
J Electron Test (2013) 29:521–535
DOI 10.1007/s10836-013-5397-5

Efficient Worst-Case Temperature Evaluation
for Thermal-Aware Assignment of Real-Time
Applications on MPSoCs

Lars Schor · Iuliana Bacivarov · Hoeseok Yang ·
Lothar Thiele

Received: 15 September 2012 / Accepted: 15 July 2013 / Published online: 18 August 2013
© Springer Science+Business Media New York 2013

Abstract The reliability of multiprocessor system-on-chips
(MPSoCs) is nowadays threatened by high chip tempera-
tures leading to long-term reliability concerns and short-
term functional errors. High chip temperatures might not
only cause potential deadline violations, but also increase
cooling costs and leakage power. Pro-active thermal-aware
allocation and scheduling techniques that avoid thermal
emergencies are promising techniques to reduce the peak
temperature of an MPSoC. However, calculating the peak
temperature of hundreds of design alternatives during
design space exploration is time-consuming, in particu-
lar for unknown input patterns and data. In this paper,
we address this challenge and present a fast analytic
method to calculate a non-trivial upper bound on the
maximum temperature of a multi-core real-time system
with non-deterministic workload. The considered thermal
model is able to address various thermal effects like
heat exchange between neighboring cores and temperature-
dependent leakage power. Afterwards, we integrate the pro-
posed thermal analysis method into a design-space explo-
ration framework to optimize the task to processing com-
ponent assignment. Finally, we apply the proposed method

Responsible Editor: R. Velazco

L. Schor (�) · I. Bacivarov · H. Yang (�) · L. Thiele
Computer Engineering and Networks Laboratory,
ETH Zurich, 8092 Zurich, Switzerland
e-mail: lars.schor@tik.ee.ethz.ch
e-mail: hoeseok.yang@tik.ee.ethz.ch

I. Bacivarov
e-mail: bacivarov@tik.ee.ethz.ch

L. Thiele
e-mail: thiele@tik.ee.ethz.ch

in various case studies to explore thermal hot spots and to
optimize the task to processing component assignment.

Keywords Real-time systems · Compositional analysis ·
Thermal analysis · Design-space exploration

1 Introduction

The increasing demand of computational performance and
the better power efficiency motivates system designers to
use multiprocessor system-on-chips (MPSoCs) that inte-
grate multiple processing components, memories, and com-
munication units on a single die. However, the use of deep
submicrometer process technology to fabricate MPSoCs
imposes a major rise in power densities, which in turn
threats the reliability and performance of the system by
inducing high chip temperatures. Thermal hot spots, i.e.,
areas on the chip with high temperatures, affect the design
of the cooling system. In order to reduce device failures, the
cooling system has to be designed for the worst-case chip
temperature, i.e., the maximum chip temperature under all
feasible scenarios of task arrivals [7].

Besides improving the cooling system, thermal and reli-
ability issues have been tackled by reactive thermal man-
agement techniques or thermal-aware task allocation and
scheduling algorithms. Reactive thermal management tech-
niques such as dynamic voltage and frequency scaling
(DVFS) keep the maximum temperature under a given
threshold [9, 13]. However, the drawback of reactive ther-
mal management techniques is the significant degradation
of performance caused by stalling or slowing down the
processor [7].

When the workload of the system is known, pro-active
thermal-aware allocation and scheduling techniques that

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159152626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:lars.schor@tik.ee.ethz.ch
mailto:hoeseok.yang@tik.ee.ethz.ch
mailto:bacivarov@tik.ee.ethz.ch
mailto:thiele@tik.ee.ethz.ch

522 J Electron Test (2013) 29:521–535

avoid thermal emergencies and thus, a reduction in perfor-
mance, might be preferable over reactive thermal manage-
ment techniques. In particular, by selecting an optimal fre-
quency, voltage, and task assignment, the peak temperature
can significantly be reduced so that a certain quality of ser-
vice level can be guaranteed at design-time [6, 7, 10, 17].
Nonetheless, prior work either lowers the average tempera-
ture or assumes deterministic workload where the maximum
temperature of the system can be calculated by simulating
the system.

However, unknown input patterns and data cause the
workload to be non-deterministic so that the maximum pos-
sible chip temperature under all feasible scenarios of task
arrivals is difficult to identify. Only when the corner case that
actually leads to the maximum temperature of the system
is considered, simulation-based thermal analysis techniques
do not lead to an undesired underestimation of the maximum
temperature. However, calculating this critical workload has
been shown to be time-consuming [20], so that calculat-
ing the peak temperature of hundreds of design alternatives
during design space exploration would be infeasible.

In this paper, we first present a fast analytic method
to calculate an upper bound on the maximum tempera-
ture of an MPSoC with non-deterministic workload. The
proposed method has a time-complexity that only depends
on the number of processing components, which enables
efficient design-space exploration. The considered ther-
mal model is able to address various thermal effects like
heat exchange between neighboring cores and temperature-
dependent leakage power. We use the well-established stan-
dard event model [11] to model non-determinism in the
workload, i.e., we consider periodic event streams with jit-
ter and delay. Real-time calculus [23], a formal method for
schedulability and performance analysis of real-time sys-
tems, is applied to upper bound the workload that might
arrive in any time interval. Although arrival curves constrain
the maximum possible workload, infinitely many traces
comply with this specification. Thus, our method identifies
the critical workload trace that leads to the worst-case chip
temperature. The only requirement of the method is that
the real-time scheduling algorithms are work-conserving,
i.e., the respective processing component has to process as
soon as there is an event in its ready queue. However, this
applies to most of the traditional scheduling algorithms as,
for example, earliest-deadline-first (EDF), rate-monotonic
(RM), fixed-priority (FP), and deadline-monotonic (DM).

We then integrate the proposed thermal analysis method
into a design-space exploration framework intended to
optimize the task to processing component assignment at
design-time, prior to deployment and execution. We for-
mulate this optimization problem with the objective to
minimize the worst-case chip temperature. Clearly, the reli-
ability of a system is also affected by other (thermal) metrics

such as, for instance, the temperature gradient. However,
due to the above listed reasons, we selected the minimiza-
tion of the worst-case chip temperature as the objective in
our framework. Finally, we solve the optimization problem
using simulated annealing and provide an extensive evalua-
tion of its performance.

This paper is based on the work published in [19], which
formally proves the thermal analysis method. Nonethe-
less, prior work does not integrate the thermal analysis
method into an optimization framework. Thus, we extend
the previous work by first formulating a thermal-aware task
assignment problem, and then integrating the thermal anal-
ysis method into a framework to solve the optimization
problem. In addition, this paper gives a broader coverage
of related work, the proposed technique is more detailed,
and a richer set of experiments is carried out. Therefore, the
contributions of this paper can be summarized as follows:

– The considered system is formally described along with
an overview of worst-case chip temperature analysis.

– A mathematical expression for a non-trivial upper
bound on the worst-case chip temperature of a multi-
core system with non-deterministic workload is derived.
In contrast to previous work, the time-complexity of
the proposed method only depends on the number of
processing components.

– The task to processing component assignment is for-
mulated as an optimization problem to minimize the
worst-case chip temperature prior to execution.

– In various case studies, the proposed method is applied
to explore the temperature distribution and optimize the
task to processing component assignment.

The paper continues with a discussion of related work.
Afterwards, in Section 3, the considered thermal and com-
putational models are introduced. In Section 4, the thermal
analysis methods are induced. In Section 5, the task to
processing component assignment is formulated as an opti-
mization problem. Finally, in Section 6, case studies are
presented to highlight the viability of our method.

2 Related Work

As the use of dynamic thermal management (DTM) tech-
niques yields in multi-core systems to reduced system
reliability, a degradation of performance [4], and high com-
plexity [7], various pro-active thermal-aware binding and
scheduling techniques have been proposed in recent years.
In [6, 7, 9, 10, 17], the maximum temperature is reduced
so that the performance requirements are still met. For
instance, in [17], the thermal-aware scheduling problem
is formulated as a convex optimization problem. In [6], a
mixed-integer linear programming formulation is stated to

J Electron Test (2013) 29:521–535 523

solve the thermal-aware scheduling problem. In [7], a si-
milar problem is solved for minimizing the energy consump-
tion and reducing thermal hot spots. Finally, a global sche-
duling algorithm is proposed in [10] so that all cores are run-
ning at their ideally preferred speed and the peak tempera-
ture is optimally reduced. However, in all of these works,
the temperature is obtained by either calculating the average
temperature or the workload is assumed to be deterministic
so that the maximum temperature of the system can be cal-
culated by simulating the transient temperature evolution.

