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Abstract The SLC7 family is divided into two sub-
groups, the cationic amino acid transporters (the CAT
family, SLC7A1–4) and the glycoprotein-associated
amino acid transporters (the gpaAT family, SLC7A5–
11), also called light chains or catalytic chains of the
hetero(di)meric amino acid transporters (HAT). The
associated glycoproteins (heavy chains) 4F2hc (CD98)
or rBAT (D2, NBAT) form the SLC3 family. Members of
the CAT family transport essentially cationic amino acids
by facilitated diffusion with differential trans-stimulation
by intracellular substrates. In some cells, they may
regulate the rate of NO synthesis by controlling the
uptake of l-arginine as the substrate for nitric oxide
synthase (NOS). The heterodimeric amino acid trans-
porters are, in contrast, quite diverse in terms of substrate
selectivity and function (mostly) as obligatory exchang-
ers. Their selectivity ranges from large neutral amino
acids (system L) to small neutral amino acids (ala, ser,
cys-preferring, system asc), negatively charged amino
acid (system xc

�) and cationic amino acids plus neutral
amino acids (system y+L and b0,+-like). Cotransport of
Na+ is observed only for the y+L transporters when they

carry neutral amino acids. Mutations in b0,+-like and y+L
transporters lead to the hereditary diseases cystinuria and
lysinuric protein intolerance (LPI), respectively.
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Introduction

The cationic amino acid transporters (CAT, SLC7A1–4)
subfamily members have 14 putative transmembrane
(TM) segments and are glycosylated, whereas the glyco-
protein-associated amino acid transporters (gpaAT,
SLC7A5–11) have two TM segments less, are not
glycosylated, and need to associate with a glycoprotein
of the SLC3 family [heavy chains 4F2hc or rBAT (related
to b0,+AT-type amino acid transporter, where b0,+AT is
the basic and neutral amino acid transporter)] for surface
expression (Figs. 1 and 2).

The homologous region of the two SLC7 subfamilies
corresponds to the first 12 putative TM segments of the
CATs and is ~20% identical and ~60% similar to gpaAT.
Within each subfamily, the lowest level of identity is
around 40%. It is noteworthy that among the CAT
members, CAT-1 to CAT-3 are more closely related to
each other (~60% identity) than to CAT-4 (~40%
identity). There are also two additional gpaAT-related
transporters, the murine ala, ser, cys-preferring transporter
(mAsc-2) and the murine aspartate-glutamate transporter-
1 (mAGT1), that, to date, have been described only in the
mouse and do not interact with either 4F2hc or rBAT.
They share ~45% identical residues with each other and
only 24–29% with the other gpaATs. These two trans-
porters need probably also the association with a heavy
chain that, however, has not yet been identified.
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CAT proteins: general aspects

The first family member of the SLC7 family (mCAT-1,
for mouse cationic amino acid transporter) was originally
identified by Albritton and coworkers as the receptor for
murine ecotropic leukaemia viruses. Three additional
related proteins, CAT-2A, -2B, and -3 (SLC7A2 and 3),
have since been identified in different mammalian
species, with CAT-2A and -2B being splice variants that
differ only in a stretch of 42 amino acids (for review see:
[14, 15, 18]). The function of the more distantly related
isoform SLC7A4 (also referred to as CAT-4) has
remained elusive [58, 66]. All other CAT proteins
mediate Na+-independent transport of cationic l-amino
acids.

The transport properties of CAT-1, -2B and -3 are
consistent with those attributed originally to the classic
cationic amino acid transporter system y+, with the most
pronounced trans-stimulation being observed for CAT-1.
In contrast, CAT-2A, a low-affinity carrier for cationic
amino acids, is relatively insensitive to trans-stimulation
(apparent Km for cationic amino acids: 2–5 mM, com-
pared with 0.1–0.4 mM for the other CAT isoforms). In
its protonated form (at pH 5.5), l-histidine is a good
substrate for CAT-1, but not for CAT-3 [63]. Some other
neutral amino acids are reportedly recognized by the CAT
proteins, however, with rather low affinity (for review
see: [14]). For CAT-1 and CAT-2A voltage dependence
of cationic amino acid transport has been described, with
membrane hyperpolarization increasing the Vmax for
influx (for review see: [14, 15]).

