capital overshoots its steady state stock
because the stock pollutant P2 needs time to accumulate: Suppose that P2 is
in an equilibrium in which the assimilated stock, ð1� hÞP2

t , equals newly
generated emissions, hðkt; 0Þ (see (3)). If emissions then suddenly increased
and stayed at their higher level forever, P2 would immediately start to rise,
but would only approach its new equilibrium level asymptotically.18 Since
capital is growing along the optimal path (see Figure 2), emissions
‘‘suddenly’’ increase in every period. So P2 does not have the time to accu-
mulate. Therefore P2 is still smaller than its steady state stock when the
economy reaches its steady state capital stock, kSS.

19 It follows from the
phase diagram that capital continues to grow: Capital overshoots. It reaches
its maximal value when it crosses the �k-line. Hence, P2 rises along the optimal
path until the maximal capital stock is reached. That the PIR of P2 is
monotonically rising is not surprising since myopic governments never abate
stock pollution.

It remains to be discussed how P1 changes along the optimal path. As long
as abatement expenditures are zero, P1 ¼ gðk; 0Þ increases with capital. For
an interior solution we use P1

t ¼ gðkt; a1t Þ and (18) and (19) from the proof of
Lemma 1 to derive

Figure 2. The myopically optimal path of the economy.
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DP1
t ¼ gk

okt
okt�1

Dkt�1þga
oa1t
okt�1

Dkt�1þgk
okt
oP2

t

DP2
t þga

oa1t
oP2

t

DP2
t

¼�wkt�1
½gkðgaa�gakÞþgaðgkk�gakÞ�gaðMRScc

2
kþMRSckkÞ�

MRScc
2
kþMRSckkþMRSPckðgk�gaÞ�gkkþ2gak�gaa

Dkt�1

þ ðga�gkÞkMRSPck

MRScc
2
kþMRSckkþMRSPckðgk�gaÞ�gkkþ2gak�gaa

DP2
t

ð14Þ

where Dxt ¼ xt � xt�1 for x ¼ P1;P2; k. The fraction in the second line of
(14) is negative as expected: If stock pollution increases, the incentive to
abate becomes larger and thus flow pollution is more likely to decline. The
fraction in the first line of (14) is negative if

gkðgaa � gakÞ þ gaðgkk � gakÞ � gaðMRScc
2
k þMRSckkÞ ð15Þ

is negative. This in turn is surely negative, if gkðgaa � gakÞþ gaðgkk � gakÞ � 0.
The pollution function gðk; a1Þ fulfils this condition in simple examples, but
violates it in more elaborate examples.20 Therefore (15) can be positive or
negative.

On the one hand, if (15) is negative, P1 falls at an interior solution because
Dkt�1 and DP2

t are both positive before the path reaches the �k-line in the
lower panel of Figure 2. Hence, below the a1t ¼ 0-line P1 increases along the
optimal path, but as soon as abatement expenditures become positive, P1

declines as shown in the upper panel of Figure 2. The EKC lies in the P1 –
GDP space. Since GDP ¼ fðkÞ increases with capital, the inverted U-shaped
path in the P1 – k space also implies an EKC for the flow pollutant.21

On the other hand, if (15) is positive, P1 falls along the path if the path is
relatively steep after crossing the a1t ¼ 0-line, i.e. it follows from (14) that
DP1 � 0 if

DP2
t

Dkt�1
� wkt�1

½gkðgaa � gakÞ þ gaðgkk � gakÞ � gaðMRScc
2
k þMRSckkÞ�

ðga � gkÞkMRSPck
:

ð16Þ
This condition is surely satisfied before the path reaches the �k-line where the
slope of the path becomes infinity. Thus even if the path is relatively flat ((16)
violated) directly after crossing the a1t ¼ 0-line such that P1 continues to
increase, P1 starts to fall before the �k-line is reached.22 Hence, we also find an
EKC. (

The main driving force behind the EKC for P1 is that we first are at a
corner solution with zero abatement expenditures, but later on abatement
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increases. The fact that an EKC emerges for P1 even if abatement of P1 is
costly, can be explained by the rise of P2: Since P2 always grows and since
myopic governments only abate P1, additional income is mainly used to
abate P1. So capital grows slowlier and P1 falls. The result of proposition 1 –
an EKC for the flow pollutant but a monotonically rising PIR for the stock
pollutant – is consistent with the empirical evidence. Furthermore, from the
proof of Proposition 1 we can draw two conclusions which are presented in
the next section.