Evaluating the temperature characteristics is typically a
two-step process. First, the transient power dissipation is
determined by a software-based [1, 24] or hardware-based
[26] power-aware simulator. Having the transient power
dissipation, either the average temperature is calculated
based on steady-state analysis [31] or the transient temper-
ature evolution is obtained by simulating the system in a
thermal simulator [12, 21, 22]. However, due to the com-
plexity of today’s systems, it is difficult to identify corner
cases that actually lead to the maximum temperature of
the system. Consequently, simulation-based thermal analy-
sis may lead to undesired underestimations of the maximum
temperature.

In this work, we use a different approach. Similar to well-
known best-case / worst-case timing analysis methods for
multiprocessor systems, we use formal analysis methods to
predict the maximum temperature of a real-time system.
For example, modular performance analysis (MPA) [29]
or SymTA/S [11] provide upper and lower bounds on the
latency of a system with non-deterministic workload. In
particular, a first formal analysis method to calculate the
worst-case chip temperature of a multi-core system with
non-deterministic workload has been proposed in [20]. By
incorporating the temperature into real-time analysis, real-
time deadlines can be guaranteed even if reliability is
subject to high temperatures. However, as the method pro-
posed in [20] uses linear search to calculate a tight bound on
the worst-case chip temperature, its evaluation time is too
long for design space exploration of multi-core systems with
tens of processing components. In this work, we address
this challenge and describe a method to calculate an upper
bound on the maximum temperature of a multi-core system
with a time complexity that only depends on the number
of processing components. Finally, we integrate the pro-
posed method into a thermal-aware task assignment strategy
to minimize the worst-case chip temperature subject to
real-time deadlines.

3 System Models

This section introduces the formal models to analyze a real-
time application on an MPSoC.

Notation Bold characters are used for vectors and matrices
and non-bold characters for scalars. For example, H denotes
a matrix whose (k, �)-th element is Hk� and T denotes a
vector whose k-th element is Tk .

3.1 Computational Model

In this work, we consider an MPSoC with a set of process-
ing components Θ . The considered computational model of
each processing component Θ� is expressed using abstrac-
tions in real-time calculus [23]. In particular, we suppose
that events with a total workload of R�(s, t) time units arrive
at component Θ� in time interval [s, t) and each event has a
constant workload of ΔA

� time units. Thus, for any fixed s,
R(s, t) is a staircase function that increases its value by its
computation time when an event arrives. The arrival curve
α� upper bounds all possible cumulative workloads:

R�(s, t) ≤ α�(t − s) ∀s < t (1)

with α�(0) = 0. Figure 1a illustrates the concept of arrival
curves for the widely-used standard event model where the
event stream is defined by the parametric triple (p�, j�, d�)

with period p�, jitter j�, and minimum inter-arrival distance
between events d� [11]. For the rest of this paper, we assume
that an event stream is always characterized by these three
parameters.

We suppose that processing components are work-
conserving. In other words, they will be in ‘active’ mode as
long as there are events in their ready queue. The accumu-
lated computing time Q�(s, t) describes the amount of time
units that component Θ� is spending to process an incom-
ing workload of R�(s, t) time units. It is upper bounded by
γ�(Δ) for all intervals of length Δ < t [28]:

Q�(t − Δ, t) ≤ γ�(Δ) = inf
0≤λ≤Δ

{(Δ − λ) + α�(λ)} . (2)

For any fixed s with s < t , the accumulated computing time
Q�(s, t) is monotonically increasing and has either slope
1 or 0. When the slope is 1, the component is in ‘active’
mode, i.e., it is processing events. When the component is
idle, i.e., in sleep mode, the slope is 0. Thus, we express the
processing mode by the mode function:

S�(t) = dQ�(s, t)

dt
∈ {0, 1}. (3)

In Fig. 1b, the computing model is illustrated by comparing
a typical cumulated workload curve, the resulting accumu-
lated computing time, and the associated mode function.
The upper bound on the computing time is characterized by
the length of the first active interval b�, also called burst,
the length ΔA

� of every other interval with slope 1, and
the length ΔI

� of every interval with slope 0. While b� and
ΔA

� are constant for the considered computational model,
we also assume for computational simplicity that the upper

524 J Electron Test (2013) 29:521–535

Fig. 1 Examples of typical
arrival curves and accumulated
computing time curves. a
Arrival curve that corresponds to
an event stream defined by the
period p�, the jitter j�, and the
minimum inter-arrival distance
between events d�. b Typical
cumulated workload curve
R�(0, t) with the resulting
accumulated computing time
Q�(0, t) and the associated
mode function S�(t)

p

d

2p -j

()

time interval [ms]

co
m

p.
 d

em
an

d
[m

s]

0

40

60

80

100
a b

20

R (0,t)

time t [ms]

co
m

p.
 d

em
an

d
[m

s]

0

40

60

80

100

20

20 40 60 1000 80 20 40 60 1000 80
0

1

ex
ec

ut
io

n
sl

op
e

[1
]

Q (0,t)
S (t)

α

∇

∇

bound on the accumulated computing time is selected such
that all non-increasing intervals have the same length.

3.2 Thermal Model

The considered thermal model of an MPSoC describes the
temperature evolution by means of an equivalent RC cir-
cuit [6, 12, 20, 21]. In particular, we model the layout of the
chip by four layers, namely heat sink, heat spreader, thermal
interface, and silicon die. Each layer is divided into a set
of blocks according to the architectural-level units. In our
case, we select a processing component abstraction, i.e., we
represent each processing component as an individual node
with separate power source and temperature characteristics.
Even though a finer granularity could have been selected,
the processing component abstraction has been shown to be
accurate enough for system-level optimization [8, 30]. As
12 additional nodes are introduced in the heat spreader and
heat sink layers to model the area that is not covered by
the subjacent layer, a multi-core system with |Θ| processing
components is modeled by n = 4 · |Θ| + 12 nodes.

The n-dimensional temperature vector T(t) at time t is
described by a set of first-order differential equations:

C · dT(t)

dt
=

(
P(t) + K · Tamb

)
− (G + K) · T(t) (4)

with C the thermal capacitance matrix, G the thermal
conductance matrix, K the thermal ground conductance
matrix, P the power dissipation vector, and Tamb = T amb ·
[1, . . . , 1]′ the ambient temperature vector. The initial tem-
perature vector is denoted as T0 and the system is assumed
to start at time t0 = 0.

A linear dependency of power dissipation on tempera-
ture [6, 16] is assumed due to leakage power:

P(t) = φ · T(t) + ψ(t) (5)

where φ is a diagonal matrix with constant coefficients,
and ψ a vector. Finally, the state-space representation of the
thermal model is expressed by:

dT(t)

dt
= A · T(t) + B · u(t) (6)

with input vector u(t) = ψ(t) + K · Tamb, A = −C−1 ·
(G + K − φ), and B = C−1. As the thermal system is linear
and time-invariant, the temperature of node k is:

Tk(t) = T init
k (t) +

n∑
�=1

Tk,�(t) (7)

with Tinit(t) = eA·t ·T0. Tk,�(t) is the convolution of input u�

and Hk�, i.e., the impulse response between nodes � and k:

Tk,�(t) =
∫ t

0
Hk�(ξ) · u�(t − ξ)dξ. (8)

Input u� depends on the processing mode, i.e., the slope of
the accumulated computing time of the processing compo-
nent corresponding to node Θ�:

u�(t) = S�(t) · ua
� + (1 − S�(t)) · ui

� (9)

with ua
� = ψa

� + K�� · T amb if S�(t) = 1 and ui
� =

ψi
� + K�� · T amb if S�(t) = 0. Nodes that do not correspond

to a processing component have input u�(t) = ui
�. Similar

to [20], we assume that Hk�(t) is a non-negative unimodal
function that has its maximum at time t̃

Hk�
max, see Fig. 2 for

an illustration.

4 Thermal Analysis

In this section, we start by presenting some key results
from peak temperature analysis, and then introduce a novel
method to calculate a non-trivial upper bound on the maxi-
mum temperature without simulating the transient tempera-
ture evolution.

