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Abstract Natural fluctuations in soil microbial communi-
ties are poorly documented because of the inherent
difficulty to perform a simultaneous analysis of the relative
abundances of multiple populations over a long time
period. Yet, it is important to understand the magnitudes
of community composition variability as a function of
natural influences (e.g., temperature, plant growth, or
rainfall) because this forms the reference or baseline against
which external disturbances (e.g., anthropogenic emissions)
can be judged. Second, definition of baseline fluctuations in
complex microbial communities may help to understand at
which point the systems become unbalanced and cannot
return to their original composition. In this paper, we
examined the seasonal fluctuations in the bacterial commu-
nity of an agricultural soil used for regular plant crop
production by using terminal restriction fragment length
polymorphism profiling (T-RFLP) of the amplified 16S
ribosomal ribonucleic acid (rRNA) gene diversity. Cluster
and statistical analysis of T-RFLP data showed that soil

bacterial communities fluctuated very little during the
seasons (similarity indices between 0.835 and 0.997) with
insignificant variations in 16S rRNA gene richness and
diversity indices. Despite overall insignificant fluctuations,
between 8 and 30% of all terminal restriction fragments
changed their relative intensity in a significant manner
among consecutive time samples. To determine the magni-
tude of community variations induced by external factors,
soil samples were subjected to either inoculation with a
pure bacterial culture, addition of the herbicide mecoprop,
or addition of nutrients. All treatments resulted in statisti-
cally measurable changes of T-RFLP profiles of the
communities. Addition of nutrients or bacteria plus meco-
prop resulted in bacteria composition, which did not return
to the original profile within 14 days. We propose that at
less than 70% similarity in T-RFLP, the bacterial commu-
nities risk to drift apart to inherently different states.

Introduction

The complexity of most microbial communities, both in terms
of species diversity and their abundance, has eluded facile
analysis. Yet, to understand their functioning and resilience to
external changes, it is desirable to assess the community
composition, quantify individual microbial population sizes,
and study fluctuations thereof [17, 42]. Especially in complex
systems like soil, determination of the microbial diversity is a
daunting task [3]. Estimations of the bacterial diversity in a
gram of soil vary between some thousand species, as
determined from extensive clone libraries [45] and from
deoxyribonucleic acid (DNA) renaturation experiments [41],
to more than a million [11]. Despite important advances in
genome sequencing technologies, which may one day tackle
the complete sequence diversity in a soil bacterial commu-
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nity, for many different purposes, such as bioremediation
efforts or monitoring chemical pollution effects, it is
necessary to have easy monitoring methods to track
community and diversity changes over time.

Cultivation-independent molecular profiling techniques
have proven to be very valuable for effect monitoring on
microbial communities. Examples of useful DNA-based
profiling techniques are terminal restriction fragment (tRF)
length polymorphisms (T-RFLPs) [27, 29], denaturing
gradient gel electrophoresis (DGGE) [7, 12, 30, 32, 43],
ribosomal intergenic spacer analysis (RISA) [9], and single-
strand conformation polymorphism (SSCP) [19, 24, 39].
Most frequently, these profiling techniques assess bacterial
diversity via 16S ribosomal ribonucleic acid (rRNA) gene
diversity in a pool of fragments amplified from total
community-derived DNA in the polymerase chain reaction
(PCR). Typically, DNA community profiling techniques
have a genus-level resolution [8] and are thought to detect
bacterial populations with at least 1% relative abundance in
a sample [22]. On the other hand, PCR-based approaches
can lead to amplification bias and artifacts [10]. Obviously,
this 1% is lower coverage than large-scale sequencing of
clone libraries can give, but profiling techniques are faster
and therefore more suitable for field-scale experiments,
where replication and increased sampling frequency are
important [17].