5. Two Important Consequences

It is often concluded from the finding of an EKC for a few pollutants that all
other pollutants also follow an EKC.23 In our model, however, the EKC for
P1 is accompanied by a monotonically rising PIR for P2. Hence, this con-
clusion is clearly wrong in our model. Even worse, if we assume that there is
no stock pollutant or – put differently – that the stock ‘‘pollutant’’ is
harmless, i.e. if k ¼ 0, there might not be an EKC for P1:

Proposition 2. Suppose that (15) is positive along the optimal path, i.e. that a
higher kt�1 increases P1

t . Then the PIR for P1 is monotonically rising if the
stock pollutant is harmless, i.e. if k ¼ 0.

Proof. If k ¼ 0, the second line in (14) drops out.24 So P1 is monotonically
increasing if (15) is positive. (

If there is another, ever rising pollutant which cannot be abated in the
short-run (k > 0), an EKC for P1 arises as shown in Proposition 1. In con-
trast, if there is no such pollutant (k ¼ 0), the PIR for P1 is monotonically
rising if (15) is positive. Hence, we might only observe EKCs for certain flow
pollutants because the stock of other pollutants is increasing.

If P2 is harmless, we are back at a one-pollutant model. In this case the
model and in particular the condition for rising or falling pollution at an
interior solution (i.e. (15)) is very similar to the model of Lieb (2002).25

Hence, without the stock pollutant the PIR for the flow pollutant behaves
just as the PIR in the model of Lieb (2002): There is an EKC for P1 when
there is a sufficiently strong tendency to satiation in consumption (see Lieb
2002, pp. 438 and 433). With the specific functional forms of the model of
Stokey (1998) – a special case of the model of Lieb (2002, pp. 443–444) – the
PIR is an EKC, if there is asymptotic satiation in consumption, and the PIR
is monotonically rising, if there is no satiation. Thus when there is no sati-
ation in consumption, the PIR of the flow pollutant is monotonically rising
without a stock pollutant. But the existence of a stock pollutant causes the
PIR of the flow pollutant to become an EKC because of the additional
incentive to abate pollution.
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A second important result also follows from the proof of Proposition 1:

Proposition 3. Suppose that flow pollution starts declining as soon as
abatement expenditures become positive, i.e. suppose that (15) is negative or
that (15) is positive and that (16) holds. Then the turning point of the EKC
for P1 lies at lower levels of income and of P1, if one of the following
conditions is satisfied where we always hold all other variables constant: If
the (endogenously given) stock of P2 is higher, if P2 is more harmful (higher
k), if production is more P1-intensive (gðk; 0Þ and gkðk; 0Þ higher), if abate-
ment is cheaper (jgaðk; 0Þj higher), if preferences are ‘‘greener’’ (MRS smal-
ler), and if consumption is higher (cðkÞ higher), but rises slowlier with capital
(ck smaller).

Proof. If P1 starts declining as soon as a1 becomes positive and if the optimal
path crosses the a1t ¼ 0-line at a low capital stock, the turning point of the
EKC occurs at a low capital stock and also at a low level of P1 ¼ gðk; 0Þ. If
P2 is high, i.e. if the initial stock of P2 is high and if P2 rises fast with capital
for a1 ¼ 0 (due to high h and high hðk; 0Þ, see (3)), the economy reaches the
a1t ¼ 0-line at a smaller capital stock (see Figure 2).