4.1 Peak Temperature Analysis

The worst-case chip temperature T ∗
S , i.e., the maximum

temperature of the system under all feasible scenarios of
task arrivals, is the maximum possible temperature of all
nodes:

T ∗
S = max

(
T ∗

1 , . . . , T ∗
n

)
(10)

J Electron Test (2013) 29:521–535 525

Fig. 2 Examples of typical
impulse responses of the
equivalent RC circuit to model
the thermal behavior of a multi-
core system. a Self-impulse
response Hkk(t). b General
impulse response Hk�(t)

0 1 2 3 4 5
0

2.5

5

7.5

time t

H
(t

)

0 1 2 3 4 5
0

0.5

1

1.5

tH
max

time t

H
(t

)

a b

with n the number of nodes and T ∗
k the worst-case peak

temperature of node k. Because of non-determinism in the
workload arriving at the different components, first, one has
to identify the critical set of cumulative workload traces that
leads to the worst-case peak temperature T ∗

k of node k. Due
to heat exchange between neighboring components, T ∗

k does
not only depend on the workload of component Θk , but also
on the workload of all other components of the chip.

Once the critical set of cumulative workload traces
is identified, the temperature T ∗

k (τ) at a certain obser-
vation time τ is found by simulating the system with
the set of critical accumulated computing times Q{k} =[
Q

{k}
1 (0, Δ), . . . , Q

{k}
n (0, Δ)

]′
for all 0 ≤ Δ ≤ τ , where

{k} indicates that Q{k} leads to the worst-case peak temper-
ature of node k. The critical accumulated computing time
Q

{k}
� (0, t) describes the sequence of active and idle time

units that, among all possible sequences of active and idle
time units, leads to the maximum temperature T ∗

k (τ). Thus,
the remaining question is how to calculate the set of critical
accumulate computing times Q{k}.

First, we note that the critical accumulated computing
time Q

{k}
� (0, Δ) of node � can be calculated independently

of all other accumulated computing times [20]. In particular,
the problem is equivalent to find the accumulated comput-
ing time Q

{k}
� (0, Δ) that maximizes Tk,� defined as in Eq. 8.

Let us define t̃
Hk�
max = τ − t

Hk�
max, where τ is the predefined

observation time of the peak temperature, and introduce the
auxiliary function v� of node �, which is, starting at time t s ,
one for ΔA

� time units:

v�(t, t
s) =

{
1 0 ≤ t s ≤ t ≤ min

(
t s + ΔA

� , τ
)

0 otherwise.
(11)

The next theorem follows from the results of [20] and pro-
vides a method to calculate the critical accumulated com-
puting time Q{k} leading to the worst-case peak temperature
T ∗

k of node k.

Theorem 1 Suppose that the accumulated computing time

function Q{k}(0, Δ) =
[
Q

{k}
1 (0, Δ), . . . , Q

{k}
n (0, Δ)

]′
for

all 0 ≤ Δ ≤ τ with Q
{k}
� (0, Δ) constructed by Algo-

rithm 1 leads to T ∗
k (τ) at time τ . When the scheduler is

work-conserving, T ∗
k (τ) is an upper bound on the highest

possible value of temperature Tk(τ) at time τ . Furthermore,
when (T∞)i is the steady-state temperature vector if all

nodes are in ‘idle’ mode, T ∗
k (τ) ≥ Tk(t) for all 0 ≤ t ≤ τ

and any set of feasible workload traces with the same initial
temperature vector T0 ≤ (T∞)i .

Algorithm 1 Calculation of the critical accumulated com-
puting time function Q

{k}
� (0, Δ) for all 0 ≤ Δ ≤ τ with v�

defined by Eq. 11.

Input: b�, Δ
I
�, Δ

A
� , p�, t̃

Hk�
max, τ, Hk�

Output: Q
{k}
� (0, Δ)

1: for all t (r) in
[
t̃

Hk�
max, t̃

Hk�
max + b� − ΔA

�

]
do

� position of the burst
2: for all t s ∈ [0, ΔI

�] do
� gap btw burst and suc. active interval

3: t (l) = t (r) − b� + ΔA
�

4: S�(t) =
{

1 t ∈ [
t (r) − b� + ΔA

� , t(r))

0 otherwise

5: for i = 1 to
⌈

τ−t (r)

p�

⌉
do

� make trace for t > t(r)

6: S�(t) = S�(t) + v�(t, t
s + t (r) + (i − 1) · p�)

7: end for
8: for i = 1 to

⌈
t (l)

p�

⌉
� make trace for t < t(l)

9: S�(t) = S�(t) + v�(t, t
s + t (l) − i · p�)

10: end for
11: Υ = ∫ t

0 S�(ξ) · Hk�(t − ξ)dξ

12: if Υ > Υ ∗ then � Υ comparison

13: Υ ∗ = Υ , S
{k}
� = S�

14: end if
15: end for
16: end for
17: Q

{k}
� (0, Δ) = ∫ Δ

0 S
{k}
� (ξ)dξ for all 0 ≤ Δ ≤ τ

Algorithm 1 calculates the critical accumulated comput-
ing time Q

{k}
� by altering both the position of burst and

gap between burst and first successive active interval, see
Fig. 3 for an illustration of the algorithm. Then, Q

{k}
� is the

computing time that maximizes the sum of all areas below
Hk� where the node is in ‘active’ processing mode. After-
wards, the peak temperature T ∗

k (τ) of node k is obtained by
simulating the system with computing time Q{k}.

526 J Electron Test (2013) 29:521–535

time t [s]
0

H
k

(
-t

)
1

S
(t

)

b - AIA ts

0 t(r)t(l)

Δ Δ Δ

Fig. 3 Sketch of Algorithm 1 by illustrating the convolution between
Hk�(τ − t) and S�(t)

Calculating an upper bound on the maximum tempera-
ture T ∗

S has time complexity O(n2 ∗ m) with n the num-
ber of nodes. The factor m reflects the time to execute
Algorithm 1 and is inversely proportional to the selected
time step. Increasing the time step can improve the execu-
tion time, but might lead to a reduced accuracy.

4.2 Fast Temperature Evaluation

As indicated, Algorithm 1 might be time-consuming and
hence not suited for design space exploration. Therefore,
we first derive an analytical expression for the accumulated
computing time that leads to a non-trivial upper bound on
the peak temperature. Afterwards, we use the obtained com-
puting time to propose a novel mathematical expression for
an upper bound on the maximum temperature.

The first lemma simplifies Algorithm 1 so that it is con-
stant time and so that the resulting upper bound on the
maximum temperature at observation time τ , T̂ ∗

k (τ), is not
smaller than the worst-case peak temperature of node k. Q̂{k}
denotes the critical accumulated computing time that leads
to T̂ ∗

k (τ).

Theorem 2 Suppose that the accumulated computing time

function Q̂{k}(0, Δ) =
[
Q̂

{k}
1 (0, Δ), . . . , Q̂

{k}
n (0, Δ)

]′
for

all 0 ≤ Δ ≤ τ with:

Q̂k
�(0, Δ) =

⎧⎨
⎩

γ
(
t̃
Hk�
max

)
− γ

(
t̃
Hk�
max − Δ

)
0 ≤ Δ < t̃

Hk�
max

γ
(
t̃
Hk�
max

)
+ γ

(
Δ − t̃

Hk�
max

)
t̃
Hk�
max ≤ Δ < τ

(12)

leads to T̂ ∗
k (τ) at time τ . When the scheduler is work-

conserving, T̂ ∗
k (τ) is an upper bound on the highest value of

temperature Tk(τ) at time τ . Furthermore, when (T∞)i is
the steady-state temperature vector if all nodes are in ‘idle’
mode, T̂ ∗

k (τ) ≥ Tk(t) for all 0 ≤ t ≤ τ and any set of feasi-
ble workload traces with the same initial temperature vector
T0 ≤ (T∞)i .

Proof We will prove this theorem by translating Q{k}
� cal-

culated by Algorithm 1 into Q̂{k}
� calculated by Eq. 12 and

show that the temperature will not decrease in every step. To

Algorithm 2 Calculation of the critical accumulated com-
puting time function Q̂

{k}
� (0, Δ) for all 0 ≤ Δ ≤ τ .

Input:b�, Δ
I
�, Δ

A
� , p�, t̃

Hk�
max, τ

Output:Q̂{k}
� (0, Δ)

1: t (r) = t̃
Hk�
max + b� − ΔA

� , t (l) = t̃
Hk�
max − b� + ΔA

�

2: Ŝk
� (t) =

{
1 t ∈ [t (l), t (r)] 	 extended burst

0 otherwise

3: for i = 1 to
⌈

τ−t (r)

p�

⌉
do 	 trace for t > t(r)

4: Ŝk
� (t) = Ŝk

� (t) + v�

(
t, t (r) + (i − 1) · p�

)
5: end for
6: for i = 1 to

⌈
t (l)

p�

⌉
do 	 trace for t < t(l)

7: Ŝk
� (t) = Ŝk

� (t) + v�

(
t, ΔI

� + t (l) − i · p�

)
8: end for
9: Q̂k

�(0, Δ) = ∫ Δ

0 Ŝk
� (ξ)dξ for all 0 ≤ Δ ≤ τ

this end, we observe that the temperature does not decrease
if the amount of ‘active’ time units per time interval is either
increased or shifted closer to t̃

Hk�
max [20].

