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Abstract. A real algebraic variety is maximal (with respect to the Smith-Thom inequality)
if the sum of the Betti numbers (with Z2 coefficients) of the real part of the variety is
equal to the sum of Betti numbers of its complex part. We prove that there exist poly-
topes that are not Newton polytopes of any maximal hypersurface in the corresponding
toric variety. On the other hand we show that for any polytope � there are families of
hypersurfaces with the Newton polytopes (λ�)λ∈N that are asymptotically maximal when
λ tends to infinity. We also show that these results generalize to complete intersections.
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1. Introduction

In 1876 Harnack showed that the maximal number of connected components
of a real algebraic plane projective curve of degree m is (m − 1)(m − 2)/2 + 1.
He also proved that for any positive integer m there exist curves of degree m

which are maximal in this sense (i.e., with (m− 1)(m− 2)/2 + 1 connected com-
ponents). Harnack’s bound is generalized to the case of any real algebraic variety
by the Smith–Thom inequality. Let bi(V ;K) be the ith Betti number of a topo-
logical space V with coefficients in a field K (i.e. bi(V ;K) = dimK(Hi(V ;K))).
Denote by b∗(V ;K) the sum of the Betti numbers of V . Let X be a complex
algebraic variety equipped with an anti-holomorphic involution c. The real part
RX of X is the fixed point set of c. Then the Smith–Thom inequality states that
b∗(RX;Z2)� b∗(X;Z2). A variety X for which b∗(RX;Z2)= b∗(X;Z2) is called a
maximal variety or M-variety. The question ‘does a given family of real algebraic
varieties contain maximal elements?’ is one of the problems in topology of real
algebraic varieties. For the family of the hypersurfaces of a given degree in RPd

a positive answer is obtained in [13] using the combinatorial Viro method called
T -construction (see [11, 18, 19], and Theorem 3.1). This question is, in general, a
difficult problem. Indeed we show that Itenberg and Viro’s theorem of existence of
M-hypersurfaces of any degree in the projective spaces of any dimension cannot be
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Figure 1. Tetrahedron �3.

generalized straightforwardly to all projective toric varieties. More precisely, in any
dimension greater than or equal to 3 there are polytopes � such that no hyper-
surface in the toric variety X� associated with �, with the Newton polytope �, is
maximal. However, in the two-dimensional case such a generalization of the Har-
nack theorem holds (see Section 4).

Let us first consider the three-dimensional case. Let k be a positive integer num-
ber, and �k be the tetrahedron in R

3 with vertices (0,0,0), (1,0,0), (0,1,0), and
(1,1, k). Note that the only integer points of �k are its vertices.

PROPOSITION 1.1. For any odd k�3 and any even k�8, there is no maximal sur-
face in X�k with the Newton polytope �k.

It is easy to generalize the above examples in dimension 3 to higher dimensions.
From now on by polytope we mean a convex polytope with integer vertices in the
positive orthant (R+)d ={(x1, . . . , xd)∈R

d |x1 �0, . . . , xd �0}.

PROPOSITION 1.2. For any integer d � 3 there exist d-dimensional polytopes �
such that no hypersurface in X� with the Newton polytope � is maximal.

It is then natural to tackle the following weaker question. Let � be a d-dimen-
sional polytope and {λ ·�}λ∈N the family of the multiples of �. Suppose that there
exists a collection of polynomials {Pλ}λ∈N satisfying the following conditions:

(1) the polytope λ ·� is the Newton polytope of Pλ,

(2) the total Betti numbers b∗(RZλ;Z2) and b∗(Zλ;Z2) are equivalent when λ

tends to infinity (here Zλ denotes the hypersurface in X� defined by Pλ).
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In this case we say that the family {Zλ}λ∈N is asymptotically maximal. Given a
d-dimensional polytope � in (R+)d , does there exist an asymptotically maximal
family of hypersurfaces in X�? A positive answer to this question is given here.

THEOREM 1.3. For any polytope � there exists an asymptotically maximal family
of hypersurfaces {Zλ}λ∈N in X� such that for any λ the Newton polytope of Zλ is
λ ·�.

The above statements have generalizations to complete intersections in projective
toric varieties. As a counterpart for Propositions 1.1 and 1.2 we show that, for any
integer d greater than 2 there exist polytopes �d ⊂ (R+)d of dimension d such that
the hypersurfaces defining a maximal complete intersection in X�d cannot all have
the Newton polytope �d .

PROPOSITION 1.4. For any positive integers d > 2 and k such that k � d there
exists a d-dimensional polytope �d such that k hypersurfaces defining a maximal
complete intersection in X�d cannot all have the Newton polytope �d .

On the other hand, the following theorem is a counterpart of Theorem 1.3 for
complete intersections. Let � be a d-dimensional polytope in R

d , and k be an
integer such that 1 � k � d. Knudsen–Mumford’s theorem (see [14, p. 161] and
Theorem 3.2) asserts that there exists a positive integer l such that l ·� admits a
convex primitive triangulation (See Section 2.2). Let λ1, . . . , λk be k positive inte-
gers. Denote by �λi the polytope λil ·�. Let {(λ1,m, . . . , λk,m)}m∈N be a sequence
of k-tuples of positive integers such that λi,m tends to infinity for any i=1, . . . , k.
Let {(Zλ1,m , . . . ,Zλk,m)}m be a sequence of k-tuples of algebraic hypersurfaces in
X� such that Zλi,m has the Newton polytope �λi,m . Assume that for any natural
number m the variety Ym=Z1,m∩· · ·∩Zk,m is a complete intersection.

DEFINITION 1.5. Under the above hypotheses, the family {Ym}m∈N is called
asymptotically maximal if b∗(RYm;Z2) is equivalent to b∗(Ym;Z2) when m tends to
infinity.

THEOREM 1.6. Let � be a d-dimensional polytope, and k be an integer number
satisfying 1 � k� d. Let {(λ1,m, . . . , λk,m)}m∈N be a sequence of k-tuples of natural
numbers such that λi,m tends to infinity for any i = 1, . . . , k. Then, there exists a
sequence of k-tuples {(Zλ1,m , . . . ,Zλk,m)}m∈N of algebraic hypersurfaces in X� such
that

(1) Zλi,m has the Newton polytope �λi,m
(2) for any natural number m, the variety Ym=Z1,m∩· · ·∩Zk,m is a complete inter-

section,

(3) the family {Ym}m∈N is asymptotically maximal.
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1.1. organization of the material

We first describe the combinatorial patchworking and recall some results we
will use. In Section 3 we describe Itenberg and Viro construction of asymptoti-
cally maximal hypersurfaces in projective spaces. We then prove the existence of
asymptotically maximal families of hypersurfaces for any Newton polytope (Theo-
rem 1.3). Proposition 1.1 and Proposition 1.4 are proved respectively in Section 4
and in Section 5. Finally, Section 6 is devoted to the existence of asymptotically
maximal families of complete intersections. We describe there Itenberg and Viro
construction of asymptotically maximal complete intersections in projective spaces
and we prove Theorem 1.6.