Despite abundant usage of DGGE, SSCP, and T-RFLP in
a wide variety of microbial ecosystems including agricul-
tural soil, it is not very clear what the natural and temporal
fluctuations in soil microbial communities are. This seems
important information for subsequent effect studies to be
based upon. Studies on a number of long-term field sites
have suggested that soil microbial communities develop
significantly different in time (5–20 years) as a function of
plant type [22, 2] or agricultural practice [44]. Bacterial
communities in extremely perturbed or technical environ-
ments (e.g., reactors or enrichment cultures) also change
measurably but not always consistently as a function of,
e.g., pollutant concentration [1, 13, 28], pollutant, or soil
type [13, 25, 31]. Bacteria inoculation, on the other hand,
did not lead to detectable bacterial community changes in a
soil bioremediation experiment to enhance 2-nitrophenol
degradation [34]. Natural or seasonal variations themselves,
however, are less well described. Buckley and Schmidt [3]
detected up to fourfold variations in the relative ratio of
taxonomic units as determined by quantitative filter hybrid-
izations on RNA extracted from agricultural soils sampled
on four occasions during 2 years. Lipson and Schmidt [26]
detected significant community shifts in alpine soil bacte-
rial communities after snow melt by using clone library
analysis, leveling up to a twofold increase or decrease per
taxonomic group. Phospholipid fatty acid profiling from
agricultural soil microbial communities also suggested

significant seasonal changes [15, 2], although this is not
necessarily due to a change in community composition but
to microbial physiology.

In this paper, we focused on determining the sensitivity
of T-RFLP to measure relative population variations in a
regular agricultural soil bacterial community. Although the
focus of this study is the bacterial community, the soil
fungal communities should not be neglected [38]. The
T-RFLP method for 16S rRNA gene diversity in soil was
recently compared with community-level substrate utiliza-
tion methods, with RISA, and with sequencing of extensive
clone libraries, and it was concluded that T-RFLP was
sufficiently representative and highly sensitive to detect
community differences while maintaining rapidity [17].
T-RFLP profiling would thus form an ideal method to
investigate the seasonal variability of soil bacterial com-
munities, which could be used as a baseline against which
potential effects of external influences might be better
assessed. The first objective of our work, therefore, was to
determine such a baseline of natural variability in a regular
agricultural soil bacterial community. Hereto, we sampled
and analyzed the bacterial community diversity of one
agricultural soil on several occasions during 1 year. The
second objective was to place the magnitude of community
variations in perspective with experimentally induced
community changes by subjecting the same soil in micro-
cosms to artificial disturbances, notably bacteria inocula-
tion, application of herbicide or nutrients.

Materials and Methods

Soil Sampling and Site Description

The soil used for the community analysis was collected
from an agricultural field (47°24′18.03″N, 8°36′36.64″E,
432 m altitude) near the Swiss Federal Institute for Aquatic
Science and Technology (Eawag, Dübendorf, Switzerland),
where crop rotation is applied. Values of major soil
chemical parameters were: 5.1% organic C, 60% SiO2,
11.7% Al2O3, 2.4% MgO, 4.8% Fe2O3, pH-H2O: 7.6, pH-
KCl: 7.0. During the year of sampling (2002–2003), maize
was grown in the summer season, followed by winter
lettuce. For mean temperature and rainfall, consult Table S1
in the Supplementary online material. For each sampling a
total of ~500 g of surface bulk soil (depth 0–5 cm,
excluding plants or plant roots) was pooled from randomly
collected 50-g aliquots within a 1-m2 area and transferred to
a sterile 500-mL Schott flask (Milian SA, Genève, Switzer-
land). The same field was sampled at the approximate same
spot (within 1 m2) at 12 occasions during the 2 subsequent
years, but only eight samples produced interpretable
T-RFLP data. Three aliquots of 5 g (fresh weight) were
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prepared from each pooled sample. Soil was neither dried
nor sieved before community DNA isolation. Total com-
munity DNA was isolated and purified from aliquots
immediately after sample collection. For community dis-
turbance experiments, the same spot was sampled on one
occasion in Spring 2003.

Soil Microbial Community Total DNA Isolation

Total DNA was isolated from 2- or 5-g quantities of soil by
a bead-beating procedure essentially as described by
Bürgmann et al. [4], followed by standard phenol/chloro-
form/isoamylalcohol extraction and ethanol/sodium acetate
precipitation [37]. After recovery of the DNA by centrifu-
gation for 20 min at 13,000 rpm, it was washed with ice-
cold 70% ethanol, dried and resuspended in 50 μL Tris–
EDTA (TE) buffer (10 mM Tris pH 8.0, 1 mM ethylenedi-
amine tetraacetic acid [EDTA]). The DNA was further
purified according to the Geneclean® III protocol (Q-Bio
gene, Montréal, Québec, Canada), finally eluted in 50 μL
of sterile demineralized water, after which a small aliquot
was visualized by electrophoresis in ethidium bromide-
stained agarose gels. DNA concentration was determined
by fluorimetry by comparison to a dilution series of purified
phage 1-DNA. Typical amounts recovered per gram of soil
were in the range of 4 to 10 μg. The purified DNAwas then
used for T-RFLP and RISA analyses without further
cleaning steps.