Glu107 has been shown to be essential for the transport
activity of mCAT-1 (for review see: [14, 15]). Located in
TM III and conserved in all other known CAT isoforms,
this Glu residue is likely to be part of the substrate
translocation pathway. A region of 80 amino acids
spanning from the fourth intracellular loop to TM X has
been shown to determine the apparent substrate affinity of
the CAT proteins and the sensitivity to trans-stimulation.
This region contains the stretch of 42 amino acids that
differs in the two splice variants, CAT-2A and -2B. The
low substrate affinity of human CAT-2A (hCAT-2A) is
determined by two amino acid residues within the stretch
of 42 amino acids: Arg369 and a missing His at position
381 [27].

Glycoprotein-associated amino
acid transporters (gpaAT): general aspects

The first hint for the existence of the gpaAT transporters
came from expression cloning of the type-II glycoprotein
rBAT in Xenopus laevis oocytes and the subsequent
demonstration that the related 4F2hc protein induces
amino acid transport in this expression system as well (see
review by Palacin and Kanai on the SLC3 family in this
issue). From the fact that 4F2hc (heavy chain) was known
to associate covalently with a hydrophobic polytopic
“light chain”, it was deduced that the amino acid transport

Fig. 2A, B Putative structure of SLC7 amino acid transporters. A
A model of mCAT-1 in the membrane with 14 predicted
transmembrane domains (TM I–XIV). The two confirmed glycosy-
lation sites in the third extracellular loop of mCAT-1 are indicated.
Although all CAT proteins are glycosylated, the positions of the
glycosylation sites vary between isoforms and between species.
Glu107 and the protein area that determine the transport properties
are marked in red. B Model of HAT consisting of a light chain
(SLC7A5–11) with 12 putative transmembrane helices associated
with the heavy chain 4F2hc (CD98, SLC3A2) or rBAT (SLC3A1)
through a conserved disulphide bridge. The COOH-terminus is
localized intracellularly. The 12 TM of the light chains show
considerable similarity to the first 12 TM of the CAT transporters.
Only the heavy chain appears to be glycosylated

Fig. 1 Phylogenetic tree of the SLC7 family proteins. The SLC7
family is composed of two subfamilies formed by the cationic
amino acid transporters (CAT, SLC1–4) and the glycoprotein-
associated amino acid transporters [gpaAT, light chains of
heterodimeric amino acid transporters (HAT-lc), SLC5–11 and
mouse neutral amino acid, ala, ser, cys-preferring transporter-2
(mAsc-2) and aspartate/glutamate transporter-1 (AGT1)]. SLC7A4
as well as Asc-2 and AGT1 differ slightly from the other subfamily
members
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observed in Xenopus oocytes upon expression of heavy
chains was due to their association with endogenous
oocyte light chains (gpaATs) leading to the surface
expression of heterodimeric amino acid transporters
(HATs). The first member of this gpaAT family, LAT1,
was identified in 1998 [30, 37].

Six of the known light chains associate with the widely
distributed 4F2hc that is expressed strongly in growing
cells and found basolaterally in polarized transporting
cells of kidney and small intestine. One light chain,
b0,+AT, associates with the related rBAT, localizing to the
apical pole of epithelial cells in kidney proximal tubule
and small intestine. The association with these type-II
glycoproteins is covalent, via a disulphide bridge that
links the extracellular neck of the glycoprotein with the
second putative extracellular loop of the gpaAT (Fig. 2B)
[46]. It appears that the glycoprotein does not play an
active role in the actual amino acid transport function,
since transport can be mediated by the gpaAT b0,+AT
reconstituted in liposomes without its heavy chain [50].
The possible role of the glycoprotein heavy chain in
modulating the transport properties of the light chain
remains to be investigated in more detail.

Transport selectivity and ion coupling differ among
gpaATs (see Abstract and below). A common functional
feature of the heteromeric transporters is that they
apparently function as (nearly) obligatory exchangers.
This transport mode has been well documented in the case
of the mouse system L transporters LAT1-4F2hc and
LAT2-4F2hc, the anionic amino acid transporter system,
cystine preferring system x�

c xCT-4F2hc and the rBAT-
induced Xenopus oocyte system b0,+-like [13, 39, 54]. For
the L-type transporters, it has been shown that the
selectivity of influx and efflux are similar (with some
differences) but that the apparent substrate affinities are
much lower for efflux (inside).