The author is grateful to Ilia Itenberg for his valuable advice.

2. Preliminaries

2.1. toric varieties

We fix here some conventions and notations, the construction of toric varieties we
use is based on the one described in [5]. Let � be a polytope, p a vertex of �, and
�1, . . . , �k the facets of � containing p. To p we associate the cone σp generated
by the minimal integer inner normal vectors of �1, . . . , �k. The inner normal fan
E� is the fan whose d-dimensional cones are the cones σp for all vertices p of �.
The toric variety X� associated to � is the toric variety X(E�) associated to the
fan E� (see [5]).

2.2. combinatorial patchworking

By a subdivision of a polytope we mean a subdivision in convex polytopes (with
integer vertices). A subdivision τ of a polytope � of dimension d is called con-
vex if there exists a convex piecewise-linear function �: �→R whose domains of
linearity coincide with the d-dimensional polytopes of τ .

Let us briefly describe the combinatorial patchworking, also called T -construction,
which is a particular case of the Viro method. A more detailed exposition can be
found in [13] (see also [19] or [6] p. 385).

Given a triple (�, τ,D), where � is a polytope, τ a convex triangulation of �,
and D a distribution of signs at the vertices of τ , the combinatorial patchworking,
produces an algebraic hypersurface Z in X�.

Let � be a d-dimensional polytope (R+)d and τ be a convex triangulation of
�. Denote by s(i) the reflection with respect to the coordinate hyperplane xi =0 in
R
d . Consider the union �∗ of all copies of � under the compositions of reflections

s(i) and extend τ to a triangulation τ ∗ of �∗ by means of these reflections. Let
D(τ) be a sign distribution at the vertices of the triangulation τ (i.e., each vertex
is labelled with + or −). We extend D(τ) to a distribution of signs at the vertices
of τ ∗ using the following rule: for a vertex a of τ ∗, one has sign(s(i)(a))= sign(a)
if the ith coordinate of a is even, and sign(s(i)(a))=−sign(a), otherwise.
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Let σ be a d-dimensional simplex of τ ∗ with vertices of different signs, and E

be the hyperplane piece which is the convex hull of the middle points of the edges
of σ with endpoints of opposite signs. We separate vertices of σ labelled with +
from vertices labelled with − by E. The union of all these hyperplane pieces forms
a piecewise-linear hypersurface H .

For any facet � of �∗, let N� be a vector normal to �. Let F be a face of �∗

and �1, . . . , �k be the facets containing F . Let L be the linear space spanned by
N�1 , . . . ,N�k . For any v= (v1, . . . , vd)∈L∩ Z

d identify F with s(1)
v1 ◦ s(2)v2 ◦ · · · ◦

s(d)
vd (F ). Denote by ˜� the result of the identifications. The variety ˜� is homeo-

morphic to the real part RX� of X� (see, for example, [6] Theorem 5.4 p. 383 or
[17] Proposition 2).

Denote by ˜H the image of H in ˜�. Let Q be a polynomial with the Newton
polytope �. It defines a hypersurface Z0 in the torus (C∗)d contained in X�. The
closure Z of Z0 in X� is the hypersurface defined by Q in X�. We call � the
Newton polytope of Z.

THEOREM 2.1 (T-construction, O. Viro (see [13])). Under the hypotheses made
above, there exists a hypersurface Z in X� with the Newton polytope � and a
homeomorphism h: RX�→ ˜� such that h(RZ)= ˜H .

The hypersurface Z in the above theorem is called a real algebraic T -hypersur-
face. A d-dimensional simplex with integer vertices is called primitive if its volume
is equal to 1

d! . A triangulation τ of a d-dimensional polytope is primitive if every
d-simplex of the triangulation is primitive. Let � be a d-dimensional polytope. We
call lattice volume of � and denote by Vol(�) the volume normalized so that a
primitive d-simplex has volume 1. The usual volume is denoted by vol(�). If � is
a d-dimensional polytope, then Vol(�)=d! vol(�).

2.3. sturmfels’ theorem for complete intersections

In [17] B. Sturmfels proposed a combinatorial construction producing complete
intersections. In fact, Sturmfels’ construction is an extended version of the combi-
natorial patchworking. We quote here this theorem in the particular case we need.
For the general statement and the proof we refer to [17].

Let �0 be a d-dimensional polytope and λ1, . . . , λk positive integers, where k�d.
Denote by �i the polytope λi ·�0 and by � the Minkowski sum �1 + · · · +�k.
Let νi be a piecewise-linear convex function on �i defining a triangulation τi with
integer vertices. For each �i , choose a distribution of signs Di at the vertices of τi .

The initial data of the procedure of construction of a complete intersection
using Sturmfels’ theorem are the polytopes �i , the functions νi and the sign dis-
tributions Di . Apply the T -construction for each triple (�i, τi,Di) to construct the
hypersurfaces Si . Let D∗

i be the sign distribution at the vertices of τ ∗
i .
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The functions ν1, . . . , νk define a convex decomposition of � in the following
way (see [17], [16] or [1]). Let �̄i be the convex hull of the set {(x, νi(x)), x ∈�i}
in R

d ×R . Let �̄⊂R
d ×R be the Minkowski sum �̄1 +· · ·+ �̄k and denote by G

the lower part of the boundary of �̄. Let ν be the piecewise-linear convex function
of graph G defined on � (i.e., G, is the union of facets of �̄ whose inner normal
vectors have positive last coordinate). The function ν defines a convex subdivision
δ of � whose d-dimensional polytopes are the domains of linearity of ν. Let �
be a polytope in δ and �̄ its image by ν. Then �̄ can be uniquely written as the
Minkowski sum �̄1 +· · ·+ �̄k where �̄i is a face of �̄i for i=1, . . . , k. This induces
a decomposition of � as a Minkowski sum �=�1 +· · ·+�k such that νi(�i)= �̄i .
Sturmfels’ theorem requires the following genericity condition on the functions νi .

DEFINITION 2.2. The k-tuple ν1, . . . , νk is said sufficiently generic if for any
polytope � of δ, dim �̄=dim �̄1 +· · ·+dim �̄k, where �̄= �̄1 +· · ·+ �̄k is the unique
way to write �̄ as the Minkowski sum of faces of �̄1, . . . , �̄n.

We call mixed subdivision a subdivision δ obtained as above from triangulations
τ1, . . . , τk and sufficiently generic convex functions ν1, . . . , νk. A mixed subdivision
δ is equipped with a decomposition of each of its polytopes � as a Minkowski sum
� = �1 + · · · + �k, where �i is a simplex of τi . Two mixed subdivisions are con-
sidered as equal if and only if they coincide as polyhedral subdivisions, and each
polytope of these subdivisions has the same decomposition into a Minkowski sum
in both of them.

Extend δ to a subdivision δ∗ of �∗ by means of the reflections with respect to
coordinate hyperplanes. The extension of the sign distribution to δ∗ is as follows.
Let v be a vertex of δ∗, and let v1, . . . , vk be the vertices of τ ∗

1 , . . . , τ
∗
k correspond-

ing to v. Then

εj (v)= sign(vj ).

