
Int J CARS (2010) 5:99–107
DOI 10.1007/s11548-009-0386-y

ORIGINAL ARTICLE

An integrated approach for reconstructing a surface model
of the proximal femur from sparse input data
and a multi-resolution point distribution model: an in vitro study

Guoyan Zheng · Steffen Schumann ·
Miguel A. González Ballester

Received: 27 August 2008 / Accepted: 21 June 2009 / Published online: 24 July 2009
© CARS 2009

Abstract
Background Accurate reconstruction of a patient-specific
surface model of the proximal femur from preoperatively or
intraoperatively available sparse data plays an important role
in planning and supporting various computer-assisted surgi-
cal procedures.
Methods In this paper, we present an integrated approach
using a multi-resolution point distribution model (MR-PDM)
to reconstruct a patient-specific surface model of the prox-
imal femur from sparse input data, which may consist of
sparse point data or a limited number of calibrated X-ray
images. Depending on the modality of the input data, our
approach chooses different PDMs. When 3D sparse points
are used, which may be obtained intraoperatively via a
pointer-based digitization or from a calibrated ultrasound,
a fine level point distribution model (FL-PDM) is used
in the reconstruction process. In contrast, when calibrated
X-ray images are used, which may be obtained preopera-
tively or intraoperatively, a coarse level point distribution
model (CL-PDM) will be used.
Results The present approach was verified on 31 femurs.
Three different types of input data, i.e., sparse points, cali-
brated fluoroscopic images, and calibrated X-ray radiogra-
phs, were used in our experiments to reconstruct a surface
model of the associated bone. Our experimental results dem-
onstrate promising accuracy of the present approach.
Conclusions A multi-resolution point distribution model
facilitate the reconstruction of a patient-specific surface
model of the proximal femur from sparse input data.

G. Zheng (B) · S. Schumann · M. A. González Ballester
ARTORG Center for Biomedical Engineering Research,
University of Bern, Stauffacherstrasse 78, 3014 Bern, Switzerland
e-mail: guoyan.zheng@ieee.org

Keywords Reconstruction · Multi-resolution point
distribution model · Statistical shape analysis

Introduction

A patient-specific surface model of the proximal femur plays
an important role in planning and supporting various com-
puter-assisted surgical procedures including total hip replace-
ment, hip resurfacing, and osteotomy of the proximal femur.
The common approach to derive 3D models of the proxi-
mal femur is to use imaging technique such as computed
tomography (CT) or magnetic resonance imaging (MRI).
However, the high logistic effort, the extra radiation asso-
ciated with the CT-imaging, and the large quantity of data
to be acquired and processed make them less functional.
The alternative presented here is to reconstruct the surface
model using sparse input data consisting of dozens of three-
dimensional (3D) surface points (e.g., 50 points) or a limited
number of two-dimensional (2D) calibrated X-ray images
(e.g., 2 to 4 images).

Constructing an accurate 3D surface model from sparse
input data is a challenging task. Additionally, inherent to
the navigation application is the high accuracy and robust-
ness requirements. When surface reconstruction is used for
the purpose of surgical guidance, it requires that the algo-
rithm satisfies the following criteria: (a) accurate geomet-
rical information about the underlying anatomical structure
can be derived from the reconstructed surface model, (b) tar-
get reconstruction error of the reconstructed surface model
should be in the range of surgical usability, which is typi-
cally in the area of 1.5 mm average error (2–3 mm worst
case) [1], (c) 95% success rate is normally required, when
an appropriate initialization is given [1], (d) minimal user
interaction during data acquisition and algorithm execution
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is highly appreciated for a sterilized environment. One way
to achieve these criteria is to build a point distribution model
(PDM) and to adapt the model to the patient’s individual
anatomy using the input sparse input data—a procedure that
is called statistical shape model instantiation and registration
[2], or simply model instantiation.

The procedure of statistical instantiation can be divided
into two sub-procedures: correspondence establishment and
model fitting. In the former sub-procedure, the correspon-
dences between the input data and the point distribution
model are established. The point distribution model is then
adapted to the patient’s individual anatomy in the latter proce-
dure based on the established correspondences and the input
data.