T-RFLP and RISA Analysis

For T-RFLP, 16S rRNA gene fragments were amplified
from microbial community DNA by using the bacterial
primers 16S 8F (5′-AGAGTTTGATCCTGGCTCAG-3′) at
position 8–27 (E. coli SSU rRNA, GenBank accession
number J01695) and 16S 926R (5′-CCGTCAATTCCTT
TRAGTTT-3′, position 926 reverse) [34]. The primers S-D-
Bact-1522-b-S20 and L-D-Bact-132-a-A-18 were used to
amplify the intergenic spacer between the 16S and 23S
rRNA genes [36]. Primers 16S 926R and S-D-Bact-1522-b-
S20 were labeled with the infrared dye IRDye™800
(hereafter, IRD-800, MWG Biotech, Engersberg, Ger-
many), and the primer 16S 8F was marked with IRDye™
700 (hereafter, IRD-700). Each 50-μL PCR mixture
contained 9 μL of PCR buffer (Sigma Chemical, St. Louis,
MO), 0.4 μL deoxynucleotide triphosphates (25 mM each),
0.25 μL Taq DNA polymerase (Sigma), and between 30
and 35 μL sterile demineralized H2O. Both primers were
added in 1 μL volume at 100 pmol each; 1 μL of target
DNA (~50 ng) and another 7-μL sterile H2O completed the
PCR mixture. The cycling conditions for the amplification
of 16S rRNA genes were the following: (1) one cycle of
3 min denaturation at 93.5°C, (2) 35 cycles, of each 30 s at

93.5°C, 30 s at 49°C, and 2 min at 72°C, and (3) a final
extension cycle during 5 min at 72°C (Genius FGENO5TD
thermocycler, Tecne, Burlington, NJ). The PCR conditions for
RISA are described elsewhere [35]. Three independent PCR
reactions were performed per soil sample. The correct size
and quantity of the PCR products were verified by agarose
gel electrophoresis before continuing with the T-RFLP or
RISA analysis.

For T-RFLP analysis, the amplified 16S rRNA gene
fragments, which were labeled at either end with IRD-800
or IRD-700, were digested using the restriction enzyme
HaeIII for 2 h at 37°C (Fermentas International, Burlington,
Ontario, Canada). Subsequently, the DNA fragments were
concentrated by ethanol and sodium acetate precipitation
and recovered by centrifugation. The DNA pellet was
resuspended in a volume of 6 (for T-RFLP) or 12 μL (for
RISA) of TE buffer (pH 8.0). After the addition of 4.5 (for
T-RFLP) or 9 μL (for RISA) of loading buffer (containing
95% formamide, 20 mM EDTA, and 0.05% acidic fuchsine
red), the samples were denatured for 3 min at 93.5°C and
immediately transferred to ice.

The DNA fragments were separated according to their
size by electrophoresis on 25-cm-long polyacrylamide gels
on a LI-COR 4200L sequencer (LI-COR, Lincoln, NE),
using Tris–borate–EDTA buffer [37] at a voltage of
1,500 V and a running temperature of 45°C. This
instrument has the advantage that both IRD-700 and IRD-
800 markers can be detected simultaneously. Data were
cropped and stored as TIFF image files.

Bacteria Cultivation

Sphingomonas herbicidivorans MH was used to inoculate
soil aliquots for the disturbance experiments [18]. Strain
MH is able to grow on phenoxyalkanoic acid herbicides,
such as mecoprop (2-(4-chloro-2-methylphenoxy)propionic
acid), as sole carbon and energy source [20]. The strain was
grown at 30°C in 5 mL complex medium [46] in baffled
Erlenmeyer flasks shaken at 180 rpm. Cells were harvested
during the exponential phase, centrifuged for 5 min at
7,500×g, washed once with phosphate-buffered saline
(PBS; the solution contains 137 mM NaCl, 2.7 mM KCl,
4.3 mM Na2HPO4 7H2O, 1.4 mM KH2PO4, pH 7.3) to
remove nutrients, and pelleted again by centrifugation.
Finally, the cells were resuspended in 200 μL sterile
demineralized H2O to an approximate optical density of
OD=0.6 and added to 2-g soil aliquots in sterile 50-mL
capped polypropylene tubes.