For j ∈ {1, . . . , k} construct the hypersurface ˜Sj in the following way. For any
polytope �′ in δ∗, consider its symmetric copy � in δ. There is a unique way to
write �=�1 +· · ·+�k with �i in τi such that ν1(�1)+· · ·+νk(�k)=ν(�). For i ∈
{1, . . . , k} let �′

i be the symmetric copy of �i in τ ∗
i such that �′ =�′

1 + · · · +�′
k.

Define the hypersurface S∗
j in �∗ by S∗

j ∩�′ =�′
1 +· · ·+Sj ∩�′

j +· · ·+�′
k for all �′

in δ∗. Let ˜Sj be the image of S∗
j in ˜�.

THEOREM 2.3 (B. Sturmfels). With the above notation, there exist hypersurfaces
Zi with the Newton polytopes �i , respectively, and a homeomorphism f : RX�→˜�

such that the hypersurfaces Zi define a complete intersection Y in X�, and f sends
RZi (resp., RY ) onto ˜Si . (resp., ∩j=1···k˜Sj ).
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2.3.1. Cayley Trick

Instead of constructing the complete intersection in the Minkowski sum of Newton
polytopes, it is convenient to use so-called Cayley trick (see, for example, [16]).

Let �1, . . . ,�k be convex polytopes with integer vertices in R
d (k�d). For any

i=1, . . . , k put

�̂i ={(x1, . . . , xk+d)∈R
k+d |xi =1;xj =0 if j �k and j �= i;

(xk+1, . . . , xk+d)∈�i}.
The convex hull of �̂1, . . . , �̂k in R

k+d is called Cayley polytope and is denoted
by C(�1, . . . ,�k). The intersection of C(�1, . . . ,�k) with the subspace B⊂R

k+d

defined by x1 = · · · = xk = 1/k is naturally identified with the Minkowski sum �

of �1, . . . ,�k multiplied by 1/k. Thus, any triangulation of the Cayley polytope
C(�1, . . . ,�k) induces a subdivision of the Minkowski sum of �1, . . . ,�k.

The following lemma can be found, for example, in [16].

LEMMA 2.4. The correspondence described above establishes a bijection between
the set of convex triangulations with integer vertices of C(�1, . . . ,�k) and the set
of mixed subdivisions of the Minkowski sum of �1, . . . ,�k.

Denote by C∗ the union of the symmetric copies of C(�1, . . . ,�k) under the
reflections s(i), i=k+1, . . . , k+n, where s(i) is the reflection of R

k+d with respect
to the hyperplane {xi =0}, and compositions of these reflections.

Choose a convex triangulation τ of C(�1, . . . ,�k) having integer vertices and a
distribution of signs at the vertices of τ . Extend the triangulation τ to a symmetric
triangulation τ ∗ of C∗ and the distribution of signs at the vertices of τ to a dis-
tribution at the vertices of the extended triangulation by the same rule as in Sub-
section 2.2: passing from a vertex to its mirror image with respect to a coordinate
hyperplane we preserve its sign if the distance from the vertex to the hyperplane is
even, and change the sign if the distance is odd.

For any (k+d−1)-dimensional simplex γ of τ ∗ and any j =1, . . . , k denote by γj
the maximal face of γ which belongs to a symmetric copy of �̂j . Let Kj(γ ) be
the convex hull of the middle points of the edges of γj having endpoints of opposite
signs, and let H(γ ) be the intersection of the join K1(γ )∗ · · ·∗Kk(γ ) with B. Denote
by H the union of the intersections H(γ ), where γ runs over all the (k+ d − 1)-

dimensional simplices of τ ∗, and denote by ˜H the image of H in ˜
( 1
k
�).

The following statement is an immediate corollary of Theorem 2.3.

PROPOSITION 2.5. Assume that all the polytopes �1, . . . ,�k are multiples of the
same polytope � with integer vertices. Then, there exist nonsingular real hypersur-
faces Z1, . . . ,Zk in X� with the Newton polytopes �1, . . . ,�k, respectively, and a

homeomorphism f : RX� → ˜
( 1
k
�) such that the hypersurfaces Z1, . . . ,Zk define a

complete intersection Y in X� and f maps the set of real points RY of Y onto ˜H .
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2.4. formulae for the betti numbers

V. Danilov and A. Khovanskii [2] computed the Hodge numbers of a smooth
hypersurface in a toric variety X� in terms of the polytope � involving in par-
ticular the coefficients of the Ehrhart polynomial of � (see [4] or [3]). Our aim
being to investigate asymptotical behaviors of certain families of hypersurfaces or
complete intersections, we need only the simpler results that are quoted below.

DEFINITION 2.6. A d-dimensional polytope � is simple if for each vertex a of
�, the number of edges of � containing a is d.

Let l∗(�) be the number of integer points in the interior of � (i.e., l∗(�)=
#(Zd ∩ (�\ ∂�)) ). The following statement can be found in [2] Section 5.11.

LEMMA 2.7. Let � be a three-dimensional simple polytope, and Z be an algebraic
hypersurface of X� with the Newton polytope �. Then b∗(Z;C)= l∗(2�)−2l∗(�)−
∑

�∈F2(�)
(l∗(�)−1)−1.

The following two propositions can be derived from Khovanskii’s results (see [8]
and [9]) or can be found in [15].

PROPOSITION 2.8. Let � be a polytope, and {Zλ}λ∈N be a family of algebraic hy-
persurfaces in X� with the Newton polytopes λ ·�. Then b∗(Zλ;Z2) is equivalent to
Vol(λ ·�) when λ tends to infinity.

Denote by Vol(�1, . . . ,�k) the mixed volume of the polytopes �1, . . . ,�k. We
choose a normalization of the mixed volume in such a way that for a primitive
simplex σ we have Vol(σ, . . . , σ )=1.

PROPOSITION 2.9. Let � be a d-dimensional polytope, and k be a positive inte-
ger satisfying k�d. Assume that for any collection λ1, . . . , λk of positive integers we
have a collection of k hypersurfaces Zλ1 , . . . ,Zλk in X� with the Newton polytopes
λ1 ·�, . . . , λk ·�, respectively, such that Zλ1 , . . . ,Zλk define a complete intersection
Yλ1,... ,λk in X�. Then b∗(Yλ1,... ,λk ;Z2) is equivalent to Vol(λ1 ·�, . . . , λk ·�) when λi
tends to infinity for all i.

We also use the following result of Khovanskii on the Euler characteristic of a
complete intersection in the torus (C∗)d (see [9]).

THEOREM 2.10. (A. Khovanskii). Let Y be a complete intersection in (C∗)d

defined by polynomials P1, . . . , Pk with the Newton polytopes �1, . . . ,�k, respec-
tively. Then the Euler characteristic of Y is the homogeneous term of degree d of
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�1(1+�1)
−1 · · · · ·�k(1+�k)−1,

where the product of d polytopes stands for their mixed volume and (1+�i)−1 stands
for the series

∑∞
j=0(−1)j (�i)j .