The correspondence problem in point distribution model
construction is getting more and more attentions [3–6]. Vari-
ous groups [7–9] have conducted benchmark studies to com-
pare different correspondence establishing methods for point
distribution model construction. However, fewer attentions
are paid to the correspondence problem in statistical instan-
tiation. In the former case, where a dense correspondence
has to be established between different training instances to
generate a statistical shape model, constraints such as one-
to-one mapping can be applied [6]. In the latter case, how-
ever, the correspondence assignment will not be a direct
one-to-one mapping due to the sparsity of the input data.
Furthermore, because of the fixed surface parameterization
for the point distribution model, we argue that the correspon-
dence assignment as used in the landmark sliding [10], where
one component in the input data is assigned to an interpo-
lated component in the point distribution model, or the soft
assignment in robust point matching [11] should be avoided.
We hypothesize that in statistical instantiation different for-
mats of input data may need different correspondence estab-
lishing methods based on different point distribution models
with different surface parameterization. To this end, we pro-
pose to solve the statistical instantiation problem for both
2D and 3D input data with an integrated approach combin-
ing sophisticated surface reconstruction techniques with a
multi-resolution point distribution model (MR-PDM).

The paper is organized as follows. The second section
reviews the related work. Third section presents the construc-
tion of the MR-PDM of the proximal femur. Fourth section
describes the integrated approach combining our previous
works on 3D–3D surface reconstruction [12–14] and those
on 2D–3D surface reconstruction [15–17]. Experiments and
results are presented in fifth section, followed by conclusions
in the last section.

Related works

Statistical shape analysis [18–20] is an important tool for
understanding anatomical structures from medical images.

A statistical model gives an effective parameterization of the
shape variations found in a collection of sample models of a
given population. Model based approaches [21–23] are pop-
ular due to their ability to robustly represent objects. Intraop-
erative reconstruction of a patient-specific model from sparse
input data can be potentially achieved through the use of a
statistical model. Statistical model building consists of estab-
lishing legal variations of shape from a training population.
A patient-specific model is then instantiated through fitting
the statistical model to intraoperatively acquired data. Thus,
the aim of the statistical instantiation is to extrapolate from
sparse input data a complete and accurate anatomical repre-
sentation. This is particularly interesting for minimally inva-
sive surgery (MIS), largely due to the operating theater setup.

Several research groups have explored the methods for
reconstruction a patient-specific model from a statistical
model and sparse input data such as digitized points [12–14,
24–27], a limited number of calibrated X-ray images [15–17,
28–32], or tracked ultrasound [2,33–36]. Except the method
presented by Yao and Taylor [29], which depends on a
deformable 2D/3D registration between an appearance based
statistical model [37] and a limited number of X-ray images,
all other methods have their reliance on a point distribution
model (PDM) in common. In Fleute and Lavallée [24], a sta-
tistical shape model of the distal femur was fitted to sparse
input points by simultaneously optimizing both shape and
pose parameters. Their technology has been incorporated
into a system for computer-assisted anterior cruciate liga-
ment surgery and preliminary results were published in [25].
Chan et al. [2,33,34] used a similar algorithm, but optimized
the shape and pose parameters separately. Tracked ultrasound
was used as the input in their work to instantiate 3D surface
models of the complete femur and pelvis from their asso-
ciated statistical shape models. Following the seminal work
of Blanz and Vetter for the synthesis of 3D faces using a
morphable model [38], Rajamani et al. [26,27] incorporated
a Mahalanobis prior for a robust and stable surface model
instantiation. In our recent work [12–14], we proposed to
use the dense surface point distribution model (DS-PDM)
and a reconstruction scheme combining statistical instantia-
tion and regularized shape deformation for an accurate and
robust reconstruction of a patient-specific surface model of
the proximal femur from dozens of points. This reconstruc-
tion scheme has also been combined with a novel 2D–3D
correspondence establishing algorithm [15] for reconstruct-
ing surface model of the proximal femur from a limited num-
ber of calibrated X-ray images [16,17].