The optimal path also crosses the a1t ¼ 0-line at a small capital stock if the
a1t ¼ 0-line lies at small levels of P2. The a1t ¼ 0-line is defined by
MRSðcðkÞ; gðk; 0Þ þ kP2Þck ¼ gkðk; 0Þ � gaðk; 0Þ (see (12)). Hence, for a given
capital stock the a1t ¼ 0-line lies at low levels of P2 if gðk; 0Þ and k are high.
Pollution P (and thus P2 for given gðk; 0Þ and k) is low, if the MRS is high, i.e.
if gk and jgaj are high and if ck is low. If the MRS tends to be small due to high
cðkÞ or due to ‘‘green’’ preferences (MRS small for given c, P), then P and P2

must be small for given ck, gk, and ga. (

Therefore if ‘‘background pollution’’ (P2) is higher and more harmful, the
turning point of the EKC for P1 lies at lower levels of capital and of flow
pollution. Furthermore, for different pollutants P1 or for different pollution
functions g in different countries if production is P1-intensive or if abatement is
cheap, a1 turns positive at a lower capital stock. So the model can also
accommodate the observation of different turning points for different pollutants
P1 or in different countries. High consumption or ‘‘green’’ preferences cause the
marginal utility of consumption to be small relative to the marginal disutility of
pollution. Then the turning point occurs at lower levels of capital and of P1.

Most empirical studies assume that the turning point of the EKC occurs
at the same income level in all countries. However, this is not an appropriate
assumption because recent studies (see Koop and Tole 1999; List and Gallet
1999; de Bruyn 2000, pp. 105–106) allow for and find different turning
points in different countries. This empirical finding is theoretically under-
pinned by Proposition 3 since ‘‘background pollution’’, its harmfulness,26
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the pollution function g, and the utility function all tend to be different in
different countries. Further support for Proposition 3 is supplied by de
Bruyn (1997, p. 496) and List and Gallet (1999, p. 422): They find evidence
that the turning point lies at a lower income level if pollution is high, i.e. if
P1 is high.

6. Conclusion

The finding of an EKC for certain pollutants has often been seen as a sign for
optimism. Thus ‘‘most governments and global institutions see no conflict
between economic growth [and environmental degradation]’’ (Cole 1999,
p. 91). However, in this paper we have shown that the downturn of the EKC
for a flow pollutant might be due to the neglect of future damages and due to
ever rising stock pollution. Therefore we claim that great care must be taken
when interpreting the results of EKC studies. In particular, we cannot con-
clude from the finding of an EKC for some (flow) pollutants that other
(stock) pollutants also follow an inverted-U shaped path. Furthermore,
falling flow pollution might only be achieved at (high) long-run costs.

In this paper we have given an explanation of the empirical finding that
the PIR is an EKC for flow pollutants, but that the PIR is monotonically
rising for stock pollutants. We have analysed an overlapping generations
model with a flow and a stock pollutant. It has been shown that a succession
of myopic governments follows a path on which there is an EKC for the flow
pollutant, but on which the stock pollutant is ever rising. This is consistent
with the empirical evidence. It is actually due to the monotonically rising
stock pollutant that we surely find an EKC for the flow pollutant: Myopic
governments want to keep aggregate pollution at a reasonably low level.
However, since abating emissions of the stock pollutant does not have an
immediate effect on the level of stock pollution, myopic governments abate
flow pollution only. Thus stock pollution is rising. Hence, myopic govern-
ments increase abatement expenditures for the flow pollutant. This causes the
EKC.

If there was no stock pollutant, in contrast, we might observe an ever
rising PIR for the flow pollutant. As in the model of Lieb (2002) and Stokey
(1998) this is the case if there is no satiation in consumption. We have also
found that the turning point of the myopically optimal EKC for the flow
pollutant lies at lower levels of income and of flow pollution if stock pollution
is high and harmful. Similarly, the turning point lies at a small income level if
flow pollution is high. This casts doubts on most empirical EKC studies
because they assume that the turning point occurs at the same income level in
all countries. However, it is consistent with recent empirical studies which
find that the PIR differs between countries.
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If the EKC for flow pollution is actually caused by the neglect of future
damages and by ever rising stock pollution, the EKC is bad news for future
generations. Indeed, in this case, since all observed EKCs are based on past
data, the EKC is bad news for us.
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Notes

1. Since all empirical EKC studies consider SO2 and NOx only as air pollutants, we treat
them as such. We therefore neglect that they are also stock pollutants causing acidification

of soils, fens, and lakes.
2. If waste is incinerated, about 30% of its original weight remain for disposal (Nentwig

1995, p. 347).
3. For a more thorough survey of the empirical literature on the EKC see Lieb (2003).