In the case of two three-dimensional polytopes we use the following direct con-
sequence of Theorem 2.10.

COROLLARY 2.11. Let � be a simple three-dimensional polytope and λ1 and λ2

be positive integers. For i=1,2 put �i =λi ·�. Let Y be a complete intersection in
X� defined by polynomials P1 and P2 with the Newton polytopes �1 and �2, respec-
tively. Then, b∗(Y ;C)= (λ2

1λ2 +λ2
2λ1)Vol(�)−∑

�∈F2(�)
λ1λ2 Vol(�)+4.

Proof. By Theorem 2.10, the Euler characteristic χ(Y ) of Y is given by χ(Y )=
−(λ2

1λ2 + λ2
2λ1)Vol(�) + ∑

�∈F2(�)
λ1λ2 Vol(�). Since b∗(Y ;C) = −χ(Y ) + 4, we

have the desired result.

3. Asymptotically Maximal Families of Hypersurfaces

3.1. auxiliary statements

This section is devoted to the proof of Theorem 1.3 on existence of asymptotically
maximal families of hypersurfaces. The proof is based on two important results.

In [13] I. Itenberg and O. Viro, using the T -construction, proved that there exist
M-hypersurfaces of any degree in the projective space of any dimension.

THEOREM 3.1 (I. Itenberg and O. Viro). Let d and m be natural numbers, and T d1
be a primitive d-dimensional simplex. Put T dm=m ·T d1 . Then, there exists a primitive
convex triangulation τT dm of T dm and a sign distribution D(τT dm ) at the vertices of τT dm
such that the T -hypersurface Zmd obtained via the combinatorial patchworking from
τT dm

and D(τT dm ) is maximal.

The second important result we use is due to F. Knudsen and D. Mumford [14].

THEOREM 3.2 (F. Knudsen and D. Mumford). Let � be a polytope. There exists
a positive integer l such that l ·� admits a convex primitive triangulation.

In the sequel, when there is no ambiguity on the triangulation of a polytope
� and the sign distribution chosen, we denote by H� the piecewise-linear hyper-
surface in �∗ obtained by T -construction, ˜H� its image in ˜�, and Z� the corre-
sponding hypersurface in X�.
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3.2. itenberg–viro asymptotical construction

In fact, we use only the following asymptotical version of Theorem 3.1.

THEOREM 3.3 (I. Itenberg and O. Viro). For any positive integers m and d such
that m�d+1, there exists a hypersurface X of degree m in RPd such that

b∗(RX;Z2)� (m−2)(m−3) . . . (m−d−1).

The proof of this asymptotical version is much simpler than the proof of Theo-
rem 3.1. It can be extracted from [13] and was communicated to us by the authors
of [13]. We reproduce their proof here for the completeness.

3.2.1. Proof of Theorem 3.3

We describe a triangulation τ of the standard simplex T =T dm and a distribution of
signs at the integer points of T which provide via the combinatorial patchworking
theorem a hypersurface with the properties formulated in Theorem 3.3.

To construct the triangulation τ , we use induction on d. If d = 1, the triangu-
lation of [0,m] is formed by m intervals [0,1], . . . , [m− 1,m] for any m. Assume
that for all natural k<d the triangulations of the standard k-dimensional simplices
of all sizes are constructed and consider the d-dimensional one of size m.

Denote by x1, . . . , xd the coordinates in R
d . Let T d−1

j =T ∩{xd =m− j} and Tj
be the image of T d−1

j under the orthogonal projection to the coordinate hyper-
plane {xd = 0}. Numerate the vertices of each simplex T1, . . . , Tm−1, Tm = T d−1

m as
follows: assign 1 to the vertex at the origin and i+ 1 to the vertex with nonzero
coordinate at the ith place. Assign to the vertices of T d−1

1 , . . . , T d−1
m−1 the numbers

of their projections. A triangulation of each simplex T0, . . . , Tm−1 is constructed.
Take the corresponding triangulations in the simplices T d−1

j .
Let l be a nonnegative integer not greater than d − 1. If m− j is even, denote

by T (l)j the l-face of T d−1
j which is the convex hull of the vertices with numbers

1, . . . , l+1. If m− j is odd denote by T (l)j the l-face of T d−1
j which is the convex

hull of the vertices with numbers d− l, . . . , d.
Now for any integer 0 � j �m− 1 and any integer 0 � l � d − 1, take the join

T
(l)

j+1 ∗T (d−1−l)
j . The triangulations of T (l)

j+1 and T
(d−1−l)
j define a triangulation of

T
(l)

j+1 ∗ T (d−1−l)
j . This gives rise to the desired triangulation τ of T . One can see

that τ is convex.
The distribution of signs at the vertices of τ is given by the following rule. The

vertex gets the sign ‘+’ if the sum of its coordinates is even, and it gets the sign
‘−’ otherwise.

LEMMA 3.4. For the hypersurface X of degree m in RPd provided according to the
combinatorial patchworking theorem by the triangulation τ and the distribution of
signs defined above, one has
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b∗(RX;Z2)�
{

(m−2)(m−3) . . . (m−d−1), if m�d+1,

0, otherwise.

To prove Lemma 3.4 we define a collection of cycles ci , i ∈ I of ˜H (in fact, any
ci is also a cycle of the hypersurface H ⊂ T∗, and moreover, of the hypersurface
H ∩ (R∗)d ). The cycles ci are called narrow.

The collection of narrow cycles ci is constructed together with a collection of
dual cycles bi . Any dual cycle bi is a (d − 1 − p)-cycle in ˜T \ ˜H (where p is the
dimension of ci) composed by simplices of τ∗ and representing a homological class
such that its linking number with any p-dimensional narrow cycle ck is δik.

Let us fix some notations. For any simplex T
(l)
j (where 1 � j � m and

0� l�d−1), denote by (T
(l)
j )∗ the union of the symmetric copies of T (l)j under

the reflections with respect to coordinate hyperplanes {xi =0}, where i=1, . . . , l, if
m− j is even, and i= d− l, . . . , d− 1, if m− j is odd, and compositions of these
reflections.

Any simplex T (l)j is naturally identified with the standard simplex T lj in R
l with

vertices (0, . . . ,0), (j,0, . . . ,0), . . . , (0, . . . ,0, j) via the linear map Llj : T (l)j → T lj
sending

(1) the vertex with number i of T (l)j to the vertex of T lj with the same number, if
m− j is even,

(2) the vertex with number i of T (l)j to the vertex of T lj with the number i− d+
l+1, if m− j is odd.

It is easy to see that Llj is simplicial with respect to the chosen triangulations of

T
(l)
j and T lj . The natural extension of Llj to (T (l)j )∗ identifies (T (l)j )∗ with (T lj )∗ and

respects the chosen triangulations.
By a symmetry we mean a composition of reflections with respect to coordinate

hyperplanes. Let s(i) be the reflection of R
d with respect to the hyperplane {xi=0},

i= 1, . . . , d. Denote by slj the symmetry of (T l+1
j )∗ which is identical if m− j is

even, and coincides with the restriction of s(d−l−1) ◦ · · · ◦ s(d−1) on (T l+1
j )∗ if m− j

is odd.
The narrow cycles and their dual cycles are defined below using induction on d.