In the first step, the precedent and successive active inter-
vals of the burst are moved to the burst so that the node
is continuously active for b� + ΔA

� time units, compare
Fig. 4a and b for an illustration. The second step makes
the search for the position of the burst obsolete. To this
end, the length of the burst is extended so that it covers
all possible positions of the burst, i.e., Ŝ�(t) = 1 for all

t ∈
[
t̃
Hk�
max − b� + ΔA

� , t̃
Hk�
max + b� − ΔA

�

]
, see Fig. 4c for an

illustration.
Algorithm 2 is the result of these two translations. One

can readily prove that in both steps, the amount of ‘active’
time units is either increased or shifted closer to t̃

Hk�
max.

Finally, we note that Eq. 12 is equivalent to Algorithm 2,
and therefore T̂ ∗

k (τ) ≥ T ∗
k (τ).

A A AI I b - A ts

time t

S
(t

) 1
a

b

c

0
t Hk

max
~

A A AAI I b - A

time t

S
(t

) 1

0
t Hk

max
~

I I AA b - AA A

time t

S
(t

) 1

0
t(r)t(l) t Hk

max
~

Fig. 4 Illustration of the steps to translate Q
{k}
� into Q̂

{k}
� . a Starting

position corresponding to the the critical accumulated computing time
Q

{k}
� . b Translation step 1: the precedent and successive active intervals

of the burst are moved to the burst. c Translation step 2: the length of
the burst is extended so that it covers all possible positions of the burst

J Electron Test (2013) 29:521–535 527

As Algorithm 2 is constant time, computing an upper
bound on the maximum temperature of an MPSoC has time
complexity O(n2) with n the number of nodes. As illus-
trated in Fig. 4c, the system continuously switches between
active and idle mode except during the burst. Next, we show
that calculating the peak temperature can further be sim-
plified by running the processing component with constant

slope δ� = ΔA
�

ΔA
� +ΔI

�

for all time units except during the burst.

This lemma provides the foundation for the main theorem
of this section.

Lemma 1 Suppose that the mode function:

S̆�(t) =
{

1 t̃
Hk�
max − b� ≤ t ≤ t̃

Hk�
max + b�

δ� otherwise
(13)

with utilization δ� = ΔA
�

ΔA
� +ΔI

�

leads to T̆ ∗
k,�(τ) at time τ .

When the scheduler is work-conserving, T̆ ∗
k,�(τ) is an upper

bound on the highest value of Tk,�(τ) at time τ .

Proof Rewriting Eq. 8 with Eq. 9 leads to:

Tk,�(t) = ui
� · ∫ t

0 Hk�(t − ξ)dξ

+
(
ua

� − ui
�

)
· ∫ t

0 S�(ξ) · Hk�(t − ξ)dξ.

As we know from Theorem 2 that Ŝ(t) = dQ̂
{k}
� (0,Δ)

dt
leads

to T̂k,�(τ) with T̂k,�(τ) ≥ Tk,�(τ), we have to show that
T̆k,�(τ) ≥ T̂k,�(τ):

(
T̆k,�(τ) − T̂k,�(τ)

)
/
(
ua

� − ui
�

)

=
∫ τ

0
S̆�(ξ) · Hk�(τ − ξ)dξ

− ∫ τ

0 Ŝ�(ξ) · Hk�(τ − ξ)dξ

=
∫ θ(l)

0
S̆�(ξ) · Hk�(τ − ξ)dξ

− ∫ θ(l)

0 Ŝ�(ξ) · Hk�(τ − ξ)dξ

+ ∫ τ

θ(r) S̆�(ξ) · Hk�(τ − ξ)dξ

− ∫ τ

θ(r) Ŝ�(ξ) · Hk�(τ − ξ)dξ

where we used that S̆�(t) = Ŝ�(t) = 1 for t ∈ [θ(l), θ (r)]
with θ(l) = t̃

Hk�
max − b� and θ(r) = t̃

Hk�
max + b�. By rewriting

the integral from 0 to θ(l) as a sum, we get:
∫ θ(l)

0

(
S̆�(ξ) − Ŝ�(ξ)

)
· Hk�(τ − ξ)dξ

= ∑ρ
i=0

(∫ θ(l)−i·p�

θ(l)−(i+1)·p�

(
S̆�(ξ) − Ŝ�(ξ)

)

·Hk�(τ − ξ)dξ
)

where ρ is an integer that is selected so that p� · (ρ −
1) ≤ θ(l) ≤ p� · ρ. In particular, Ŝ(t) = 0 for
t ∈ [

θ(l) − i · p� − ΔI
�, θ

(l) − i · p�

]
, Ŝ(t) = 1 for t ∈

[
θ(l) − (i + 1) · p�, θ

(l) − (i + 1) · p� + ΔA
�

]
, and θ(l) − i ·

p� − ΔI
� = θ(l) − (i + 1) · p� + ΔA

� , see Fig. 5 for an
illustration. Then, we find:

∫ θ(l)−i·p�

θ(l)−(i+1)·p�

(
S̆�(ξ) − Ŝ�(ξ)

)
· Hk�(τ − ξ)dξ

= δ� · ∫ θ(l)−i·p�

θ(l)−(i+1)·p�+ΔA
�

Hk�(τ − ξ)dξ

−(1 − δ�) · ∫ θ(l)−i·p�−ΔI
�

θ(l)−(i+1)·p�
Hk�(τ − ξ)dξ

where we subtracted the two integrals in the inter-
val

[
θ(l) − (i + 1) · p�, θ

(l) − i · p� − ΔI
�

]
. Next, we lower

bound the value between θ(l)−(i+1) ·p�+ΔA
� and θ(l)−i ·

p� by means of Hk�

(
τ − (

θ(l) − (i + 1) · p� + ΔA
�

))
, and

upper bound the value between θ(l)−(i+1) ·p� and θ(l)−i·
p� − ΔI

� by means of Hk�

(
τ − (

θ(l) − i · p� − ΔI
�

)) =
Hk�

(
τ − (

θ(l) − (i + 1) · p� + ΔA
�

))
, as well:

∫ θ(l)−i·p�

θ(l)−(i+1)·p�

(
S̆�(ξ) − Ŝ�(ξ)

)
· Hk�(τ − ξ)dξ

≥ δ� · ΔI
� · Hk�

(
τ − (

θ(l) − (i + 1) · p� + ΔA
�

))

−(1−δ�) · ΔA
� · Hk�

(
τ− (

θ(l) − (i+1) · p�+ΔA
�

)) =0

where we used the fact that δ� = ΔA
�

ΔA
� +ΔI

�

and δ� · ΔI
� − (1 −

δ�) · ΔA
� = 0. Similarly, we can show that:

∫ τ

θ(r) S̆�(ξ) · Hk�(τ − ξ)dξ − ∫ τ

θ(r) Ŝ�(ξ) · Hk�(τ − ξ)dξ ≥ 0

and therefore, T̆k,�(τ) − T̂k,�(τ)/
((

ua
� − ui

�

)) ≥ 0.

Based on Lemma 1, we will present the main result of
this section. The following theorem provides a mathemati-
cal expression to calculate a non-trivial upper bound on the
maximum temperature T̆ ∗

k (τ) of node k. Finally, according
to Eq. 10, an upper bound on the maximum temperature of
the system can be obtained by calculating the maximum of
all individual upper bounds.

Theorem 3 Suppose that Tk(t) is the temperature of node k
at time instant t for a set of workload functions R(s, t) that
are bounded by the set of arrival curves α. When the sched-
uler is work-conserving, the following statements hold:

– The temperature:

T̆ ∗
k (τ) = T init

k (τ) +
n∑

�=1

T̆ ∗
k,�(τ) (14)

H
k

(
-t

)

IA

(l)-(i+1)·p (l)-i·ptime t [s]

Hk (-t)·S (t)
Hk (-t)·S (t)

Hk (-((l)-i·p -))

θ

θ

θ

I

Fig. 5 Illustration of the proof of Lemma 1. The impulse response
function Hk�(t) is plotted for the interval [θ(l)−(i+1)·p�, θ

(l)−i ·p�].