Construction of a multi-resolution point distribution
model

The MR-PDM used in this paper was constructed from a
training database consisting of 30 proximal femoral surfaces
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Fig. 1 An example shows how
to use Loop’s scheme to
subdivide a surface patch from a
coarse resolution to a fine
resolution. Left a surface patch
to be subdivided. Right
superimposition of the original
surface patch (described by
dashed, black lines and gray
disks) on the subdivided surface
patch (described by solid, red
lines and red disks). Each
triangle of the original surface
path has been divided into four
smaller triangles

from above the lesser trochanter. In the coarsest level, a
sequence of correspondence establishing methods presented
in [7] was employed to optimally align surface models seg-
mented from CT volume. It started with a manually initialized
subdivision surfaces similar to Wang et al. [39] and then was
optimized using minimum description length (MDL) based
principle as proposed in [3,40].

Following the alignment, the PDM in this level is
constructed as follows. Let xi = (p0, p1, . . . , pN−1),
i = 0, 1, . . . , m − 1, be m (here m = 30) members of the
aligned training surfaces. Each member is described by a
vectors xi with N (N = 4098) vertices:

xi = {x0, y0, z0, x1, y1, z1, . . . , xN−1, yN−1, zN−1} (1)

The PDM is obtained by applying principal component anal-
ysis on these surfaces.

D = 1

(m − 1)
·

m−1∑

i=0

(xi − x̄) · (xi − x̄)T (2)

P = (p0, p1, . . . , pm′−1); D · pi = σ 2
i · pi

σ0 ≥ σ1 ≥ · · · ≥ σm′−1 > 0; m′ ≤ m − 1

where matrices x̄ and D represents the mean vector and the
covariance matrix, respectively; {σ 2

i } are non-zero eigen-
values of the covariance matrix D, and {pi } are the corre-
sponding eigenvectors. The sorted eigenvalues σ 2

i and the
corresponding eigenvector pi of the covariance matrix are
the principal directions spanning a shape space with x̄ rep-
resenting its origin. m′ is a cut-off number for selecting the
first m′th major eigenmodes.

Then, any one of the instance in this space can be expressed
as:

x = x̄ +
m′−1∑

i=0

αi pi (3)

And the estimated normal distribution of the coefficients {αi }
is:

p(α0, α1, . . . , αm′−1) = (2π)−
m′
2 · e− 1

2

∑m′−1
i=0 (α2

i /σ 2
i ) (4)

where
∑m′−1

i=0 (α2
i /σ 2

i ) is the Mahalanobis distance defined
on the distribution.

The vertices for constructing the denser point distribution
model in a finer resolution are then obtained by iteratively
subdividing the aligned surface model in the coarser reso-
lution. The basic idea of subdivision is to provide a smooth
limit surface model which approximates the input data. Start-
ing from a mesh in a low resolution, the limit surface model
is approached by recursively tessellating the mesh. The posi-
tions of vertices created by tessellation are computed using
a weighted stencil of local vertices. The complexity of the
subdivision surface model can be increased until it satisfies
the user’s requirement.

In this work, we use a simple subdivision scheme called
Loop’s scheme, invented by Loop [41], which is based on a
spline basis function defined on a 3D mesh, called the three-
dimensional quartic box spline. The subdivision principle of
this scheme is very simple. Three new vertices are inserted to
divide a triangle in a coarse resolution to four smaller trian-
gles in a fine resolution. Figure 1 shows how a surface patch
is divided from a coarse resolution to a fine resolution using
Loop’s scheme.

Although the subdivision strategy is simple in Loop’s
scheme, the exact rules for computing the vertex positions
in the fine resolution from the vertices in the coarse resolu-
tion depends on the local structure of a mesh, i.e., the valence
of a vertex, which means the number of edges connected to a
vertex. Depending on the valence of a vertex, Loop [41] pro-
posed to use three different rules, as shown in Fig. 2. The goal
is to guarantee that the limit surface of the scheme is smooth.
The first rule, shown in Fig. 2, right, is used to compute
the new positions of a regular vertex with a valence 6 from
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Fig. 2 Computing rules of
Loop’s scheme for regular
vertices with a valence 6,
edge vertices, and extraordinary
vertices with a valence n, where
a = 5

8 − ( 3
8 + 1

4 cos( 2π
n ))2

the previous resolution. The second rule, shown in Fig. 2,
middle, is used to compute the points inserted at an edge.
Please keep it in mind that this rule can be applied anywhere.
And as shown in Fig. 1, all newly inserted vertices are regu-
lar vertices with a valence 6. The third rule, shown in Fig. 2,
right, is used to compute the new position of an extraordinary
vertex with a valence n (n �= 6) inherited from the previous
level.