4. We will never be able to determine all adverse effects that synthetic chemicals – pure and in
mixture – have on the environment because the costs would be prohibitive and because it
is impossible to analyse the effects on all species since we do not even know all species

(Huesemann 2001, p. 274).
5. If the government regulates only some pollutants, but leaves other pollutants unregulated,

the firms substitute away from the regulated to the unregulated pollutants (Devlin and

Grafton 1994).
6. Following John and Pecchenino (1994) we therefore simplify by concentrating on the

choice between investment in pollution abatement and investment in physical capital (see

below) and by abstracting from the consumption-saving choice.
7. If we assumed ucc < 0, uPP < 0, and ucP � 0 as is common in the literature and as John

and Pecchenino (1994) do, MRSc < 0 and MRSP < 0 would both hold. However, we do
not need these stronger, cardinal assumptions. The above ordinal assumptions are suffi-

cient to derive our results.
8. If we did not assume a Cobb–Douglas production function, we would have to assume

fk > 0, fkk < 0, fkkk > 0, fk þ kfkk > 0, fkk þ kfkkk > 0, and 2fkk þ kfkkk < 0. Therefore we

use the simple Cobb-Douglas function which fulfils all these conditions and additionally
allows to explicitly derive two further results in (13) and note 28 below.

9. The public is only concerned about aggregate damage, but does not care which pollutant

is responsible for this damage. Furthermore, the assumption that (aggregate) pollution is a
weighted sum of two pollutants also allows to simplify the model.

10. Here we deviate substantially from John and Pecchenino (1994). First, these authors take
environmental quality instead of pollution. The finding of an EKC in their model might
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therefore suggest that the EKC applies to environmental quality generally – an inter-
pretation which is heavily criticized by Arrow et al. (1995). Second, the natural level of
environmental quality in the model of John and Pecchenino (1994) is zero. It is unclear

what a positive level of environmental quality, i.e. a higher level than the natural one,
should be. John and Pecchenino (1994) write that environmental quality might be
interpreted as the inverse of the concentration of CFCs. Then a natural level of zero
means that the natural concentration of CFCs is infinity, i.e. the worst possible level. In

the model of John et al. (1995) the natural level of environmental quality – which is again
zero – is also the worst possible level because it is assumed that environmental quality is
always positive. In contrast, we assume that pollution is always nonnegative. Third, in

our model pollution is generated by capital, whereas in the model of John and Pec-
chenino (1994) it is generated by consumption. Fourth, John and Pecchenino (1994)
assume that environmental quality depends linearly on consumption and abatement,

contrary to the literature where it is assumed that Pcc > 0 (or Pkk > 0) and Paa > 0
(Forster 1973; Gruver 1976; Selden and Song 1995; McConnell 1997; Ansuategi et al.
1998; Ansuategi and Perrings 2000; Lieb 2002).

11. Of course, pollution depends on total capital Kt and total abatement expenditures A1
t , but

since we do not consider population growth, we can normalize L ¼ 1 such that kt ¼ Kt

and a1t ¼ A1
t .

12. Pollution might also result from output fðkÞ instead of being caused by capital k. If

pollution is rising with k, it is also rising with fðkÞ because fðkÞ is strictly increasing in k.
Thus the sign of the slope of the PIR is the same for both models. Following the literature
(Forster 1973; Gradus and Smulders 1993; Selden and Song 1995; van Ewijk and van

Wijnbergen 1995; Smulders and Gradus 1996; Ansuategi and Perrings 2000) we choose
pollution to be generated by capital.