528 J Electron Test (2013) 29:521–535

with

T̆ ∗
k,�(τ) =

(
ui

� + δ� ·
(
ua

� − ui
�

))
·
∫ τ

0
Hk�(t − ξ)dξ (15)

+
(
ua

� − ui
�

)
· (1 − δ�) ·

∫ t̃
Hk�
max+b�

t̃
Hk�
max−b�

∫
Hk�(t − ξ)dξ

and δ� = ΔA
�

ΔA
� +ΔI

�

is an upper bound on the highest

temperature of node k at time τ, i.e., T̆ ∗
k (τ) ≥ Tk(τ).

– In addition, if (T∞)i is the steady-state temperature
vector if all nodes are in ‘idle’ mode, T̂ ∗

k (τ) ≥ Tk(t) for
all 0 ≤ t ≤ τ and any set of feasible workload traces
with the same initial temperature vector T0 ≤ (T∞)i .

Proof First, we rewrite Eq. 8 with Eq. 13 to derive Eq. 15.
As Lemma 1 states that T̆ ∗

k,�(τ) ≥ T̆k,�(τ) for all �, and

Tk(t) = T init
k (t) + ∑n

�=1 Tk,�(t), we get T̆ ∗
k (τ) ≥ Tk(τ).

The second item is a simple consequence of Theorem 2.
As T̆ ∗

k (τ) ≥ T̂ ∗
k (τ), T̆ ∗

k (τ) ≥ Tk(t) for all t ≤ τ .

Three different methods to calculate an upper bound on
the maximum temperature have been presented in this sec-
tion. The first method calculates the critical accumulated
computing time by Algorithm 1 leading to the worst-case
peak temperature T ∗

k of node k. The second method calcu-
lates the accumulated computing time according to Eq. 12
leading to T̂ ∗

k , and the last method calculates an upper bound
on the maximum temperature T̆ ∗

k of node k by the mathe-
matical expression defined by Eq. 14. The relation between
these three different bounds on the maximum temperature
is as follows:

T̆ ∗
k (τ) ≥ T̂ ∗

k (τ) ≥ T ∗
k (τ). (16)

5 Minimizing the Peak Temperature

So far, we have seen a method to calculate the worst-case
chip temperature, i.e, the maximum chip temperature under
all feasible scenarios of task arrivals. Next, we apply this
method to calculate an optimal task assignment that mini-
mizes the worst-case chip temperature and guarantees that
all real-time deadlines are met. By offering safe bounds,
the resulting framework is intended to optimize the task
assignment at design-time, i.e, prior to execution.

5.1 Task Model

In our task model, we assume to have a set of tasks ν that are
concurrently executed. Each task νj is modeled as a stream
of events and has an event arrival curve eνj

(Δ) that upper
bounds the cumulative number of events arriving in any time

interval of length Δ ≥ 0. An event has to complete its exe-
cution within Dνj

time units after its arrival and function
φ(νj , Θ�) assigns each task νj the number of time units that
are required to process an event on processing component
Θ�. Finally, function Γ (νj , Θ�) is 1 if a task νj is assigned
to processing component Θ� and 0 otherwise:

Γ (νj , Θ�) =
{

1 if νj executes on component Θ�

0 otherwise.
(17)

Thus, the total accumulated workload of component Θ� is,
in any time interval of length Δ ≥ 0, upper bounded by the
arrival curve α� [23]:

α�(Δ) =
|ν|∑

j=1

Γ (νj , Θ�) · eνj
(Δ) · φ(νj , Θ�). (18)

To check schedulability, we use the concept of a demand
bound function [2] that models the maximum resource
demand of a task. The demand bound function dbfνj

,Θ�
(Δ)

of task νj upper bounds the maximum accumulated com-
putational demand of all events that arrive and have dead-
line in any interval of length Δ on processing component
Θ�. Formally, the demand bound function dbfνj ,Θ�

(Δ) is
defined as:

dbfνj ,Θ�
(Δ) = eνj

(Δ − Dνj
) · φ(νj , Θ�) ∀Δ ≥ 0. (19)

The demand bound function dbf�(Δ) of a processing com-
ponent Θ� depends on the scheduling algorithm. For exam-
ple, when an EDF scheduler is used to arbitrate between
events of different tasks assigned to the same processing
component, the demand bound function dbf�(Δ) is:

dbf�(Δ) =
|ν|∑

j=1

Γ (νj , Θ�) · dbfνj ,Θ�
(Δ). (20)

5.2 Optimization Problem

Once we have specified the task model, we can formulate
the considered optimization problem:

Given are a set of tasks ν that are mapped onto an
MPSoC with processing components Θ . Then, the
goal is to select a static assignment of tasks to process-
ing components such that all deadlines are met and the
worst-case chip temperature T ∗

S is minimized.

In other words, the objective of the optimization problem is
to reduce the worst-case chip temperature:

minimize T ∗
S = max

(
T ∗

1 , . . . , T ∗
n

)
(21)

where T ∗
k is defined as in Eq. 14 and n is the number of

nodes of the equivalent thermal RC circuit.
We call a processing component Θ� schedulable if the

real-time deadlines of all events are met. We have to guar-
antee that the cumulated number of available computing

J Electron Test (2013) 29:521–535 529

resources is in no time interval Δ smaller than the maximum
resource demand, defined by the demand bound function
dbf�(Δ). Thus, the schedulability test is written as:

dbf�(Δ) ≤ Δ ∀Δ ≥ 0 and νj ∈ ν. (22)

Practically, the RTC toolbox [27] can be used to verify
schedulability. Finally, we have to make sure that each task
is assigned to only one processing component:

|Θ|∑
�=1

Γ (νj , Θ�) = 1 ∀νj ∈ ν. (23)

5.3 Temperature Reduction by Voltage Scaling

The worst-case chip temperature can further be reduced by
assigning each processing component its optimal frequency,
i.e., the minimum operation frequency so that no real-time
deadlines are missed. In the following, we extend the sys-
tem model and the thermal analysis model, and formulate
the optimization problem to make use of voltage and fre-
quency scaling to reduce the power consumption, and thus,
the worst-case chip temperature.

Each processing component Θ� has its own clock domain
and executes at a static frequency f� with 0 ≤ f� ≤ f max

� .
We suppose that the number of time units φ(νj , Θ�) that an
event of task νj has to execute on processing component Θ�

scales linearly with the operation frequency. Thus, the total
accumulated workload of Θ� is upper bounded by the arrival
curve:

α�(Δ) = f max
�

f�

·
|ν|∑

j=1

Γ (νj , Θ�) · eνj
(Δ) · φ(νj , Θ�). (24)

Furthermore, we assume that the dynamic power consump-
tion of component Θ� growths quadratically with its supply
voltage v� and linearly with its operation frequency f� [18]:

P�,dyn(t) ∝ v2
� · f� · S�(t) (25)

Similar to [17], we suppose that the square of the supply
voltage scales linearly with the operation frequency even
though the results of the paper also hold for any other mono-
tonic relation between supply voltage and frequency. Now,
we can write the total power consumption as:

P(t) = φ · T(t) + ρ · diag(f)3 · S(t) + ω (26)

with diagonal matrix diag(f) of vector f and constant diag-
onal matrices ρ and ω. As the operation frequency is stati-
cally assigned at design-time, the thermal analysis method
proposed in Eq. 4 still provides an upper bound on the
maximum temperature.

In order to calculate the minimum operation frequency
so that no real-time deadlines are missed, we rewrite the

demand bound function dbf�(Δ) with the scaled operation
frequency f�:

dbf�(Δ) = f max
�

f�

·
|ν|∑

j=1

Γ (νj , Θ�) · dbfνj ,Θ�
(Δ). (27)

Finally, rewriting Eq. 22 with the above expression for the
demand bound function results in the following expression
for the minimum operation frequency for a processing com-
ponent that uses an EDF scheduler to arbitrate between
events of different tasks:

f� = sup
Δ≥0

⎧⎨
⎩f max

� ·
∑|ν|

j=1 Γ (νj , Θ�) · dbfνj ,Θ�
(Δ)

Δ

⎫⎬
⎭ . (28)

6 Case Studies

In order to evaluate the proposed analysis methods, we
extended the modular performance analysis (MPA) frame-
work [5] with the ability to calculate the maximum temper-
ature by the discussed algorithms. Afterwards, we solve the
mapping problem proposed in Eq. 5 for various task sets to
illustrate the capability of the thermal analysis method.

6.1 Experimental Setup and System Description

We consider a homogeneous multi-core ARM platform with
a variable number of processing components. Fixed priority
preemptive scheduling is used on all processing compo-
nents while a TDMA policy is employed on the shared
bus that connects all processing components. Intermediate
streams that cannot be represented by a period, a jitter, and
a minimum interarrival distance are upper-bounded by the
method presented in [15] and observation time τ is set to
five seconds.