The amino acid transporters described in this review
all correspond, with the exception of AGT1 to transport
systems that had been described functionally before their
cloning. Thus, the current nomenclature of these proteins
is based to some extent on the names of the previously
described systems. The features of the transporters are
summarised in Table 1.

SLC7A1/CAT-1

CAT-1 is expressed almost ubiquitously with the excep-
tion of adult liver but its expression level varies consid-
erably in different tissues and cell types. CAT-1 co-
localizes with caveolin in endothelial cells (for review,
see [36]) and is restricted to the basolateral membrane in
epithelial cells, [10, 34]. Besides its expression in the
plasma membrane, CAT-1 has also been found in
intracellular vesicles in glioblastoma cells [66].

CAT-1 seems to be the major system y+ transporter in
most cells (including NO-producing cells) (Fig. 3A, B).
Homozygous CAT-1 knockout mice die on day 1 after
birth, are 25% smaller than their wild-type littermates and

Fig. 3A–D Physiological roles of SLC7 family amino acid trans-
porters. A, B Outline of the role of CAT proteins in the substrate
supply of endothelial (eNOS) and inducible nitric oxide synthase
(iNOS). CAT proteins feed arginine into a pool of cationic amino
acids (CAA) that is freely exchangeable with the extracellular space
(pool I). In addition, an l-arginine pool that is not freely
exchangeable with the extracellular space seems to exist in most
cells (pool II). The eNOS in endothelial cells has access to pool II
(A). In contrast, iNOS can only be fed from the exchangeable pool I
(B). Macrophages seem to have two separated exchangeable l-
arginine pools, pools IA and B, that are replenished by CAT-1 and
CAT-2B, respectively, with iNOS receiving its substrate only from
pool IB (further explanations and references, see text). C Concerted
action of HAT proteins for vectorial transport of CAA and neutral
amino acids (NAA) across epithelial cells of kidney proximal tubule
and small intestine. For further explanation see paragraph on
SLC7A9 (CssC cystine). D Role of the HAT protein LAT1 in non-
polarized cells. Some neutral amino acids (NAAx) taken up by Na+-
dependent transporters (i.e. system A) can then be exchanged by
LAT1-4F2hc for other extracellular neutral amino acids (NAAy)
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suffer from severe anaemia, while the heterozygous mice
exhibit no phenotypic abnormalities [45]. The relatively
normal development of most tissues in the homozygous
CAT-1 knockout mice up to birth is probably due to the
expression of CAT-3 during embryogenesis and fetal
development [42].

CAT-1 expression can be modulated by a variety of
stimuli including cell proliferation, growth factors, cy-
tokines and hormones. In contrast to the “normal” cap-
dependent protein synthesis, translation of the CAT-1
mRNA is increased during nutrient limitation [22]. In
addition, the CAT-1 mRNA is stabilized under these
conditions [67]. Independent of its protein expression,
transport activity of human CAT-1 is decreased after
activation of protein kinase C (PKC) in human endothelial
cells, indicating posttranslational regulation [26]. CAT-1
activity can also be modulated by interaction with
cytoskeletal proteins [69].

SLC7A2/CAT-2

The two CAT-2 splice variants (see above) exhibit quite
distinct expression patterns. The low affinity CAT-2A is
most abundant in liver, but is also expressed in skeletal
muscle, pancreas, cardiomyocytes, cardiac microvascular
endothelial cells and vascular smooth muscle. Significant
expression of CAT-2B is only found after cytokine or
lipopolysaccharide (LPS) treatment in most cell types. It
is often induced together with the inducible isoform of
NO-synthase (iNOS) and is generally co-expressed with
CAT-1.

Surprisingly, homozygous CAT-2�/� mice show no
apparent phenotypic abnormalities, indicating that the
expression of both CAT-2 splice variants is primarily
dispensable [43]. However, the sustained NO production
in peritoneal macrophages from these mice is almost
abolished, underlining the important role of CAT-2B for
the substrate supply of iNOS. Neither the expression of
iNOS nor the intracellular l-arginine concentrations are
reduced in these cells. The latter strongly indicates the
presence of different exchangeable l-arginine pools in
macrophages (see Fig. 3B).