13. This assumption can be found in John and Pecchenino (1994), as well as in Forster (1973),

Gruver (1976), John et al. (1995), Selden and Song (1995), McConnell (1997), Ansuategi
et al. (1998), and Ansuategi and Perrings (2000).

14. Suppose for example that a certain abatement technology can abate a certain percentage
of emissions. A higher percentage is achieved by a more expensive technology. Then the

higher capital, i.e. the higher emissions, the higher are the emissions which can be abated
by a given technology (gak). On the other hand, the higher abatement expenditures, the
less polluting is higher capital because a higher percentage of the additional emissions is

abated (gka).
15. Although it is often stated that in the case of CO2 available abatement technologies are

prohibitively expensive (see for example Nentwig 1995, p. 231; Vogel 1999, p. 126), these

technologies do exist. The costs of depositing CO2 underground or in the deep sea are even
reasonably low (Herzog et al. 2000).

16. For CO2 estimates of the time lag between increases in radiative inputs and the climate
change range from 6 to 95 years (Nordhaus 1991, p. 922).

17. A graphical interpretation of (12) is available from the author. This graphical interpre-
tation also shows that the second order condition for a maximum is satisfied and allows to
prove Lemma 1 graphically.

18. Suppose that emissions rise to � :¼ hðk; 0Þ in period T. The new equilibrium value of P2 is
�P2 ¼ �=ð1� hÞ. In period T we know that P2

T ¼ p �P2 where p < 1. So the difference to the
equilibrium is ð1� pÞ �P2. According to (3) next periods stock is given by P2

Tþ1 ¼ hp�=
ð1� hÞ þ � ¼ ð1� hþ hpÞ�=ð1� hÞ and the difference is now �P2 � P2

Tþ1 ¼ hð1� pÞ�=
ð1� hÞ ¼ hð1� pÞ �P2. Therefore the difference to the equilibrium declines to a constant
fraction h of the difference in the last period.
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19. The assumption that the path goes directly into the steady state leads to a contradiction:
In the period in which the steady state is reached, capital is growing. Thus P2 cannot yet
be at its steady state level since it needs time to accumulate.

20. It is straightforward to show that gkðgaa � gakÞ þ gaðgkk � gakÞ � 0 is satisfied for
gðk; a1Þ ¼ ~gðkÞ � ba1 where ~gk > 0, ~gkk � 0, and b > 0. However, it is violated for
gðk; a1Þ ¼ kgðkþ a1Þ1�g where g > 1 and for gðk; a1Þ ¼ bka=ðca1 þ 1Þd where a � 1 and b,
c, d > 0.

21. This holds also true if we use income ¼ fðkÞ � dk instead of GDP (dðincomeÞ=dk ¼
fk � d ¼ r > 0, see (1) and note 28 below).

22. This is a continuous time argument which might be wrong in our discrete time model.

However, since the model is aimed at explaining the empirical evidence, we do not give
any weight to this theoretical possibility.

23. See for example Beckerman (1992, pp. 482 and 491), Li (1989, p. 147), and Kelly (2003,

p. 1368).
24. In addition, the a1t ¼ 0- and the �k-line are both vertical (see (20) and (21) in the proofs of

Lemma 2 and 3.1). Thus capital does no longer overshoot its steady state stock.
25. Dividing (15) by �ga we see that (15) becomes very similar to Equation (10) in Lieb

(2002).
26. If P2 is a global pollutant such as CO2, ‘‘background pollution’’ is equal in all countries.