For d=1 the narrow cycles are the pairs of points

(1/2,3/2), . . . , ((2m−5)/2, (2m−3)/2).

The dual cycles are pairs of vertices

(1,m−1), (2,m), (3,m+1), . . . , (m−2,m),

if m is even, and pairs of vertices

(1,m), (2,m−1), (3,m), . . . , (m−2,m),

if m is odd.
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Assume that for all natural m and all natural k <d the narrow cycles ci in the
hypersurface ˜H ⊂ ˜T km and the dual cycles bi in ˜T km \ ˜H are constructed. The narrow
cycles of the hypersurface in ˜T dm are divided into 3 families.

Horizontal Cycles. The initial data for constructing a cycle of the first family
consist of an integer j satisfying inequality 1 � j �m− 1 and a narrow cycle of
the hypersurface in T d−1∗ constructed at the previous step. In the copy (T d−1

j )∗ of
T d−1∗ , take the copy c of this cycle and b of its dual cycle.

There exists exactly one symmetric copy of T 0
j+1 incident to b. It is T 0

j+1 itself,
if m− j is odd, and either T 0

j+1, or s(d−1)(T
0
j+1), if m− j is even. If the sign of

the symmetric copy s(T 0
j+1) of T 0

j+1 incident to b is opposite to the sign of c, we
include c in the collection of narrow cycles of ˜H . Otherwise take s(d)(c) as a nar-
row cycle of ˜H . The dual cycle of c (resp., s(d)(c)) is the suspension of b (resp.,
s(d)(b)) with the vertex s(T 0

j+1) (resp., s(d)(s(T 0
j+1))) and with the vertex s(T 0

j−1)

(resp., s(d)(s(T 0
j−1))).

Co-Horizontal Cycles. The initial data for constructing a cycle of the second
family are the same as in the case of the horizontal cycles: the data consist of an
integer j satisfying inequality 1�j �m−1 and a narrow cycle of the hypersurface
in T d−1∗ .

In the copy (T d−1
j )∗ of T d−1∗ , take the copy c of this cycle and b of its dual

cycle. If the sign of the symmetric copy s(T 0
j+1) of T 0

j+1 incident to b coincides
with the sign of c, take b as dual cycle of a narrow cycle of ˜H . Otherwise take
s(d)(b). The corresponding narrow cycle is a suspension of c (resp., s(d)(c)).

Join Cycles. The initial data consist of integers j and l satisfying inequalities
1 � j �m− 1, 1 � l� d − 2, the copy c1 ⊂ (T l

j+1)∗ of a narrow cycle of the hyper-

surface in (T l
j+1)∗, the copy c2 ⊂ (T d−1−l

j )∗ of a narrow cycle of the hypersurface

in (T d−1−l
j )∗ and the copies b1 ⊂ (T l

j+1)∗ and b2 ⊂ (T d−1−l
j )∗ of the dual cycles of

these narrow cycles.
One of the joins b1 ∗b2 and sl

j+1(b1)∗ sd−1−l
j (b2), belongs to τ∗; denote it by J .

If the signs of c1 and c2 coincide, take J as the dual cycle of a cycle of ˜H . Oth-
erwise take s(d)(J ). The corresponding narrow cycle is either c1 ∗ c2, or sl

j+1(c1)∗
sd−1−l
j (c2), or s(d)(c1 ∗ c2), or s(d)(slj+1(c1)∗ sd−1−l

j (c2)).

Proof of Lemma 3.4. Both ci and bi with i∈I are Z2-cycles homologous to zero
in ˜T , which is homeomorphic to the projective space of dimension d. The sum of
dimensions of ci and bi is d − 1. Thus we can consider the linking number of ci
with i ∈ I and bk, k∈ I taking values in Z2. Each ci bounds an obvious ball in ˜T .
This ball meets bi in a single point transversally and is disjoint with bk for k �= i
and i, k∈ I . Hence the linking number of ci and bk is δik.
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Therefore the collections of homology classes realized in ˜T \ ˜H and ˜H by bi, i∈I
and ci, i ∈ I , respectively, generate subspaces of H∗(˜T \ ˜H ;Z2) and H∗(˜H ;Z2) and
are dual bases of the subspaces with respect to the restriction of the Alexander
duality. Hence ci with i∈ I realize linearly independent Z2-homology classes of ˜H .

It remains to show that the number of narrow cycles is at least

(m−2)(m−3) . . . (m−d−1),

if m�d+1. The statement can be proved by induction on d. The base d=1 is evi-
dent. To prove the induction step notice, first, that the statement is evidently true
for m=d+1. Now, we use the induction on m and obtain the required statement
from the inequality

(m−3)(m−4) . . . (m−d−2)+2(m−3)(m−4) . . . (m−d−1) +

+
d−2
∑

k=1

[(m−2)(m−3) . . . (m−k−1)] [(m−3)(m−4) . . . (m−d+k−1)]

� (m−2)(m−3) . . . (m−d−1).

This finishes the proofs of Lemma 3.4 and Theorem 3.3.

Remark 3.5. The family of hypersurfaces in RPd constructed in Theorem 3.3 is
asymptotically maximal.

Proof. Indeed, the total Betti number of a nonsingular hypersurface of degree m
in CPd is equal to

(m−1)d+1 − (−1)d+1

m
+d+ (−1)d+1.

This number is equivalent to (m−2)(m−3) . . . (m−d−1) when m tends to infinity.

3.3. proof of theorem 1.3

For a positive integer λ put �λ = λ ·�. Let l be a positive integer such that �l
admits a primitive convex triangulation τ (see Theorem 3.2). Denote by ν a func-
tion certifying the convexity of τ . Let τλ be the triangulation of �λl obtained from
τ by multiplication of its simplices by λ.

We can assume that λ>d+1. Let δ be a d-dimensional simplex of τ . The con-
vex hull of the interior integer points of λ · δ is a d-dimensional simplex (λ −
(d + 1)) · δ. Put δλ = λ · δ and δ′λ = (λ− (d + 1)) · δ. For any d-dimensional simplex
δλ of τλ, apply the construction of Lemma 3.4 to the convex hull δ′λ of the inte-
rior integer points of δλ. Complete the triangulation of δ′λ to a convex triangula-
tion of δλ whose only extra vertices are the vertices of δλ in the following way. Let
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νλ−(d+1) be a convex piecewise-linear function certifying the convexity of the trian-
gulation of δ′λ. Define a convex function νδλ on δλ choosing the values of νλ−(d+1)

at the integer points of δ′λ and the value v at the vertices of δλ, where v is large
enough (the graph of νδλ is the lower part of the convex hull of the defined points
in δλ×R). Note that νδλ restricted to δ′λ coincides with νλ−(d+1). If the decompo-
sition defined by νδλ is not a triangulation, we slightly perturb νλ−(d+1) (without
changing the triangulation of δ′λ) to break the polytopes of the subdivision which
are not simplices. Denote by τ δλ the obtained triangulation of δλ.