Temperature-dependency of leakage power is addressed
by linearizing the model described in [21]. Table 1 sum-
maries the parameters of the considered power model
defined by Eq. 5. As we consider a homogeneous platform,
every component has the same power values. HotSpot [12]
is used to calculate the thermal parameters of the plat-
form, i.e., the C, G, and K matrices, see Table 2 for
the detailed thermal configuration. In all experiments, the
traces start from the steady-state temperature in ‘idle’ mode,

Table 1 Power dissipation parameters of node �

Parameter Symbol Value

Slope of power [W/K] φ�� 0.023

Constant power in ‘active’ mode [W] ψa
� 8.684

Constant power in ‘idle’ mode [W] ψi
� −5.512

530 J Electron Test (2013) 29:521–535

Table 2 Thermal configuration of HotSpot

Parameter Symbol Value

Silicon thermal conductance [W/(m · K)] kchip 150

Silicon specific heat [J/(m3 · K)] pchip 1.75 · 106

Thickness of the chip [mm] tchip 3.5

Convection resistance [K/W] rconvec 2

Heatsink thickness [mm] tsink 0.01

Heatsink thermal cond. [W/(m · K)] ksink 400

Heatsink specific heat [J/(m3 · K)] psink 3.55 · 106

Ambient temperature [K] Tamb 300

i.e., T0 = (T∞)i . All experiments have been performed on
an Intel Core i7-2720 QM processor with 8 GB of RAM.

6.2 Worst-Case Chip Temperature Evaluation

First, we consider four benchmark applications to evaluate
the performance of the proposed thermal analysis method.
In particular, we compare the accuracy and the evaluation
time of the novel method with the method proposed in [20].

6.2.1 Application Description

A producer-consumer (P-C), a distributed matrix multipli-
cation, a Fast-Fourier transform (FFT), and a motion JPEG
(MJPEG) decoder application are considered in the first
case study. To improve the performance, the benchmark
applications are split into several tasks that might run in
parallel. Each task is characterized by its best-case and
worst-case execution demand, which have been determined
by simulating the benchmark application on the MPARM
virtual platform [3]. In particular, the P-C application is split
into five tasks, the matrix multiplication application into
ten tasks, and the FFT application into twelve tasks. The
MJPEG decoder application is split into a variable num-
ber of tasks to concurrently decode individual frames. In

addition, the MJPEG decoder consists of a task to split up
the input sequence into individual frames and to send the
frames to the decompressing tasks. Finally, another task
merges the decoded frames back into a stream.

6.2.2 Efficiency and Accuracy

First, we use an MJPEG decoder that consists of five tasks
running on three processing components, thus the thermal
model has order 24. The application is driven by an input
stream with a periodic invocation interval of 450 ms and a
jitter of 600 ms.

To evaluate our method, both the time to calculate an
upper bound on the maximum temperature and the qual-
ity of this bound are analyzed. To this end, we first
calculate three different upper bounds on the maximum
temperature:

1. The critical accumulated computing time is computed
with Algorithm 1 leading to the worst-case chip temper-
ature T ∗

S .
2. The upper bound T̂ ∗

S is calculated by simulating the
system with the critical accumulated computing time
defined by Eq. 12.

3. T̆ ∗
S is calculated according to Eq. 14.

We compare T ∗
S , T̂ ∗

S and T̆ ∗
S as well as the durations to

calculate the bounds. Peak temperatures and durations to
calculate these temperatures are listed in Table 3 for three
different mapping configurations. The time increment of
Algorithm 1 is set to 1 ms. (T∞)a and (T∞)i are the steady-
state temperature vectors if all nodes are in ‘active’ and
‘idle’ mode, respectively.

Calculating T̆ ∗
S is on average 549 times faster than calcu-

lating T ∗
S , but note that the execution time of Algorithm 1

depends on the selected time increment. Furthermore, the
execution time depends on the actual mapping as shown in
Table 3a. We quantify the accuracy of T̆ ∗

S by means of the
worst-case chip temperature T ∗

S . To this end, we introduce

Table 3 Efficiency and
accuracy comparison for the
MJPEG decoder application

Mapping 1 Mapping 2 Mapping 3

(a) Duration of the compared temperature analysis methods

Duration to calculate T ∗
S 35.9 s 35.0 s 40.5 s

Duration to calculate T̂ ∗
S 0.61 s 0.58 s 2.00 s

Duration to calculate T̆ ∗
S 0.06 s 0.04 s 0.10 s

(b) Maximum temperature comparison for different analysis methods

T ∗
S 352.921 K 350.634 K 366.180 K

T̂ ∗
S 352.935 K 350.649 K 366.909 K

T̆ ∗
S 352.937 K 350.651 K 366.910 K

max(T∞)a 424.782 K 424.782 K 424.782 K

max(T∞)i 310.714 K 310.714 K 310.714 K

J Electron Test (2013) 29:521–535 531

the following notation of a relative error, which measures
the normalized distance between T̆ ∗

S and T ∗
S :

error = T̆ ∗
S − T ∗

S

max (T∞)a − max (T∞)i
. (29)

Applying this formula, the average error of our results is
found to be only 0.22 %. This confirms our approach to
upper bound the peak temperature by Eq. 14 instead of using
Algorithm 1 to calculate the critical accumulated comput-
ing time and then simulating the system with the critical
computing time. Overall, calculating T̆ ∗

S instead of T ∗
S is

desirable in the design flow of real-time systems as the three
order of magnitude reduction in evaluation time enables a
faster and more exhaustive design space exploration.

The small error is mainly attributed to the fact that the
heat transfer among neighboring nodes is smaller than the
self-heating. For self-heating, Eq. 12 and Algorithm 1 calcu-
late the same critical accumulated computing time as t̃

Hk�
max

is equal to the observation time τ .
Finally, we compare T ∗

S and T̆ ∗
S as well as the durations to

calculate the bounds for the P-C, the matrix multiplication,
and the FFT application. The results are listed in Table 4 for
one mapping per application. They exhibit similar trends as
observed with the MJPEG decoder application.

6.2.3 Comparison with a Cycle-Accurate Simulation

The method proposed in [20] has been extensively eval-
uated against a cycle-accurate simulation tool-chain. For
completeness, we summarize the results of this evaluation;
see [25] for additional details. The tool-chain is based on
MPARM [3] and HotSpot [12] and key results of the evalua-
tion are listed in Table 5 whereby the reported values are the
average of six different mapping configurations. Simulating
the temperature evolution on the tool-chain is on average
266 times slower than calculating the peak temperature with
the analytic method proposed in [20]. The maximum chip
temperature T ∗

S is on average 4.8 K higher than the maxi-
mum temperature of the cycle-accurate simulation. One of
the reasons for the difference is that the maximum temper-
ature of the cycle-accurate simulation underestimates the

Table 4 Efficiency and accuracy comparison for the P-C, the matrix
multiplication, and the FFT application

P-C Matrix FFT

Duration to calc. T ∗
S 25.71 s 28.02 s 26.2 s

Duration to calc. T̆ ∗
S 0.09 s 0.12 s 0.15 s

T ∗
S 345.402 K 354.116 K 338.832 K

T̆ ∗
S 346.045 K 355.570 K 339.711 K

Error 0.56 % 1.28 % 0.77 %

Table 5 Comparison of the worst-case chip temperature and the
maximum temperature observed on a cycle-accurate simulation tool
chain

P-C Matrix FFT MJPEG

Exec. time reduction 293x 258x 276x 238x

T ∗
S 355.4 K 355.1 K 342.6 K 362.9 K

max(T) from sim. 350.3 K 351.2 K 338.8 K 356.6 K

worst-case chip temperature due to the infeasibility of an
exhaustive simulation of all system configurations.

6.2.4 Temperature Distribution on a 25-Core Processor

Next, we consider a multi-core system with 25 processing
components executing an MJPEG decoder with 10 tasks.
The processing components are arranged in a grid with five
rows and the corresponding thermal model has order 112.
We will show that the temperature distribution, and thereby
the worst-case chip temperature of the system, is affected
by the assignment of tasks to processing components.

Figure 6 shows the worst-case chip temperature distribu-
tion of the system for four different mappings. In Fig. 6a, the
tasks are mapped onto components situated in the left top
corner of the chip. Next, in Fig. 6b, the tasks are distributed
among components in all four corners. In Fig. 6c, the tasks
are distributed all over the chip, and finally, in Fig. 6d, the
tasks are only mapped onto components in the middle of the
chip. The highest peak temperature occurs in Fig. 6a and the
lowest one in Fig. 6c. The difference between their worst-
case chip temperatures is of about 16 K. This shows that
the worst-case chip temperature can be reduced by spread-
ing the workload over the chip. In this case, intermediate
processing components with no workload act like a passive
cooling system and keep hot spots separated.