SLC7A3/CAT-3

CAT-3 is expressed in mesoderm and in many developing
tissues of mid-streak mouse embryos [29], but seems to
be confined to central neurons in adult mice and rats [5,
28, 29]. In humans, strong CAT-3 expression has been
observed in thymus, moderate expression in uterus, testis,
mammary gland and brain and weak expression in ovary
and stomach [63]. There is no correlation between the
expression of CAT-3 and the neuronal NOS (nNOS).
CAT-3 is thought to play a major role during embryo-
genesis. There have been no gene knockout studies
reported to date.

SLC7A4/(CAT-4)

The SLC7A4 product is only ~40% identical to the CAT-
1–3 proteins and its function is not known. The name
CAT-4, which implies a function as cationic amino acid
transporter, might thus be incorrect. SLC7A4 is expressed
in brain, testis and placenta [58]. Besides its expression in
the plasma membrane, SLC7A4 has also been found in
intracellular vesicles in glioblastoma cells [66]. No gene
knockout studies have yet been performed for SLC7A4.

SLC7A5/LAT1

LAT1 (L-type amino acid transporter-1) was identified on
the basis of its capability to transport large neutral amino
acids into Xenopus oocytes when expressed with 4F2hc
(see above) [30, 37]. As expected for system L, this HAT
protein also transports 2-(�)-endoamino-bicycloheptane-
2-carboxylic acid (BCH) and its function is not Na+

sensitive. Its uptake selectivity range is relatively broad
and the apparent affinity for the uptake of branched and
aromatic amino acids is quite high (micromolar range)
[30, 37, 39]. LAT1-4F2hc is an obligatory exchanger that
does not mediate any measurable amino acid efflux in the
absence of extracellular amino acids (no facilitated
diffusion). Its uptake function is strongly trans-stimulated
by intracellular amino acids and the stoichiometry of this
exchange is 1:1 [39]. The apparent affinity for extracel-
lular amino acids is as much as 100-fold higher than for
intracellular ones, the concentration of the latter, thus,
controls the transport rate [39]. The selectivity of the
efflux function resembles that of uptake, but with some
differences: in particular l-leucine, l-isoleucine and l-
methionine are relatively better efflux than influx sub-
strates [39]. Taken together, these functional data indicate
that LAT1-4F2hc does not mediate net uptake of amino
acids but rather that it is designed to equilibrate the
relative concentrations of different amino acids across a
membrane. Thus, it functions as a tertiary-active uptake
transporter for amino acids that it exchanges against
intracellular amino acids accumulated, for instance, via a
Na+ cotransporter (Fig. 3D) [39, 64].

Interestingly, the first partial cDNAs for LAT1 were
identified in activated human lymphocytes (E16) and in
rat hepatoma cells (TA1). This, together with later
observations that LAT1 is expressed in most tested
tumours and tumour cell lines, suggests that LAT1-4F2hc
may play an important role in many growing cells [65,
68].

SLC7A6/y+LAT2

The transporter(s) mediating y+L-type amino acid trans-
port, i.e. the Na+-independent transport of cationic amino
acids and the Na+-dependent uptake of neutral amino
acids, was first described in erythrocytes and the expres-
sion of 4F2hc in Xenopus oocytes led to the expression of
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such a transport [17] (see review on SLC3 by Palacin and
Kanai in this issue). The function of y+LAT2-4F2hc was
first characterized briefly in papers describing the closely
related epithelial y+LAT1-4F2hc transporter [48, 60]. In
contrast to y+LAT1, y+LAT2 is widely expressed in non-
epithelial and epithelial tissues. It mediates, as a hetero-
dimer with 4F2hc, obligatory amino acid exchange of
neutral and cationic amino acids with a stoichiometry of
1:1. The transport of neutral amino acids is coupled to
Na+ [7]. Interestingly, whilst y+LAT2 mediates efficient
influx of several neutral and cationic amino acids, the
efflux of cationic amino acids is much more efficient than
that of neutral ones [7]. The physiological role of this
transporter is not clear at present.

SLC7A7/y+LAT1

The y+LAT1 cDNA was identified on the basis of its
homology to LAT1 and was shown to function as system
y+L when co-expressed with 4F2hc in Xenopus laevis
oocytes [48, 60]. Detailed functional experiments showed
that this heteromeric transporter mediates the uptake of
neutral amino acids together with Na+ with a high
apparent affinity, preferentially exchanging these neutral
amino acids for intracellular cationic amino acids [31, 48,
60]. Its cationic amino acid efflux function and its high
expression in kidney and small intestine suggested that it
is the transporter defective in the hereditary disease
lysinuric protein intolerance (LPI) (see below). Later
experiments have confirmed its expected basolateral
localization in kidney proximal tubule and small intestine
and have shown that its expression follows a decreasing
axial gradient along the proximal kidney tubule similar to
LAT2 and b0,+AT [3].