According to the computing rules of Loop’s scheme, the
positions of all vertices in a fine resolution are computed from
a weighted stencil of local vertices in previous resolution. As
the input surface models have been optimized for establish-
ing correspondences, it is reasonable to conclude that the
output models are also aligned. Principal component analy-
sis can be applied on these dense surface models to establish
a dense surface point distribution model (DS-PDM). In our
previous work [12–14], we found that a single level subdivi-
sion is enough for our purpose. We thus created a two-level
point distribution model (TL-PDM).

An integrated surface model reconstruction approach

Based on the two-level point distribution model, we devel-
oped an integrated surface model reconstruction approach
which can seamlessly handle both 3D sparse points and a
limited number of X-ray images. When a set of 3D points
are used, the fine level point distribution model (FL-PDM)
will be chosen, which facilitates the point-to-surface corre-
spondence establishment. But if the input is a limited number
of calibrated X-ray images, we will use the coarse level point
distribution model (CL-PDM) to speed up the computation.
For completeness, we will briefly present these two meth-
ods below. Details can be found in our previously published
works [12–17].

3D–3D reconstruction method

[12–14]: The 3D–3D reconstruction problem is formulated
as a three-stage optimal estimation process. The first stage,

affine registration, is to iteratively estimate the scale and the
6 degree-of-freedom rigid transformation between the mean
shape of the PDM and the sparse input data using a corre-
spondence building algorithm and a variant of iterative clos-
est point (ICP) algorithm [42]. The estimation results of the
first stage are used to establish point correspondences for the
second stage, statistical instantiation, which optimally and
robustly instantiates a surface model from the FL-PDM using
a statistical approach [27]. The instantiated surface model
is taken as the input for the third stage, regularized shape
deformation, where the input surface is further deformed by
an approximating thin-plate spline (TPS) based vector trans-
form [43] to refine the statistically instantiated surface model.

2D–3D reconstruction method

[15–17]: Our 2D–3D reconstruction approach combines sta-
tistical instantiation and regularized shape deformation as
described above with an iterative image-to-model correspon-
dence establishing algorithm [15]. The image-to-model
correspondence is established using a non-rigid 2D point
matching process, which iteratively uses a symmetric injec-
tive nearest-neighbor mapping operator and 2D thin-plate
splines based deformation to find a fraction of best matched
2D point pairs between features detected from the calibrated
X-ray images and the projections of the apparent contours
extracted from the 3D model. The obtained 2D point pairs
are then used to set up a set of 3D point pairs such that
we turn a 2D–3D reconstruction problem to a 3D–3D one,
which can be solved by the 3D–3D reconstruction approach
as described above, but using a CL-PDM.

Experimental results

We conducted experiments on 31 femurs (1 plastic femur and
30 cadaver femurs; note: none of them has been included for
constructing the TL-PDM) with different shapes to validate
the present approach. Three different types of input data,
i.e., sparse points, calibrated fluoroscopic images, and cali-
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Fig. 3 Errors of reconstructing
3D surface models of seven
cadaver femurs using clinically
relevant 3D sparse point data

Results of surface construction using clinically relevant data
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brated X-ray radiographs, were used in our experiments to
reconstruct the surface model of the associated bone.

Reconstruction error measurement

To quantify the reconstruction error in the cadaver femur
experiment, a target reconstruction error (TRE) was used.
The TRE is defined as the distance between the actual and
the reconstructed position of selected target features, which
can be landmark points or surface models.

Validation experiments and results

We designed and conducted following three experiments to
validate the present approach.

(1) Reconstruction of surface models of seven cadaver
femurs using clinically relevant sparse points:

Total hip replacement and hip resurfacing procedures oper-
ated with posterior approach were identified as the potential
clinical applications. At one stage of such surgeries, after
internal rotation and posterior dislocation of the hip, most of
the femoral head, neck, and some part of trochanteric and
intertrochanteric (crest and line) regions are exposed [44].
Obtaining sparse surface points from these intraoperatively
accessible regions and reconstructing a patient-specific 3D
surface model of the proximal femur with reasonable accu-
racy will be useful for the above mentioned surgeries. In this
experiment, one set of 50 points was used to reconstruct the
surface model of each cadaver bone and the other set con-
sisted of 200 points was used to evaluate the reconstruction
errors. The results of surface reconstruction using clinically
relevant sparse points are presented in Fig. 3. For each case,
the overall execution time was less than one minute