The only vertices of τ δλ in δλ \δ′λ are the vertices of δλ. One can choose the same
value v of the functions νδλ at the vertices of all the d-dimensional simplices δ of
τλ. Hence, the functions νδλ can be glued together to form a piecewise-linear func-
tion νλ on �λl which is, by construction, convex on each d-dimensional simplex of
τλ. Let ν′ be a function certifying the convexity of τλ. Then, for sufficiently small
ε >0 the function ν=ν′ + ενλ certifies the convexity of the triangulation obtained
by gluing the triangulations of the d-dimensional simplices of τλ. Thus, one gets a
convex triangulation τ lλ of �λl . Choose a sign distribution D(τ lλ) at the vertices of
τ lλ in such a way that on each simplex δ′λ the distribution coincides with the one
Lemma 3.4. Let Z�λl be the hypersurface obtained via the combinatorial patch-
working from τ lλ and D(τ lλ).

PROPOSITION 3.6. The family of hypersurfaces Z�λl of X� constructed above is
asymptotically maximal.

Proof. The total Betti number of Z�λl is equivalent to Vol(�λl) when λ tends
to infinity (see Proposition 2.8). For each d-dimensional simplex δ of τλ con-
sider the narrow cycles of H�λl ∩ (δ′λ)∗ which are constructed in the proof of
Lemma 3.4. Since the narrow cycles are constructed with the dual cycles, the union
of the obtained collections of narrow cycles consists of linearly independent cycles.
Thus, b∗(RZ�λl ;Z2)�Vol(�l)nλ, where nλ is the number of narrow cycles in each
δ′λ. Since nλ ∼ Vol(δ′λ), we have nλ ∼ Vol(δλ). So, b∗(RZ�λl ;Z2) is equivalent to
Vol(�l)Vol(δλ). The latter number is equal to Vol(�λl).

4. Newton Polytopes Without Maximal Hypersurfaces

Before giving the proof Proposition 1.1 let us consider the lower-dimensional cases.
Clearly, if � is an interval [a, b] in R, where a and b are nonnegative integers, then
there exists a maximal 0-dimensional subvariety in CP 1 =X� with the Newton
polygon �.

If � is a polygon in the first quadrant of R
2, then again there exists a maxi-

mal curve in X� with the Newton polygon �. Such a curve can be constructed by
the combinatorial patchworking: it suffices to take as initial data a primitive con-
vex triangulation of � equipped with the following distribution of signs: an integer
point (i, j) of � gets the sign ‘−’ if i and j are both even, and gets the sign ‘+’,
otherwise (see for example [7, 10, 12]).



ASYMPTOTICALLY MAXIMAL FAMILIES OF HYPERSURFACES 63

Proof of Proposition 1.1. The proof of Proposition 1.1 relies on the estimation
of the Betti numbers of the complex and real parts of a real algebraic surface
Zk in X�k with the Newton polytope �k. The Betti numbers b∗(Zk;C) are given
by Lemma 2.7. We have b∗(Zk;C)= l∗(2�k)− 2l∗(�k)−

∑

�∈F2(�k)
(l∗(�)− 1)− 1.

Since l∗(2�k)= k− 1 and l∗(�k)= 0, we get b∗(Zk;C)= k+ 2. Thus, b∗(Zk;Z2)�
k+2.

To estimate b∗(RZk;Z2) we consider two cases. If k is odd, �k is an elementary
tetrahedron, and RZk is homeomorphic to the projective plane. Thus, in this case,
b∗(RZk;Z2)=3.

If k is even, �k has either six or eight nonempty symmetric copies. In the first
case RZk is homeomorphic to three spheres with some points identified. Each
of the spheres has four marked points. Pairs of marked points are identified in
the following way. Two marked points of each sphere are identified with two
marked points of another sphere, and the two other marked points are identified
with the marked points of the remaining sphere. Then the Euler characteristic is
zero and b∗(RZk;Z2)= 8. In the case of 8 nonempty symmetric copies, RZk is
homeomorphic to four spheres with some points identified. Each sphere has three
marked points. Pairs of marked points are identified in the following way: on each
sphere the three marked points are identified with marked points of three different
spheres. Thus the Euler characteristic is 2 and we also have b∗(RZk;Z2)=8.

Thus, for k even greater than or equal to 8 and for k odd greater than or equal
to 3, there is no maximal surface in X�k with the Newton polytope �k.

Proof of Proposition 1.2. Fix an integer d � 3 and consider a family {σk}k∈N of
d-dimensional simplices in R

d such that their vertices are their only integer points
and Vol(σk)=k. For example, one can take for σk the simplex in R

d with vertices

(0,0, . . . ,0,0), (1,0, . . . ,0,0), (0,1, . . . ,0,0), . . . , (0,0, . . . ,1,0),
and (1,1, . . . ,1, k).

Let Zk be any hypersurface in Xσk . By Proposition 2.8 b∗(Zk;C) tends to infin-
ity when k does, and so does b∗(Zk;Z2). Meanwhile, b∗(RZk;Z2) is bounded (for
example, by the number of simplices in σ ∗

k ). So there exists a number k0 such
that for any integer k>k0 and any hypersurface Zk in Xσk one has b∗(RZk;Z2)<

b∗(Zk;Z2).

5. Newton Polytopes Without Maximal Complete Intersection

Let us first consider the case of complete intersections of two surfaces. Let �k be
the tetrahedron in R

3 with vertices (0,0,0), (1,0,0), (0,1,0) and (1,1, k).
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PROPOSITION 5.1. Let k� 5 be an integer, and Z1 and Z2 be real algebraic sur-
faces in X�k with the Newton polytope �k. Assume that Z1 and Z2 define a complete
intersection Yk in X�k . Then Yk is not maximal.

The proof of Proposition 5.1 relies on the estimation of the Betti numbers of
the complex and real parts of the complete intersection Yk of two surfaces whose
Newton polytopes coincide with �k.

LEMMA 5.2. Let Yk be the complete intersection of two surfaces in X�k whose
Newton polytopes coincide with �k. Then b∗(Yk;C)=2k.

Proof. By Corollary 2.11, we have

b∗(Yk;C)=2 Vol(�k)−
∑

�∈F2(�k)

Vol(�)+4.

So, we get b∗(Yk;C)=2k.

Proof of Proposition 5.1. According to Lemma 5.2, we have b∗(Yk;C)=2k. Thus,
b∗(Yk;Z2)�2k.