Disturbance Experiments and Sensitivity Analyses

To test the sensitivity of T-RFLP to detect changes in
microbial community composition, soil sample aliquots
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were subjected to different perturbations. Disturbance
experiments were conducted with freshly collected soil
(see above) divided in aliquots of 2 g in 50-mL sterile
capped polypropylene tubes (Techno Plastics Products AG,
Trasadingen, Switzerland), incubated at 25°C for up to
2 weeks in three replicate series at ~70% water-holding
capacity. Individual tubes were sacrificed completely for
total community DNA isolation after 0, 1, 2, 4, 7, and
14 days of incubation. The following treatments were
applied: addition of (1) nutrient broth (NB), (2) S.
herbicidivorans strain MH at 109 cells per gram soil
(B, bacteria), (3) a mixture of mecoprop and strain MH
(BM, bacteria and mecoprop), and (4) pure water as a
control (S, soil water). For nutrient addition, 200 μL of
NB solution (Biolife, Milan, Italy) were pipetted to each
of the 50-mL tubes with 2 g of soil. Strain MH was
supplied in 200 μL of sterile demineralized water per
aliquot of 2 g of soil and 50-mL tube. Mecoprop was
added as 200-μL aqueous solution of both enantiomers
([R,S]-2-[4-chloro-2-methyl-phenoxypropanoic acid]) at
100 mg/L each (Fluka, Buchs, Switzerland). In case of
the addition of S. herbicidivorans strain MH and meco-
prop simultaneously, the bacteria were resuspended in
200 μL of mecoprop solution and added to 2 g of soil. As
a negative control, 200 μL of demineralized water was
added per soil aliquot.

Data Analysis

The TIFF image files containing the community T-RFLP or
RISA profiles were further analyzed using the BASE
IMAGIR™ and GENE IMAGIR™ 4.03 software (Scana-
lytics, Fairfax, VA) to determine the number, length, and
relative intensity of each of the tRFs in a sample. Output
text files were further processed in Microsoft Excel.
Accurate determination of tRFs was only possible in the
size range of 100 to 700 bp, and bands outside this range
were excluded from the analysis. Band intensities (“peak
area”) were normalized by dividing each band’s absolute
intensity by the total intensity of bands per lane. Peaks
below 0.01% of the sum of all peak intensities were not
considered. Diversity indices were calculated from the
presence/absence and relative band intensities per sample
using the formula, diversity index ¼ 1�P

pið Þ2, where pi
is the relative intensity of each individual band divided by
the sum of the relative intensities of all fragments per lane.
Principal components analysis (PCA) was performed using
the subroutines “dudi.pca” and “prcomp” in the statistical
program R (http://www.r-project.org). Sample clustering
was performed on Euclidean distance matrices calculated
from the dataset of relative band intensities by using
“agnes” in the package “cluster” of R. Distance matrices
were compared in a Mantel test using Monte Carlo

permutations with help of the program “mantel.rtest,”
which is part of the package “ade4” [5]. To test significance
of clusterings, we performed bootstrapping by resampling
distance matrices produced by “agnes” in a small subrou-
tine written for this purpose. Consensus clusters were
calculated from the bootstrapping output in the program
“consense,” which is a part of the Phylip 3.66 package.
Branching frequencies were then added to the original
“agnes”-input cluster for bootstrapping.

Results

Seasonal Bacterial Community Variability Studied
from Polymorphisms in Amplified 16S rRNA Gene
Fragments