However, not all countries are equally affected by global warming (k differs across

countries).
27. The same conclusion would also follow if we assumed that limc!0 MRS ¼ 1.
28. There is yet another reason why capital cannot grow infinitely. If the interest rate rt

fell below zero, consumers would not give all their savings to the firms, but would only
supply capital until rt ¼ 0. So k � �k holds always where �k is defined by
rð �kÞ ¼ ab �ka�1 � d ¼ 0 (see (1)) or �k ¼ ðab=dÞ1=ð1�aÞ. It follows from (13) that �k > k� if

a=d > 1� a. We assume that d is sufficiently small to fulfil this condition so that we do not
have to bother about �k.
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Appendix A: Proofs

Proof of Lemma 1

Totally differentiating (12) at an interior solution (where / ¼ 0) yields

ðMRScc
2
k þMRSckk þMRSPckðgk � gaÞÞ dkt þMRSPckgawkt�1

dkt�1

þ kMRSPckdP
2
t

¼ ðgkk � 2gak þ gaaÞ dkt þ ðgka � gaaÞwkt�1
dkt�1 ð17Þ

where it follows from (2) that wkt�1
¼ dwt�1=dkt�1 ¼ að1� aÞbka�1

t�1 > 0. Holding P2
t or kt�1

constant, respectively, we find

okt
okt�1

¼ wkt�1
ðgak � gaa �MRSPckgaÞ

MRScc
2
k þMRSckk þMRSPckðgk � gaÞ � gkk þ 2gak � gaa

> 0

okt
oP2

t

¼ �kMRSPck

MRScc
2
k þMRSckk þMRSPckðgk � gaÞ � gkk þ 2gak � gaa

< 0:

ð18Þ

To see how a1t changes with kt�1 and P2
t we totally differentiate a1t ¼ wt�1 � kt to obtain

da1t ¼ wkt�1
dkt�1 �

okt
okt�1

dkt�1 �
okt
oP2

t

dP2
t :

So using (18) we derive

oa1t
oP2

t

¼ � okt
oP2

t

¼ kMRSPck

MRScc
2
k þMRSckk þMRSPckðgk � gaÞ � gkk þ 2gak � gaa

> 0

oa1t
okt�1

¼ wkt�1
ðMRScc

2
k þMRSckk þMRSPckgk � gkk þ gakÞ

MRScc
2
k þMRSckk þMRSPckðgk � gaÞ � gkk þ 2gak � gaa

> 0

ð19Þ

Note that oa1t =okt�1 þ okt=okt�1 ¼ wkt�1
. (

Proof of Lemma 2

If capital goes to zero, the left hand side of (12) goes to infinity as limk!0 ck ¼ 1 (see (11)).27

However, gk � ga on the right hand side of (12) is bounded since lima1!0 jgaj < 1. Therefore
for small capital stocks / > 0 and a1 ¼ 0 must hold.

The a1t ¼ 0-line is defined by (12) with a1t ¼ 0 ¼ /. Totally differentiating (12) yields (17).
Inserting dkt ¼ wkt�1

dkt�1 which holds for a1t ¼ 0 (see (4) – (6)) we find

dP2
t

dkt�1

�
�
�
�
a1t¼0

¼ wkt�1
ðMRScc

2
k þMRSckk þMRSPckgk � gkk þ gakÞ

�kMRSPck
< 0: ð20Þ

Therefore the a1t ¼ 0-line is downward sloping. Since oa1t =oP
2
t > 0 (see (19)), a1 would be

negative below the a1t ¼ 0-line. Because this is not feasible, abatement expenditures are zero
below the a1t ¼ 0-line. (
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Proof of Lemma 3

1. As long as abatement is zero, the government is actually doing nothing at all. The path of
capital is derived from (6), (5), and (2) to be

kt ¼ st�1 ¼ wt�1 ¼ ð1� aÞbkat�1:

This is shown in Figure 3 (the curvature of the wt�1-line is derived from (2)). Suppose that

kt�1 ¼ xk� where x > 0 and where k� is given in (13). It follows that

kt ¼ ð1� aÞbðxk�Þa ¼ xa½ð1� aÞb�
1

1�a ¼ xak� ¼ xa�1kt�1:

Capital stays only constant, i.e. kt ¼ kt�1, if x ¼ 1, i.e. kt�1 ¼ k�. The �k-line is vertical at k�

and thus independent of P2
t as shown in Figure 1. As a� 1 < 0, it also follows that if x < 1, i.e.