Let f1 and f2 be the polynomials defining the two surfaces. Then,

fl(x, y, z)=alx+bly+ clzk +dl (l=1,2)

for some (al, bl, cl, dl) in R
4. The change of variables �k : x �→ x, �k : y �→ y, �k :

z �→z
1
k is a diffeomorphism of the first octant (R∗+)3, where R

∗+ ={x∈R :x>0}. Let
Qi be another octant, and φi be the diffeomorphism from Qi to (R∗+)3 defined by
φi(x, y, z)= (|x|, |y|, |z|). Then ψi =φ−1

i ◦�k ◦φi is a diffeomorphism from Qi to
itself. The diffeomorphism ψi maps the zeros of fl to the zeroes of ψi∗(fl) and
ψi∗(fl)(x, y, z)=alx+bly+ clz+dl . Thus, in each octant, RYk is diffeomorphic to
the intersection of two planes. Hence, the number of connected components of Yk
is at most 4. So, RYk is not maximal for k�5.

The example above should be compared with the following result in dimension 2
which is probably well known but that I couldn’t find in the literature.

PROPOSITION 5.3. Let � be a two-dimensional polygon. For any positive integers
λ1 and λ2 there exist algebraic curves C1 et C2 in X� such that

• the Newton polygons of C1 et C2 are λ1 ·� and λ2 ·�, respectively,
• the curves C1 et C2 define a 0-dimensional maximal complete intersection in
X�.

Proof. We use here the Cayley trick. Take any primitive convex triangulation τ of
�. By homothety, τ induces a triangulation τi on λi ·�. Put �i =λi ·�. Consider
the following subdivision δ0 of the Cayley polytope C(�1,�2). In the faces �̂1 and
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�̂2 of C(�1,�2) corresponding to �1 and �2 take the triangulations τ1 and τ2,
respectively. Each 3-dimensional polytope of the subdivision δ0 is the convex hull of
a triangle of τ1 and a triangle of τ2 which are the multiples of the same triangle of τ .
Since τ is convex, δ0 is also convex. Let ν0 be a convex function certifying the con-
vexity of δ0, and let ν1 be the convex function defined by ν1(0,1, x, y)=C1y+C2x

with C1>C2> 0 and ν1(1,0, x, y)= 0. Put ν3 = ν1 + ν2. If C1 is sufficiently small,
the function ν3 induces the following refinement δ1 of δ0. Each three-dimensional
polytope of δ0 is subdivided into two cones whose bases are triangles in �̂1 and �̂2,
respectively, and a join J of two edges: one in �̂1 and the other one in �̂2. Take any
convex primitive triangulations τ ′

1 and τ ′
2 refining τ1 and τ2, respectively. They define

a convex primitive refinement δ2 of δ1. Choose a sign distribution at the vertices of
δ2 and apply the procedure of the combinatorial patchworking. Let J be a join of
the decomposition δ1 described above. It is triangulated into primitive tetrahedra
ti and has lattice volume λ1λ2. Each ti has a symmetric copy containing a point
of the T -complete intersection constructed. Thus, the number of intersection points
obtained is λ1λ2 Vol(�) and the complete intersection constructed is maximal.

5.1. proof of proposition 1.4

Consider the simplex σk in R
d with the vertices

(0,0, . . . ,0,0), (1,0, . . . ,0,0), (0,1, . . . ,0,0), . . . , (0,0, . . . ,1,0),
and (1,1, . . . ,1, k).

Let Yk be a complete intersection of hypersurfaces in Xσk such that all these hy-
persurfaces have the Newton polytope σk. Proposition 2.9 implies that b∗(Yk;Z2)

tends to infinity when k tends to infinity.
Let f1, . . . , fn be the polynomials defining the hypersurfaces. Then,

fl(x, y, z)=al,0 +
d−1
∑

i=1

al,ixi +al,dxdk (l=1, . . . , n)

for some (al,0, . . . , al,d ) in R
d+1. The change of variables �k : xi �→ xi for

i �= d, �k : xd �→ xd
1
k is a diffeomorphism of the first orthant (R∗+)d . Let Qj be

another orthant, and φj be the diffeomorphism from Qj to (R∗+)d defined by
φj (x1, . . . , xd)= (|x1|, . . . , |xd |). Then ψj =φ−1

j ◦�k ◦φj is a diffeomorphism from
Qj to itself. The diffeomorphism ψj maps the zeros of fl to the zeroes of ψj ∗(fl)
and ψj ∗(fl)(x1, . . . , xd)=al,0 +∑d

i=1 al,ixi . Thus, in each orthant, Yk is diffeomor-
phic to the intersection of n hyperplanes. Hence, b∗(RYi;Z2) is bounded.

So, there exists a number k0 such that for any k�k0 and any complete intersec-
tion Yk in Xσk one has b∗(RYk;Z2)<b∗(Yk;Z2).
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6. Asymptotically Maximal Families of Complete Intersections

6.1. itenberg–viro asymptotical statement

The proof of Theorem 1.6 is based on the following result of Itenberg and Viro.

THEOREM 6.1 (I. Itenberg and O. Viro). Let � be a primitive d-dimensional
simplex. For any k-tuple λ1, . . . , λk of natural numbers, there exist piecewise-linear
convex functions µ1, . . . ,µk on λ1 ·�, . . . , λk ·�, respectively, and sign distributions
at the vertices of the corresponding triangulations of λ1 ·�, . . . , λk ·� such that the
real complete intersection in X� = CPd obtained via Sturmfels’ Theorem 2.3 from
these data is maximal.

In fact, as in Section 3, we use only the following asymptotical version of The-
orem 6.1.

THEOREM 6.2 (I. Itenberg and O. Viro). For any positive integers k, m1, . . . ,mk

and d such that k�d and mj �d+1 (j =1, . . . , k), there exists a complete intersec-
tion X of multi-degree (m1, . . . ,mk) in RPd such that

b∗(RX;Z2)�
∑

i1+···+ik=d

⎛

⎝

k
∏

j=1

(mj −2)(mj −3) . . . (mj − ij −1)

⎞

⎠

(the summation is over all possible decompositions i1 +· · ·+ ik =d of d in a sum of
k positive integer numbers).

The proof of this asymptotical version is much simpler than the proof of Theo-
rem 6.1. It can be extracted from [13] and was communicated to us by the authors
of [13]. We reproduce their proof here for the completeness.

Proof of Theorem 6.2. The notations used here are those of Subsection 3.2.1.
Take the standard simplices T dm1

, . . . , T dmk and triangulate the Cayley polytope
C(T dm1

, . . . , T dmk ) (see Subsection 2.3.1) in the following way. Let i1, . . . , ik be non-
negative integers such that i1 +· · ·+ ik=d, and put i0 =0. For any j=1, . . . , k con-
sider the face of T dmj with the vertices having the numbers

i1 +· · ·+ ij−1 +1, . . . , i1 +· · ·+ ij +1.

Denote by Ji1,... ,ik the join of the corresponding faces of C(T dm1
, . . . , T dmk ). The sim-

plices Ji1,... ,ik (for all the possible choices of nonnegative integers such that i1 +
· · ·+ ik =d) form a triangulation τ ′ of C(T dm1

, . . . , T dmk ).
Take for each simplex T dmj the triangulation and the distribution of signs described

in Subsection 3.2.1. For the simplices T̂ dm1
, . . . , T̂ dmk take the corresponding triangu-

lations and distributions of signs. The triangulations of T̂ dm1
, . . . , T̂ dmk induce a refine-

ment τ of τ ′. Notice that τ is a primitive triangulation of C(T dm1
, . . . , T dmk ).
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LEMMA 6.3. For the complete intersection X of multi-degree m1, . . . ,mk in RPd

provided according to Proposition 2.5 by the triangulation τ and the distribution of
signs defined above, one has

b∗(RX;Z2)�
∑

i1+···+ik=d

⎛

⎝

k
∏

j=1

(mj −2)(mj −3) . . . (mj − ij −1)

⎞

⎠

(the summation is over all the possible decompositions i1 +· · ·+ ik=d of d in a sum
of k positive integer numbers).