The variability in bacterial community structure in an
agricultural soil was studied by T-RFLP and RISA during
1 year by sampling eight times at approximately the same
location (Table 1). If the bacterial community of the site
would fluctuate in response to the seasons or be affected by
human activities (e.g., plowing, cultivation) during the year,
we expected that this would result in a change of individual
bacterial population sizes making up the community and,
thus, in different relative amounts of population DNA and
16S rRNA genes among the total community-derived
DNA. A double-end-labeled T-RFLP system was used here
to simultaneously extract a more optimal amount of data
from each sample. Around 37 tRFs could be detected in the
IRD-800 gel images produced with labeled primer 926R
(Fig. 1a, Table 1), whereas 74–82 bands were distinguish-
able on gels with IRD-700-labeled fragments (primer 8F)
albeit seemingly concentrated in a smaller size “region”
(Fig. 1b). At first sight, the profiles did not show much
variability in samples taken at different time points, except
for an intensity increase of the fragments at 290 bp in panel
a1 (lanes 6ab) and at 610 bp in panel b1 (lanes 6ab). It
cannot be excluded that some tRFs would be artifacts from
PCR [10]. Pearson’s similarity indices within replicates
varied between 0.835 and 0.997, the IRD-700 analysis
being overall less reproducible than the IRD-800-based one
(Table 1). Examples of the development of relative average
peak intensity for selected individual bands throughout the
time period of analysis (Fig. 1c) reinforced the visual trend
that little variation occurred in many of the bands but that
other individual tRFs varied significantly throughout the
season. Pairwise comparisons between subsequent sam-
pling pairs in time resulted in 10 to 41 bands out of 125 of
the total combined dataset (IRD-700) or between 9 and 12
from 37 total tRFs (IRD-800) being significantly different
in intensity (P<0.05, t test, Table 2). Pairwise sample
similarities were lower than within sample replicate similar-
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ities and fluctuated between 0.417 and 0.989, the IRD-800
dataset bearing overall higher similarities (Table 2). Intensity
fluctuations were also higher in IRD-700- than IRD-800-
derived tRFs (from 8 to 19 tRFs being 200-fold less to 358-
fold more intense in subsequent samples for the IRD-700
channel, Table 2). Very few bands consistently varied
throughout all samples except one tRF (i.e., IRD-700
320 bp, more than fivefold in five of eight datasets).
Between 1 and 13 newly appearing or disappearing tRFs
were scored between consecutive time samples (IRD-700
data, Table 2) with a tendency of increasing differences
around sample F.

To consolidate the observations made with T-RFLP, a
subset of the same soil DNA samples was again analyzed
via RISA, which targets a different region as T-RFLP. The
four samples showed a highly consistent number of 42 to
46 discrete bands (Fig. S1). The Simpson’s diversity indices
and phylotype richness calculated from T-RFLP and RISA
data were remarkably stable for all samples, except for
some tiny but insignificant variations (Table 1). Despite
individual fragment intensity fluctuations, therefore, both
T-RFLP and RISA data suggested that no changes in the
total diversity of the soil microbial community took place
during the sampling period.

Principal Components and Clustering Analysis

To analyze overall community fluctuations in more detail,
we performed PCA and clustering for each of the datasets
(IRD-700 and IRD-800 derived relative band intensities in
T-RFLP). Two components were sufficient to explain 86.7
(IRD-700) and 97.6% (IRD-800) of the total variation

(Fig. 2). With few exceptions, sample replicates grouped
relatively close together in the PCA plot, showing that there
was on average little variation when all tRFs in the sample
were taken into account (Fig. 2). Clustering analysis of
distance matrices on both datasets confirmed that most
triplicates grouped very closely together with a very small
Euclidean distance between triplicates (Fig. 3). Bootstrap-
ping analysis showed that most branchings between sample
triplicates were not statistically significant (Fig. 3) and thus
that samples taken at different points in time cannot be said
to differ. Notable outliers in PCA were the samples F1/F2
for the IRD-700 dataset and H1/H2 for the IRD-800
dataset. Because there is too little congruency between
both datasets (Mantel test observation 0.42, P=0.03,
Table 3), we cannot conclude whether the H or F samples
significantly differ in T-RFLP or represent outliers in the
analysis.

To analyze the sensitivity of the PCA for such outliers
further, we tested whether one prominent band could
change the position of the sample in the PCA plot. Hereto,
we decided to artificially change the intensity of the

Table 1 Diversity statistics calculated from T-RFLP and RISA profiles of 16S rRNA genes amplified from agricultural soil DNA

Method Index Sample, time (days)a

A, 0 B, 14 C, 39 D, 50 E, 65 F, 168 G, 299 H, 317

T-RFLPb S(700)c 77 76 76 74 76 74 79 82
S(800) 36 36 36 36 36 36 37 37

RISA S(800) –d 43 – – 42 46 – 44
T-RFLP D(700)e 0.966 0.970 0.974 0.970 0.965 0.968 0.967 0.965

D(800) 0.937 0.934 0.931 0.934 0.931 0.936 0.936 0.929
RISA D(800) – 0.944 – – 0.932 0.943 – 0.938
T-RFLP Sim(700)f 0.987±0.004 0.918±0.040 0.835±0.072 0.857 0.977±0.011 0.973 0.927±0.039 0.927