(2) Reconstruction of surface models of 11 cadaver femurs
using a limited number of calibrated C-arm images:

In this experiment, two studies using different number of
images were performed for each bone. In the first study two
images acquired from anterior–posterior (AP) and lateral-
medial (LM) directions were used to reconstruct the sur-
face model of each cadaver femur. In the second one, an
image acquired from oblique direction was additionally used
together with the above mentioned AP and LM images. The
reconstruction accuracies were evaluated by randomly digi-
tizing 100–200 points from each surface of the cadaver spec-
imen and then computing the distance from those digitized
points to the associated surface reconstructed from the
images. The median and mean reconstruction errors of both
experiments are presented in Table 1. An average mean recon-
struction error of 1.2 mm was found when only AP and LM
images were used for each bone. It decreased to 1.0 mm when
three images were used.

(3) Reconstruction of surface models of 23 femurs (1 plastic
femur and 22 cadaver femurs) using a pair of calibrated
X-ray radiogaphs:

One plastic femur and twenty-two cadaver femurs were used
in this experiment. Anterior and posterior views of part of
the cadaver femurs are shown in Fig. 4.

For each bone, two calibrated X-ray radiographs were
acquired. All X-ray radiographs were calibrated using a cus-
tom-made calibration cage [45,46]. Furthermore, two dry
cadaver femurs were used together with a dry pelvis to con-
struct an assembled hip. For each side of the assembled
hip, two calibrated X-ray radiographs were acquired. Thus,
totally we obtained 25 pairs of calibrated images. Each time,
a pair of the calibrated images was used as the input to recon-
struct the surface model of the associated bone.
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Table 1 Reconstruction errors
when different number of
images were used

Reconstruction errors when only AP and LM were used for each bone

Bone index 1 2 3 4 5 6 7 8 9 10 11

Median (mm) 1.3 0.8 1.5 1.0 1.3 1.0 1.1 1.0 0.8 1.1 1.2

Mean (mm) 1.5 0.8 1.4 1.3 1.4 1.2 1.2 1.2 1.0 1.1 1.6

Reconstruction errors when all three images were used for each bone

Bone index 1 2 3 4 5 6 7 8 9 10 11

Median (mm) 1.3 0.7 0.7 1.1 1.0 1.1 0.8 0.9 0.7 1.0 0.9

Mean (mm) 1.3 0.7 0.8 1.2 1.1 1.1 1.1 0.9 0.9 1.1 1.2

Fig. 4 The anterior view (top
two rows) and the posterior view
of part of the femurs used in the
third experiment

To evaluate the reconstruction accuracy, we established
the ground truths using two different methods. As 19 of them
(including the plastic bone) are naked bones, we decided to
use a hand-held laser-scan reconstruction method (T-SCAN,
Steinbichler, Neubeuern, Germany) to obtain the surface
model of these bones. The advantages of using such a method
to obtain the ground truths include its high reconstruction
accuracy (in the range of 0.1 mm according to the manu-
facturer) and the void of the segmentation errors which are
inherent to the CT-scan reconstruction method. However, for
the rest of four femurs, we had to use CT-scan reconstruc-
tion method to derive the ground truths as two of them are
part of a wet cadaver pelvis and the other two are dry femurs
but are glued with the associated acetabula. For this purpose,
we used a commercially available software package, Amira
5.0 (TGS Europe, Paris, France), for semiautomatic segmen-
tation of the surface models of those femurs. The derived
ground truths were transformed to the associated reference
coordinate systems of the reconstructed surface models by
performing a surface-based rigid registration [42]. After that,
the open source tool MESH [47] was used to compute the
distance between the surface model reconstructed from each
pair of X-ray images and its associated ground truth. The
errors of reconstructing surface models using all 25 pairs
of images are shown in Fig. 5. It was found that the mean

errors of reconstructed surface models in comparison to their
associated ground truths ranged from 0.6 to 1.4 mm and the
root mean square (RMS) errors ranged from 0.8 to 1.9 mm.
The average mean error was found to be 0.95 mm. Such accu-
racy was regarded as accurate enough for surgical navigation
applications according to Livyatan et al. [1]. A reconstruc-
tion example and its associated error distribution are shown
in Figs. 6 and 7, respectively.