Proof. We define a collection of narrow cycles ci , i ∈ I of ˜H . The families of nar-
row cycles of ˜H are indexed by the decompositions i1 +· · ·+ ik=d of d in a sum of
k positive integer numbers.

Fix a decomposition I : i1 + · · · + ik = d of d, where i1, . . . , ik are positive inte-
gers. The initial data for constructing a narrow cycle of the corresponding family
consist of narrow cycles c(j)⊂ ˜HI

j , j=1, . . . , k, constructed in Subsection 3.2.1 for

the hypersurface ˜HI
j in ˜T

ij
mj produced via the combinatorial patchworking by the

triangulation and distribution of signs described in Subsection 3.2.1.
The ij -dimensional face �ij of T dmj with the vertices having the numbers

i1 +· · ·+ ij−1 +1, . . . , i1 +· · ·+ ij +1

are naturally identified with T
ij
mj via the linear map Lij :�ij →T

ij
mj sending the ver-

tex with number i1 + · · · + ij−1 + r of �ij to the vertex with number r of T
ij
mj .

The map Lij is simplicial with respect to the chosen triangulations of �ij and
T
ij
mj . Denote by �

ij∗ the union of the symmetric copies of �ij under the reflections
with respect to coordinate hyperplanes {xi = 0} in R

d , where i = i1 + · · · + ij−1 +
2, . . . , i1 +· · ·+ ij +1, and compositions of these reflections. The natural extension
of Lij to �

ij∗ identifies �
ij∗ with (T

ij
mj )∗ and respects the chosen triangulations. We

also denote this extension by Lij . Denote by �̂
ij∗ the union of faces of T̂ dmj cor-

responding to �
ij∗ , and by L̂ij the corresponding map from �̂

ij∗ to (T
ij
mj )∗. Put

ĉ(j)= (L̂ij )−1(c(j)).
Let b(j) ⊂ ˜T

ij
mj \ ˜HI

j be the dual cycle of c(j). Put b̂(j) = (L̂ij )−1(b(j)). Consider
the symmetric copies of b̂(1), . . . , b̂(k) under the reflections with respect to coordi-
nate hyperplanes {xi = 0} in R

k+d where i= k+ 1, . . . , k+ d, and compositions of
these reflections. Among these symmetric copies there exist copies b̂′

(1), . . . , b̂
′
(k) of

b̂(1), . . . , b̂(k), respectively, such that

• the join b̂′
(1) ∗ . . .∗ b̂′

(k) is the union of simplices of τ∗,
• all the vertices of b̂′

(1) ∗ . . .∗ b̂′
(k) have the same sign.

Let ĉ′
(1), . . . , ĉ

′
(k) be the corresponding symmetric copies of ĉ(1), . . . , ĉ(k), respec-

tively. Then, take the intersection B ∩ (ĉ′
(1) ∗ . . .∗ ĉ′(k)) as a narrow cycle of ˜H .
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The number of narrow cycles in the family indexed by I is at least

k
∏

j=1

(mj −2)(mj −3) . . . (mj − ij −1).

Thus, the total number of constructed narrow cycles in ˜H is at least

∑

i1+...+ik=n

⎛

⎝

k
∏

j=1

(mj −2)(mj −3) . . . (mj − ij −1)

⎞

⎠

(the summation is over all the possible decompositions i1 + . . .+ ik = d of d in a
sum of k positive integer numbers). The linear independence of the narrow cycles
of a hypersurface Hl

mj
⊂T lmj for any 1 � l�d and any 1 � j � k implies the linear

independence of the narrow cycles constructed in ˜H .

Remark 6.4. Denote by Yσm1,... ,mk
the complete intersection constructed in Lem-

ma 6.3. Then, the family {Yσm1,... ,mk
}m1,... ,mk is asymptotically maximal.

Proof. Note that

∑

i1+...+ik=d

⎛

⎝

k
∏

j=1

(mj −2)(mj −3) . . . (mj − ij −1)

⎞

⎠

is equivalent to the mixed volume of T dm1
, . . . , T dmk . Thus, by Proposition 2.9,

b∗(RYm1, ... ,mk ;Z2) is equivalent to b∗(Ym1, ... ,mk ;Z2), when all mi ’s tend to infinity.

6.2. proof of theorem 1.6

Let τ be a primitive convex triangulation of l ·�, and (λ1, . . . , λk) be a k-tuple of
positive integers. Denote by �λi the polytopes λil ·�. We can assume that λi is
greater than d+1 for any i.

Let δ be a d-dimensional simplex of the triangulation τ . Denote by δ̂1, . . . , δ̂k

the corresponding simplices in �̂λ1 , . . . , �̂λk , respectively. Subdivide the Cayley
polytope C(�λ1 , . . . ,�λk ) into convex hulls of δ̂1, . . . , δ̂k, where δ runs over all d-
dimensional simplices of τ . For a d-dimensional simplex δ of τ , put δi =λi · δ and
δ′i = (λi − (d+1)) · δ, where i=1, . . . , k.

For any d-dimensional simplex δ of τ , take the triangulation of C(δ′1, . . . , δ
′
k)

and the distribution of signs at the vertices of this triangulation described in
the proof of Theorem 6.1. Extend the triangulations of the Cayley polytopes
C(δ′1, . . . , δ

′
k) to a primitive convex triangulation τ̂ of C(�λ1 , . . . ,�λk ) in the same

way as it was done in Subsection 3.3. Extend also the distributions of signs at the
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integer points of polytopes C(δ′1, . . . , δ
′
k) to some distribution of signs D̂ at the

vertices of τ̂ .
Let Yλ1,... ,λk be the complete intersection in X� obtained via Theorem 2.5 from

τ̂ and D̂.

PROPOSITION 6.5. The family of complete intersections Yλ1, ... , λk constructed
above is asymptotically maximal.

Proof. By the construction, we have b∗(RYλ1,... ,λk ;Z2) � Vol(l · �) · nλ1,... ,λk ,
where nλ1,... ,λk is the number of narrow cycles in each C(δ′1, . . . , δ

′
k). Note that

nλ1,... ,λk is equivalent to b∗(RYσλ1,... ,λk
;Z2) when all numbers λ1, . . . , λk tend to

infinity. So, by Proposition 2.9 and Remark 6.4, we obtain that b∗(RYλ1,...,λk ;Z2)

is equivalent to b∗(Yλ1,...,λk ;Z2) when the numbers λ1, . . . , λk tend to infinity.
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