Sim(800) 0.997±0.001 0.996±0.000 0.996±0.001 0.992 0.980±0.012 0.994 0.987±0.007 0.979

a Time points of soil collection starting from day 0 on July 1 2002 (A). Sampling dates of other samples: B, July 15, C, August 9, D, August 30, E,
September 14, F, December 12, G, February 25 2003, H, May 14 2003
b T-RFLPAgricultural soil DNA analyzed with T-RFLP to study the natural variation of microbial community, RISA same soil DNA analyzed with
RISA.
c Phylotype richness, S, calculated as the total number of distinct tRFs and IGS sizes (between 100 and 700 bp) in a profile
d Not determined
e Simpson’s index, D, calculated as follows: D ¼ 1�P

pið Þ2, where pi is the individual relative band intensity divided by the sum of all band
intensities per lane
f Average Pearson’s similarity coefficient, Sim, among replicates±average deviation (if more than two replicates)

bFig. 1 Bacterial community structure of agriculture topsoil sampled at
different time points during 1 year. a T-RFLP profiles of amplified
16S rRNA gene fragments in the different samples (A–H), restricted
with HaeIII and labeled with IRD-800 at the primer 926R. a2
Magnification of the region between 280–360 bp. b T-RFLP profiles
of the same samples using restricted amplified 16S rRNA gene
fragments labeled with IRD-700 at the forward primer 16S 8F and its
magnified region (b2). Molecular size markers (in bp) are indicated on
the left. c Examples of average relative intensities (among triplicates)
of selected tRFs throughout the sampling year. Lanes A–H denote
different time points of soil sampling and correspond to those of the
PCA (Fig. 3, Table 1); with (abc) representing replicates
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visually strong band at 288 bp in the F samples (IRD-800)
from a relative intensity of 4.3 and 3.9 to 0.40 (average
intensity value of the other samples). In the PCA plot, this
resulted in the clustering of the F samples with the others
(*F1 and *F2 in Fig. 2a), suggesting that its original
position was solely determined by the intensity of this
individual band. Similarly, when the relative band intensi-
ties at 614 bp in the samples F1 and F2 (IRD-700) were
substituted by the average values of the other samples, the
F data points shifted to a position closer to the rest of the
samples (*F1 and *F2 in Fig. 2b).

Artificial Disturbance of the Microbial Community in Soil

To better interpret the magnitudes of seasonal variations
observed in the soil microbial community of the agricul-
tural field, we analyzed community changes in artificially
perturbed laboratory microcosms containing the same soil
by T-RFLP. These were short-period incubations with the
only purpose of producing bacterial community changes
and not to mimic seasonal developments in the field. As for
the field samples, the tRF patterns of the control microcosm
(S, soil with water added only) did not show major changes
in number of detected bands, the calculated diversity index,
and the Pearson’s pairwise similarity coefficient (Table 4),
showing that despite small microcosm size, no changes
were induced by the system setup. Compared to the control,
the addition of the bacteria S. herbicidivorans MH (B)

without or with mecoprop (BM) caused an increase in
phylotype richness (Table 4) but a significant temporary
decrease in diversity index, between days 1 and 7, after
which the diversity index returned to a similar level as at
the beginning of the incubation. In addition, similarity
coefficients decreased strongly for samples taken at days 1
and 2, compared to the time zero sample, after which,
however, the similarities recovered (Table 4). Soil samples
to which S. herbicidivorans strain MH was inoculated (B)
showed a large increase in relative intensity of a fragment at
382 bp in the IRD-700 profile and at 480 bp in the IRD-800
profile after 1 and 2 days of incubation (Figs. S2a, c and
S3). The 480-bp band corresponds to an obtained fragment
size (490 bp) when performing T-RFLP for the 16S rRNA
gene on S. herbicidivorans genomic DNA (not shown).
This effect was also observed in the tRF patterns of soils
treated with mecoprop and inoculated with bacteria (BM,
Fig. S4). Phylotype richness and diversity index in the
nutrient-amended soil (NB) decreased strongly at day 1 but
returned to a similar value as on day 0. Even visually,
nutrient amendment resulted in large tRF differences
(Fig. S5). On the contrary, profile similarities compared to
the time zero sample decreased at day 1 and remained
strongly dissimilar hereafter (Table 4).