SLC7A8/LAT2

LAT2 was also discovered by homology and functional
experiments performed in Xenopus oocytes have demon-
strated that its cell-surface amino acid uptake function
depends on the association with 4F2hc and corresponds to
system L but with a wider selectivity than LAT1-4F2hc
(it accepts also smaller amino acids) [49, 52]. Its tissue
distribution resembles that of y+LAT1, its major sites of
expression being the basolateral membrane of the prox-
imal kidney tubule (segment S1>S2>>S3) and small
intestine [3, 52]. Functionally, it exchanges neutral amino
acids across the basolateral membrane and thereby
equilibrates their relative concentrations. Interestingly, it
is a quite efficient exporter of l-cysteine, an amino acid
that is imported into proximal kidney tubule cells mainly
via the apical b0,+AT-rBAT transporter (defective in
cystinuria) as l-cystine [39]. The role of LAT2-4F2hc in
the basolateral efflux of l-cysteine has been substantiated
recently in cell culture models [3, 21].

Similar to LAT1, LAT2 also displays a much lower
apparent affinity for intracellular amino acids than for

extracellular ones (exception for glycine). Taken together,
LAT2 extends the selectivity range of a putative unidi-
rectional basolateral efflux pathway (Fig. 3C) [64].

SLC7A9/b0,+AT

System b0,+ was first described as a Na+-independent
transport system for cationic and neutral amino acids.
Subsequently, a b0,+-like system that also transports l-
cystine was described on the luminal side of renal
proximal tubule and small intestine. Identification of
rBAT and of b0,+AT as the heavy and light subunits of this
transporter led to the identification of mutations in both
subunits resulting in cystinuria (see review by Palacin and
Kanai in this issue) [9, 11, 19, 47].

The b0,+AT protein has been shown to be covalently
linked to rBAT and expressed in the brush border of the
initial part of the proximal tubule and of jejunum and
ileum (M. Dave, C. Wagner, F. Verrey, unpublished
results) and thus has a similar tissue distribution to
basolateral y+LAT1 and LAT2 [3, 20, 47]. Heterologous
co-expression of rBAT and b0,+AT induces Na+-indepen-
dent, high-affinity transport of l-cystine and cationic
amino acids, and slightly lower affinity transport of
neutral amino acids, by an obligatory exchange mecha-
nism [8, 13, 47]. Under physiological conditions, luminal
l-cystine and the cationic amino acids are taken up
preferentially because of their high apparent extracellular
affinity, the intracellular reduction of cystine to cysteine
and the membrane potential (for cationic substrates),
whereas the neutral amino acids are transported outwards
because of their intracellular accumulation via an as yet
unidentified, apical, B0-type Na+ cotransporter [13]. The
basolateral efflux of the b0,+-like uptake of substrates is
mediated mainly by LAT2- and y+LAT1-4F2hc in
exchange for extracellular neutral amino acids [3, 64]
(see below and Fig. 3C).The light chain b0,+AT is the
catalytic subunit and has been shown recently to function
alone as a transporter after reconstitution in liposomes
[50]. The heavy chain rBAT is required for trafficking to
the cell membrane [2].

SLC7A10/Asc-1

Asc-1 (asc-type amino acid transporter-1) was identified
by homology and is linked to 4F2hc via a disulphide bond
[25, 41]. It mediates Na+-independent transport of small
neutral amino acids such as Gly, L-Ala, L-Ser, L-Thr, L-
Cys, a-aminoisobutyric acid and b-alanine. Asc-1-4F2hc
also transports d-isomers including D-Ser with high
apparent affinity. It functions preferentially, but not
exclusively, in an exchange mode. These functional
properties appear consistent with those of system asc.
Heterogeneity in substrate selectivity has been described
for this transport system and the existence of at least two
subtypes has been proposed. Asc-1 corresponds to the
subtype that was characterized originally in trout periph-
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eral blood lymphocytes, which is less stereospecific and
transports a-aminoisobutyric acid and b-alanine.