Discussions and conclusions

We have presented an integrated approach using the MR-
PDM for robust and accurate anatomical shape reconstruc-
tion from sparse input data. Based on the modalities of the
input data, the point distribution model of an appropriate
resolution was used. In this approach, the 3D-3D reconstruc-
tion problem is formulated as a three-stage optimal esti-
mation process. In each stage, the best result is optimally
estimated under the assumption for that stage. The FL-PDM
is employed in all stages to facilitate the correspondence
establishment. When a limited number of calibrated X-ray
images are used, the CL-PDM is employed to speed up the
computation. A 2D–3D correspondence establishing algo-
rithm based on a non-rigid 2D point matching process is
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Fig. 5 Error of reconstructing
surface models from all 25 pairs
of images

Fig. 6 A surface model of a
cadaver femur reconstructed
from calibrated X-ray
radiographs by our 2D–3D
reconstruction technique. An
exact matching between the
reconstructed surface model and
the projections of the femur in
the radiographs is observed.
a Superimposition of the
reconstructed surface model
onto the radiographs;
b superimposition of the
projection of the apparent
contours (yellow) of the
reconstructed surface model
with the X-ray projections of the
proximal femur

applied to convert a 2D–3D problem to a 3D–3D one. We
have designed and conducted experiments using different
types of input data to validate the present approach.

The reason why we require a MR-PDM can be summa-
rized as follows. Due to the sparseness of the point data,
we need a FL-PDM to establish precise correspondences
between each input point and the point on the FL-PDM in the
second stage of our 3D–3D reconstruction method, although
it is true that this is not an important issue in the first and
the third stage of our 3D–3D reconstruction approach. In
these two stages we even can use the CL-PDM together with

a KD-Tree data structure to accelerate the correspondence
establishment procedure. However, if a CL-PDM is used in
the second stage, each input point will find a point on the
surface model described by the CL-PDM as its correspond-
ing point. However, this point is not necessary a vertex of the
CL-PDM. Then to solve the statistical instantiation problem,
we either need to use the closest vertex as the correspondence
of the input point, or we need to do an interpolation. The for-
mer method will bring the correspondence error into the sta-
tistical instantiation procedure due to the relative sparseness
of the CL-PDM, whereas the latter method will complicate
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Fig. 7 Color-coded error TRE
distribution when the
reconstructed surface model as
shown in Fig. 6 was compared
to its ground truth obtained from
a CT-scan reconstruction
method. The maximum TRE is
5.86 mm, the 95% percentile
TRE is 2.43 mm, and the mean
TRE is 0.88 mm. Note that we
only computed the TREs from
the reconstructed surface model
to the ground truth as the former
was smaller than the latter

the solution to the statistical instantiation problem. In con-
trast, this is different when the co-registered images are taken
as the input for the 2D–3D reconstruction. Although the num-
ber of input images is limited, the extracted edge contours
from these images are dense (a sub-pixel resolution). In such
a situation, we do not need a FL-PDM to set up a precise
correspondence. If a vertex on the PDM is located on the
apparent contours of the model and is preserved even after
the 2D–3D correspondence establishment procedure, we can
always find a 3D point on the forward projection ray of an
edge point as its corresponding point. Thus, at each step of
the 2D–3D reconstruction, new points on both the PDM and
the projection rays of the edge points may be changeable,
while in the 3D–3D case the input point set remains the same
throughout all iteration.

From the results of the second experiment, one can observe
that the accuracy of the present approach can be enhanced
with the increase of the number of the input C-arm images.
However, considering the cumbersomeness of intraoperative
image acquisition, using two calibrated fluoroscopic images
as the input is more appropriate for a clinical application.

Our previous work [17] shows that our 3D–3D reconstruc-
tion method can handle both non-pathological and pathologi-
cal cases even when the PDM is constructed from the surface
models of normal patients. The results of the third experi-
ment, where the surface models of twenty-three femurs with
different shapes have been successfully reconstructed with
the present approach, further confirmed that the our 2D–3D
reconstruction method can also handle both non-pathologi-
cal and pathological cases, which is a clear advantage over
existing works.
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