6.3 Thermal-Aware Task Assignments

In the second case study, we apply the proposed temperature
analysis method to calculate an optimal task assignment that
minimizes the worst-case chip temperature and guarantees
that all real-time deadlines are met.

6.3.1 System Description

We are still targeting the homogeneous multi-core ARM
platform. The platform has two different modes to control
the operation frequency. Either all processing components
have a common clock domain or each processing compo-
nent is supposed to have its own clock domain. The maxi-
mum operation frequency is supposed to be 1.6 GHz and the
power model shown in Table 1 has been extended according

532 J Electron Test (2013) 29:521–535

Fig. 6 Worst-case peak
temperature distribution for a
25-core processor when
executing an MJPEG decoder
application. The processing
components are arranged in a
grid with five rows. a Mapping
1. b Mapping 2. c Mapping 3.
d Mapping 4

a b c d
1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

worst−case peak temperature [K]
340 345 350 355 360 365

to Eq. 26. An EDF scheduler is running on each process-
ing component to arbitrate between events of different tasks
assigned to the same component.

6.3.2 Simulated Annealing to Optimize the Temperature

We first suppose that each processing component is run-
ning at its maximum operation frequency, i.e., 1.6 GHz.
The thermal optimization problem stated in Eq. 5 can be
solved exhaustively for small task sets and platforms with a
low number of processing components. Thus, we first com-
pare the performance of a heuristic solver with the optimal
solution found by exhaustively exploring the design space.
The heuristic solver uses simulated annealing [14] to solve
the thermal optimization problem. In addition, for compar-
ison with the optimized task assignments, the average peak
temperature of 20 feasible, i.e., schedulable random task
assignments is calculated.

We consider three different hardware platforms with
three, four, and six cores, respectively. Each task set is ran-
domly generated so that the number of tasks in one set is
between four and six tasks. Each task νj is characterized by
a period pνj

, a jitter jνj
, and a computing demand cνj

. The
period pνj

is uniformly chosen from [1,400] ms, the jitter
jνj

is uniformly chosen from [1 ms, 2 ·pνj
], and the compu-

tational demand is uniformly chosen from [1, pνj
· f max/5]

cycles with f max = 1.6 GHz. Finally, the real-time deadline
of an event is set to the period of its task.

Figure 7 compares the performance of the three solvers.
Exhaustively exploring the design space results in a task
assignment that has a worst-case chip temperature, which
is, on average, only 0.37 K smaller than the maximum
temperature of the task assignment found by simulated
annealing. For comparison, the average peak temperature
of the random assignments is on average 3.6 K higher
than the minimum peak temperature. Calculating the opti-
mal solution for the hardware platform with six cores took
on average 94.5 min and simulated annealing finished on
average in 33.8 s.

6.3.3 Voltage and Frequency Scaling

Finally, we evaluate the effect of frequency and voltage scal-
ing on the worst-case chip temperature. For a given task set,
we solve the optimization problem for the following three
configurations:

1. maximum frequency: each processing component is
running at its maximum frequency.

2. single clock domain: the platform has a single clock
domain for all processing components and is running at
the minimum operation frequency so that no real-time
deadline is missed.

3. separate clock domain: each processing component has
an own clock domain and is running at the minimum
operation frequency so that no real-time deadline is
missed.

In other words, in the third configuration, each core has a
separate frequency that is individually calculated by Eq. 28.
In the second configuration, all cores are running at the
same frequency and this frequency is set to the maximum
frequency of all frequencies used for the third configuration.

The layout of the considered platforms is 3 × 1, 3 × 2,
3 × 3, and 4 × 4 with 3, 6, 9, and 16 cores, respectively. We
compare eight different task sets per platform and each task
set is randomly generated so that the number of tasks in a
set is between one and three times the number of process-

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

330

340

350

360

benchmark

te
m

pe
ra

tu
re

 [
K

]

2 x 32 x 21 x 3

exhaustive simulated annealing random

Fig. 7 Performance of different solvers for the temperature optimiza-
tion problem. Three different hardware platforms with a 3 × 1, 2 × 2,
and 3 × 2 layout are considered

J Electron Test (2013) 29:521–535 533

Fig. 8 Worst-case chip
temperature for three different
frequency configurations and
four hardware platforms. The
worst-case chip temperature is
once calculated under the
assumption that all processing
components are running at
maximum frequency, once under
the assumption that the platform
has a single clock domain, and
once under the assumption that
each processing component has
a separate clock domain. a 3 × 1
layout. b 3 × 2 layout. c 3 × 3
layout. d 4 × 4 layout

1 2 3 4 5 6 7 8

320

330

340

350

360

benchmark

te
m

pe
ra

tu
re

 [
K

]
3 × 1 layout.

1 2 3 4 5 6 7 8

320

330

340

350

360

ba

dc

benchmark

te
m

pe
ra

tu
re

 [
K

]

3 × 2 layout.

1 2 3 4 5 6 7 8

320

330

340

350

360

benchmark

te
m

pe
ra

tu
re

 [
K

]

3 × 3 layout.

1 2 3 4 5 6 7 8

320

330

340

350

360

benchmark

te
m

pe
ra

tu
re

 [
K

]

4 × 4 layout.

max. frequency single clock domain separate clock domain

ing components. Simulated annealing is used to solve the
optimization problem in all benchmarks.

In Fig. 8, we plot the worst-case chip temperature for the
three different frequency configurations and four hardware
platforms. It shows that the worst-case chip temperature can
be drastically reduced when the processing components are
running at their optimal frequency. If each processing com-
ponent has its own clock domain, the peak temperature is on
average reduced by 24.2 K for the 3 × 1 layout, by 17.6 K
for the 3 × 2 layout, 22.5 K for the 3 × 3 layout, and 22.8 K
for the 4 × 4 layout.

7 Conclusion

In this paper, we presented a fast thermal analysis method to
calculate an upper bound on the maximum temperature of a
real-time application with non-deterministic workload run-
ning on a multi-core system. The considered thermal model
is able to address various thermal effects like temperature-
dependent leakage power and heat exchange between neigh-
boring cores to accurately model the thermal behavior of
multi-core systems. Afterwards, we applied the proposed
thermal analysis method to calculate an optimal task assign-
ment that minimizes the worst-case chip temperature and
guarantees that all real-time deadlines are met. Finally, we

have shown that the worst-case chip temperature can dras-
tically be reduced when each core is running at its optimal
operation frequency, i.e., the minimum operation frequency
so that no real-time deadlines are missed.

Acknowledgments This work was supported by EU FP7 projects
EURETILE and PRO3D, under grant numbers 247846 and 249776,
and by the TRANSCEND Strategic Action from Nano-Tera.ch. Lars
Schor was also partially supported by an Intel PhD Fellowship.

References

1. Bartolini A, Cacciari M, Tilli A, Benini L, Gries M (2010) A vir-
tual platform environment for exploring power, thermal and reli-
ability management control strategies in high-performance multi-
cores. In: Proc. Great Lakes symposium on VLSI (GLSVLSI), pp
311–316

2. Baruah S, Mok A, Rosier L (1990) Preemptively scheduling hard-
real-time sporadic tasks on one processor. In: Proc. real-time
systems symposium (RTSS), pp 182–190

3. Benini L, Bertozzi D, Bogliolo A, Menichelli F, Olivieri M (2005)
MPARM: exploring the multi-processor SoC design space with
SystemC. J VLSI Signal Process 41(2):169–182

4. Bircher WL, John LK (2008) Analysis of dynamic power manage-
ment on multi-core processors. In: Proc. int’l conf. on supercom-
puting (ICS), pp 327–338

5. Chakraborty S, Liu Y, Stoimenov N, Thiele L, Wandeler E (2006)
Interface-based rate analysis of embedded systems. In: Proc. real-
time systems symposium (RTSS), pp 25–34

534 J Electron Test (2013) 29:521–535

6. Chantem T, Dick RP, Hu XS (2008) Temperature-aware
scheduling and assignment for hard real-time applications on
MPSoCs. In: Proc. design, automation and test in Europe (DATE),
pp 288–293

7. Coskun A, Rosing T, Whisnant K, Gross K (2008) Static
and dynamic temperature-aware scheduling for multiprocessor
SoCs. IEEE Trans Very Large Scale Integr (VLSI) Syst
16(9):1127–1140