Asc-1 exhibits the highest structural similarity to the
L-type transporter light chain LAT2 (66% identity). In
contrast to LAT2-4F2hc, which takes neutral amino acids
of all sizes, and to LAT1-4F2hc, which transports only
large ones, Asc-1 transports only small neutral amino
acids and is not inhibited by BCH. This suggests an
interesting transition in the spatial configuration of the
substrate binding site between these gpaATs.

Asc-1 mRNA is expressed in the brain, lung, small
intestine and placenta. Although the functional signifi-
cance of Asc-1 has not yet been determined, it is notable
that it transports d-serine, a putative endogenous modu-
lator of NMDA-type glutamate receptors, and thus might
play a role in regulating synaptic transmission.

SLC7A11/xCT

In many cell types system x�
c provides cystine for the

synthesis of glutathione (GSH: reducing agent, buffer for
free radicals) and has been identified by expression
cloning as a heterodimer composed of 4F2hc and the light
chain xCT (SLC7A11) [54]. Under normal conditions,
system x�

c is found mainly in native brain (hypothalamic
area, meninges) and in macrophages, as well as in most
cell culture lines [1, 55]. It is Na+ independent and
electroneutral and obeys an obligatory exchange mode,
exchanging extracellular anionic cystine (pH dependence)
for glutamate with a stoichiometry of 1:1. The driving
force for this exchange is generated by the cystine
concentration gradient (intracellular reduction) and the
high intracellular concentration of glutamate. As cystine
uptake and reduction are rate-limiting for GSH synthesis,
system x�

c activity directly controls intracellular GSH
levels. Consequently, xCT expression is elevated in cells
requiring high GSH synthesis, for instance activated
macrophages, neuronal and glial cells and other cells after
GSH depletion [6, 33, 54, 55]. Electrophile response
element-like sequences mediate an increase in gene
transcription in response to chemical stress agents in the
presence of Nrf2, a transcription factor that is involved in
the induction of several phase-II detoxifying enzymes
[53].

Asc-2

Asc-2 (asc-type amino acid transporter-2) has been
identified as a SLC7 family member. It exhibits relatively
low, but significant, sequence similarity to other light
chains [12]. The cysteine residue involved in the disul-
phide bond formation with the heavy chain is conserved
in Asc-2, although Asc-2 does not induce functional
activity when co-expressed either with 4F2hc or rBAT.
Asc-2 was characterized functionally using fusion pro-
teins of Asc-2 and 4F2hc or rBAT that were sorted to the
plasma membrane. They expressed a transport function

corresponding to the Na+-independent transport system
asc. Unlike the other system asc transporter Asc-1-4F2hc,
Asc-2 is stereoselective and does not accept some of the
high-affinity substrates of Asc-1 such as a-aminoisobu-
tyric acid and b-alanine. Asc-2 is expressed in kidney
collecting duct cells, placenta, spleen, lung and skeletal
muscle. In Western blot analysis, Asc-2 is detected as
multiple bands under non-reducing conditions, whereas
under reducing conditions it appears as a single band with
a lower molecular mass, suggesting that it is linked to (an)
unknown heavy chain(s) by a disulphide bond.

AGT1

AGT1 (aspartate/glutamate transporter-1) was identified
as a SLC7 family member with 48% identity to Asc-2
[38]. As for Asc-2, fusion proteins either with 4F2hc or
rBAT have been used for its functional characterization
[38]. The AGT1 fusion protein expressed a Na+-indepen-
dent transport activity for anionic amino acids that is
distinct from that of xCT, since it does not accept cystine,
homocysteate or l-a-aminoadipate, but exhibits high
affinity for aspartate and glutamate. AGT1 is expressed
predominantly in kidney where it localizes to basolateral
membrane of the proximal straight tubules and distal
convoluted tubules. As for Asc-2, Western blot analysis
suggests association with an unknown heavy chain via a
disulphide bond. The identification of AGT1 and Asc-2
has established a new subgroup of the heterodimeric
amino acid transporters that do not associate with 4F2hc
or rBAT, but rather with (an)other, as yet unknown heavy
chain(s) (Fig. 1).

SLC7 transporters and inherited aminoacidurias

Mutations in b0,+AT or its heavy chain rBAT cause
inherited, autosomal recessive cystinuria, a disease char-
acterized by urinary hyperexcretion of cystine and
cationic amino acids. Mutations in y+LAT1 cause lysin-
uric protein intolerance (LPI) that is manifested by
urinary hyperexcretion of cationic amino acids [4, 19,
61]. Cystinuria is the most common primary inherited
aminoaciduria and its associated pathology is due to the
renal cystine lithiasis, whereas LPI is rare (<200 cases)
with multi-system pathology.