if kt�1 < k�, capital is growing (see arrows in Figure 1), but kt ¼ xak� is still smaller than k�

(see Figure 3). If x > 1, capital is decreasing. Thus k� is a stable steady state which is only

approached asymptotically.28

Turning to the interior solution (a1 > 0) we totally differentiate kt ¼ kt�1 which holds on the
�k-line to find okt

okt�1
dkt�1 þ okt

oP2
t
dP2

t ¼ dkt�1. Inserting (18) and X from assumption 1 we derive

dP2
t

dkt�1

�
�
�
�
kt¼kt�1

¼1�okt=okt�1

okt=oP2
t

¼ X

�kMRSPck

¼MRScc
2
kþMRSckkþMRSPckgk�gkkþgakþð1�wkt�1

Þðgak�gaa�MRSPckgaÞ
�kMRSPck

< 0 ð21Þ

where the sign follows from assumption 1. As mentioned X < 0 is surely satisfied if
1� wkt�1

� 0 or 1 � að1� aÞbka�1
t�1 holds. Therefore we derive that X is negative for

kt�1 � ~k :¼ ½að1� aÞb�1=ð1�aÞ. This is almost identical with k� ¼ ½ð1� aÞb�1=ð1�aÞ except for the

additional factor a (see (13)). So ~k is smaller than k� (see Figure 3). Therefore for kt�1 � ~k
assumption 1 is a fact, not an assumption. Note that it follows immediately from (20) and (21)
that the �k-line is more negatively sloped than the a1t ¼ 0-line at k� (ðdP2

t =dkt�1Þ
�
�
a1t¼0

>
ðdP2

t =dkt�1Þjkt¼kt�1
since 1� wkt�1

> 0 at k�). Hence, starting from k� the interior �k-line moves

north-west (see Figure 1). At some capital stocks smaller than ~k, however,Xmight become zero

Figure 3. Growth of capital without abatement.
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and positive causing the �k-line to move west and south-west. But the �k-line crosses the a1t ¼ 0-
line only once – at k� to be precise. Thus for k < k� the �k-line lies always above the a1t ¼ 0-line.
Consequently, the �k-line cannot move south-west for very long, but must move north-west

again. We simplify by assuming that the �k-line is always moving north-west, i.e. X < 0
(Assumption 1). Below the �k-line P2

t is smaller. So according to (18) kt is higher: Capital is
growing as indicated by the arrows in Figure 1. Similarly, above the �k-line capital is falling.
2. On the �P2-line pollution assimilated by nature is equal to newly generated emissions

ð1� hÞP2
t ¼ hðkt; 0Þ ð22Þ

(see (3)). For a1t ¼ 0 this becomes ð1� hÞP2
t ¼ hðwt�1; 0Þ. So we find

dP2
t

dkt�1

�
�
�
�
P2
tþ1

¼P2
t and a1t¼0

¼ hkwkt�1

1� h
> 0: ð23Þ

Thus the �P 2-line is rising below the a1t ¼ 0-line as shown in Figure 1. Note that the �P 2-line
begins at the origin where it is vertical since limkt�1!0 wkt�1

¼ 1.
Finally, we consider a1t > 0. Totally differentiating (22) and rearranging we derive

dP2
t

dkt�1

�
�
�
�
P2
tþ1

¼P2
t

¼ hkokt=okt�1

ð1� hÞ � hkokt=oP2
t

> 0 ð24Þ

where the sign follows from (18). So the �P2-line is also rising above the a1t ¼ 0-line. The �P2-line

becomes flatter when it crosses the a1t ¼ 0-line from below: Compared to (23) the denominator
of (24) is higher and the numerator is smaller (since okt=okt�1 < okt=okt�1 þ oa1t =okt�1 ¼
wkt�1

). To the left of the �P2-line kt�1 is smaller and therefore kt is smaller such that assimilation

is higher than new emissions ð1� hÞP2
t > hðkt; 0Þ. Thus P2 is falling (see Figure 1). To the right

of the �P2-line P2 is rising. (
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