8. Cui J, Maskell D (2012) A fast high-level event-driven thermal
estimator for dynamic thermal aware scheduling. IEEE Trans
Comput-Aided Des Integr Circ Syst 31(6):904–917

9. Donald J, Martonosi M (2006) Techniques for multicore thermal
management: classification and new exploration. In: Proc. int’l
symposium on computer architecture (ISCA), pp 78–88

10. Fisher N, Chen JJ, Wang S, Thiele L (2009) Thermal-aware global
real-time scheduling on multicore systems. In: Proc. real-time and
embedded technology and applications symposium (RTAS), pp
131–140

11. Henia R, Hamann A, Jersak M, Racu R, Richter K, Ernst R (2005)
System level performance analysis—the SymTA/S approach.
IEEE Proc Comput Digit Tech 152(2):148–166

12. Huang W, Ghosh S, Velusamy S, Sankaranarayanan K, Skadron
K, Stan M (2006) HotSpot: a compact thermal modeling method-
ology for early-stage VLSI design. IEEE Trans Very Large Scale
Integr (VLSI) Syst 14(5):501–513

13. Isci C, Buyuktosunoglu A, Cher CY, Bose P, Martonosi M (2006)
An analysis of efficient multi-core global power management
policies: maximizing performance for a given power budget. In:
Proc. int’l symposium on microarchitecture (MICRO), pp 347–
358

14. Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simu-
lated annealing. Science 220(4598):671–680

15. Künzli S, Hamann A, Ernst R, Thiele L (2007) Combined
approach to system level performance analysis of embedded sys-
tems. In: Proc. int’l conf. on hardware/software codesign and
system synthesis (CODES+ISSS), pp 63–68

16. Liu Y et al (2007) Accurate temperature-dependent integrated cir-
cuit leakage power estimation is easy. In: Proc. design, automation
and test in Europe (DATE), pp 1526–1531

17. Murali S, Mutapcic A, Atienza D, Gupta R, Boyd S, De Micheli
G (2007) Temperature-aware processor frequency assignment
for MPSoCs using convex optimization. In: Proc. int’l conf.
on hardware/software codesign and system synthesis
(CODES+ISSS), pp 111–116

18. Rabaey JM, Chandrakasan A, Nikolic B (2008) Digital integrated
circuits, 3rd edn. Prentice Hall Press, Upper Saddle River

19. Schor L, Bacivarov I, Yang H, Thiele L (2012a) Fast worst-
case peak temperature evaluation for real-time applications on
multi-core systems. In: Proc. IEEE Latin American test workshop
(LATW), pp 1–6

20. Schor L, Bacivarov I, Yang H, Thiele L (2012b) Worst-case
temperature guarantees for real-time applications on multi-core
systems. In: Proc. IEEE real-time and embedded technology and
applications symposium (RTAS), pp 87–96

21. Skadron K, Stan MR, Sankaranarayanan K, Huang W, Velusamy
S, Tarjan D (2004) Temperature-aware microarchitecture: model-
ing and implementation. ACM Trans Archit Code Optim 1(1):94–
125

22. Sridhar M, Raj A, Vincenzi A, Ruggiero M, Brunschwiler
T, Atienza Alonso D (2010) 3D-ICE: fast compact transient
thermal modeling for 3D-ICs with inter-tier liquid cooling. In:
Proc. int’l conf. on computer-aided design (ICCAD), pp 463–470

23. Thiele L, Chakraborty S, Naedele M (2000) Real-time calculus for
scheduling hard real-time systems. In: Proc. IEEE int’l symposium
on circuits and systems (ISCAS), pp 101–104

24. Thiele L, Schor L, Yang H, Bacivarov I (2011) Thermal-aware
system analysis and software synthesis for embedded multi-
processors. In: Proc. design automation conference (DAC), pp
268–273

25. Thiele L, Schor L, Bacivarov I, Yang H (2013) Predictability for
timing and temperature in multiprocessor system-on-chip plat-
forms. ACM Trans Embed Comput Syst (TECS) 12(S1):48:1–
48:25

26. Garcia del Valle P, Atienza D (2010) Emulation-based transient
thermal modeling of 2D/3D systems-on-chip with active cooling.
Microelectron J 41(10):1–9

27. Wandeler E, Thiele L (2006) Real-Time Calculus (RTC) toolbox.
http://www.mpa.ethz.ch/Rtctoolbox

28. Wandeler E, Maxiaguine A, Thiele L (2006a) Performance anal-
ysis of greedy shapers in real-time systems. In: Proc. design,
automation and test in Europe (DATE), pp 444–449

29. Wandeler E, Thiele L, Verhoef M, Lieverse P (2006b) System
architecture evaluation using modular performance analysis: a
case study. Int J Softw Tools Technol Transf 8(6):649–667

30. Xie Y, WL Hung (2006) Temperature-aware task allocation
and scheduling for embedded multiprocessor systems-on-chip
(MPSoC) design. J VLSI Signal Process 45(3):177–189

31. Yang CY, Chen JJ, Thiele L, Kuo TW (2010) Energy-efficient
real-time task scheduling with temperature-dependent leakage. In:
Proc. design, automation and test in Europe (DATE), pp 9–14

Lars Schor is a Ph.D. student at the Computer Engineering and Net-
works Laboratory of ETH Zurich, Switzerland. His research interests
include multi-processor systems and thermal analysis methods for
embedded real-time systems. He received a B.Sc. and M.Sc degree in
computer engineering from ETH Zurich in 2011. In the same year, he
received the “Willi Studer Price” and the “ETH Medal”, both from
ETH Zurich. In 2012, he received the “Intel Doctoral Student Honor
Award”.

Iuliana Bacivarov received the electrical engineering degree in 2002
from the National Polytechnic Institute of Bucharest, Romania. In
2002–2003, she received a master’s degree in microelectronics inte-
grated systems design from the Université Joseph Fourier in Grenoble,
France, as well as a master’s degree in quality and reliability engi-
neering from the National Polytechnic Institute of Bucharest. She
received her Ph.D. degree in microelectronics from the National Poly-
technic Institute of Grenoble in 2006. She has been a post-doctoral
researcher at the Computer Engineering and Networks Laboratory
of ETH Zurich since 2006. Her research interests include design,
analysis, and optimization of MPSoC.

Hoeseok Yang received the B.S. and Ph.D. degrees in computer
science and engineering from the Seoul National University, Seoul,
Korea, in 2003 and 2010, respectively. He is currently a post-doctoral
researcher at the Computer Engineering and Networks Laboratory
of ETH Zurich, Switzerland. His research interests include design,
analysis, and optimization of MPSoC.

http://www.mpa.ethz.ch/Rtctoolbox

J Electron Test (2013) 29:521–535 535

Lothar Thiele joined ETH Zurich, Switzerland, as a full profes-
sor of computer engineering in 1994, where he currently leads the
Computer Engineering and Networks Laboratory. He received his
Diplom-Ingenieur and Dr.-Ing. degrees in Electrical Engineering from
the Technical University of Munich in 1981 and 1985 respectively. His
research interests include models, methods and software tools for the
design of embedded systems, embedded software and bioinspired opti-
mization techniques. In 1986 he received the “Dissertation Award” of
the Technical University of Munich, in 1987, the “Outstanding Young
Author Award” of the IEEE Circuits and Systems Society, in 1988,
the Browder J. Thompson Memorial Award of the IEEE, and in 2000–
2001, the “IBM Faculty Partnership Award”. In 2004, he joined the
German Academy of Sciences Leopoldina. In 2005, he was the recip-
ient of the Honorary Blaise Pascal Chair of University Leiden, The
Netherlands. Since 2009 he is a member of the Foundation Board of
Hasler Foundation, Switzerland. Since 2010, he is a member of the
Academia Europaea.

	Efficient Worst-Case Temperature Evaluation for Thermal-Aware Assignment of Real-Time Applications on MPSoCs
	Abstract
	Introduction
	Related Work
	System Models
	Notation
	Computational Model
	Thermal Model

	Thermal Analysis
	Peak Temperature Analysis
	Fast Temperature Evaluation

	Minimizing the Peak Temperature
	Task Model
	Optimization Problem
	Temperature Reduction by Voltage Scaling

	Case Studies
	Experimental Setup and System Description
	Worst-Case Chip Temperature Evaluation
	Application Description
	Efficiency and Accuracy
	Comparison with a Cycle-Accurate Simulation
	Temperature Distribution on a 25-Core Processor

	Thermal-Aware Task Assignments
	System Description
	Simulated Annealing to Optimize the Temperature
	Voltage and Frequency Scaling

	Conclusion
	Acknowledgments
	References