Cystinuria has been classified into two phenotypic
subtypes: type I, in which heterozygous relatives have
normal urine amino acids, as is the case with all rBAT
mutations and with 14% of the 40 cystinuria-specific
b0,+AT mutations (including 18 missense mutations), and
type non-I, in which heterozygotes with b0,+AT mutations
have moderate-to-high aminoaciduria [16, 35]. In contrast
to cystinuria, LPI is a monogenic disease. Twenty-five
y+LAT1 mutations have been described worldwide in the
96 LPI patients that have been studied, and account for
>98% of the cases [44].
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Genotype/phenotype correlations have not been estab-
lished in cystinuria or LPI patients due to extensive
clinical differences of patients sharing the same genotype
[16, 44]. In contrast, patients that are heterozygous for
b0,+AT mutations show a genotype/phenotype correlation:
the higher the loss of transport function of their mutated
b0,+AT, the higher the hyperexcretion of amino acids [23].

Functional analyses of some disease-associated mis-
sense mutations of b0,+AT and y+LAT-1 [40, 50, 59] have
revealed transport-inactivating defects, whereas all anal-
ysed rBAT mutations induce a trafficking defect. This
agrees with the notion of a “catalytic” role of the light
chain and a role for routing of the heavy chain.

In contrast to cystinuria, LPI is characterized also by a
low plasma concentration of some amino acids that
actually may be the main cause of failure to thrive of
children [44, 56]. In cystinuria, other apical intestinal
transporters, including that for oligopeptides, compensate
the defect, whereas in LPI, the basolateral defect in
cationic amino acid release is not sufficiently compen-
sated. The low plasma concentration of cationic amino
acids might be the cause of a defective urea cycle as well.
Some LPI patients have furthermore symptoms that may
be related to immune system defects such as erythro-
blastophagia, lung alveolar proteinosis and glomerulone-
phritis [44, 56]. Further research is needed to understand
the aetiology of these LPI-associated alterations.

Pharmacological and pharmaceutical aspects
of CAT transporters

Some derivatives of cationic l-amino acids are also
substrates for the CAT proteins, including several
inhibitors of nitric oxide synthase (NOS), e.g. l-N5-(1-
iminoethyl)-ornithine (L-NIO), NG-monomethylarginine
(L-NMMA) or asymmetrical dimethylarginine (L-
NMMA, L-ADMA), but not NG-nitroarginine (L-NNA)
(for review see [14]). The CAT substrates not only
compete with l-arginine for transport, but also drive the
efflux of intracellular l-arginine, due to trans-stimulation.
Other CAT substrates that are not NOS inhibitors (such as
symmetrical dimethylarginine, L-SDMA), can also pro-
voke depletion of intracellular arginine and therefore
inhibit NO synthesis indirectly.

Due to its specific role for the substrate supply of
iNOS in macrophages, CAT-2B represents a potential
drug target in pathological situations where sustained
iNOS activity may be detrimental, e.g. during sepsis or
chronic inflammation. However, so far no inhibitors for
the CAT proteins are available.

Pharmacological and pharmaceutical aspects
of LAT1-4F2hc

A high level of LAT1 expression is observed in tumour
cells of various tissue origins. Because LAT1-4F2hc
transports into cells essential amino acids that are

indispensable for protein synthesis, it is proposed that
the inhibition of this transporter in tumour cells may be of
some therapeutic benefit.

Another possible strategy in cancer therapeutics that
involves LAT1 is the use of anti-tumour agents that are
transported by LAT1-4F2hc and are, thus, delivered
efficiently and relatively selectively into target tumour
cells. For instance, the phenylalanine mustard melphalan
is transported by LAT1-4F2hc and accumulates in cancer
cells. It would, therefore, be possible to generate LAT1-
4F2hc-permeable anti-tumour drugs considering its broad
substrate selectivity [32, 62].

The transport of modified amino acids by LAT1-4F2hc
has also many other (patho)physiological, pharmacolog-
ical and diagnostic implications. This transporter has been
shown to transport e.g. thyroid hormones, methylmer-
cury-l-cysteine complexes and substances used for
tumour labelling [24, 51, 57].
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