PCA and bootstrapping analysis of the control soil
community showed a strong clustering of all samples with
very slight time variability (Fig. 4, Fig. S6). Inoculation of
S. herbicidivorans strain MH quickly resulted in a strong

Table 2 Comparative statistical data on bacterial 16S rRNA gene profiles obtained with T-RFLP at different time points during the year

Dataset IRD-700 IRD-800

Pearson’s
pairwise
similarity
coefficient

Number of
significant
band
differencesa

Number of
bands with
less than 0.2-
fold change
[minimum]b,d

Number of
bands with
more than
fivefold
change
[maximum]c,d

Number of
new or
disap-
pearing
bands in
subsequent
sample

Pearson’s
pairwise
similarity
coefficient

Number of
significant
band
differencesa

Number of
bands with
less than 0.2-
fold change
[minimum]b,d

Number of
bands with
more than
fivefold
change
[maximum]c,d

A×B 0.928 28 (n=114) 8 [0.021] 8 [18.2] 1/2 0.989 12 (n=37) 0 0
B×C 0.832 41 (n=111) 8 [0.011] 11 [18.7] 3/3 0.980 9 (n=37) 0 0
C×D 0.823 – 14 [0.008] 19 [290] 4/6 0.976 – 0 0
C×E – 10 (n=125) – – – – 0 (n=37) – –
D×E 0.958 – 8 [0.003] 13 [130] 4/2 0.989 – 0 0
E×F 0.417 – 13 [0.053] 9 [358] 5/7 0.953 – 1 [0.06] 0
E×G – 18 (n=125) – – – – 12 (n=37) – –
F×G 0.494 – 12 [0.002] 15 [111] 13/9 0.952 – 0 3 [13.1]
G×H 0.871 – 15 [0.011] 15 [51] 8/5 0.909 – 0 1 [6.5]
H×A 0.866 – – – 2/7 0.913 – – –

aP<0.05, pairwise t test, number of corresponding significant changes in two datasets: 12, in three datasets: 5, in four datasets: 0
b Number of bands less than 0.2-fold in two datasets: 15, in three datasets: 3, in four or more: 0
c Number of bands more than fivefold in two datasets: 24, in three or more: 0
d Number of bands less than 0.2-fold and more than fivefold in two datasets: 12, three datasets: 17, four datasets: 9, five datasets: 1
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and significant shift of the community (compare data points
B0 with B1 and B2 in Figs. 4a and S6), slowly returning to
the original composition and that of the community in the
control incubations, on days 7 and 14 (Fig. 4a). Both IRD-
700 and IRD-800 datasets were in good agreement in
Mantel permutation tests (0.87, P=0.01, Table 3). Inocula-

tion with bacteria and application of mecoprop (BM)
immediately resulted in a detectable community change,
which augmented after day 2 and continued to be different
from both control and time zero and day 1 samples
(Figs. 4b, S7). Note, however, that the magnitude of the
temporarily change in Euclidean distance between the

a b

Fig. 2 Variability of the bacterial community in agricultural topsoil
over time during 1 year. a Principle components analysis of the
relative band intensities of all tRFs using the IRD-800-primed
amplicons. The first two components contribute to 86.7% of the total
variation. b PCA of relative band intensities of tRFs using the IRD-
700 primed amplicons; components 1 and 2 are responsible for 97.6%
of the total variation. The regions within the ellipses are enlarged in

the inset for clarity. Lettering (A–H) corresponds to sample desig-
nations as in Fig. 1 and Table 1. Indices refer to the different replicates
per sample. *F1 and *F2 in panels a and b show the shifts of the data
points after the artificial relative intensity change of the bands at 288
(IRD-800) and 614 bp (IRD-700) as explained in the main text. Note
the scale differences between a and b and between the enlarged
regions

a

b

Fig. 3 Sample clustering of the
agricultural topsoil bacterial
community profiles using dis-
tance matrix calculations and
bootstrapping. a Clustering
based on the T-RFLP dataset
obtained with the 8F IRD-700
forward-primed 16S rRNA gene
amplicons. b Idem with the
927R IRD-800 reverse-primed
amplicons. The ordinate shows
the Euclidean distance, and
numbers at the nodes refer to the
percentage of trees carrying this
branching order as obtained via
bootstrapping (n=100). Sample
designations (lettering plus
index) correspond to those of
Figs. 1 and 2 and Table 1
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incubation with bacteria only (B) was larger than with
mecoprop plus bacteria (BM). Cluster analysis reinforced
the visual observations that nutrient addition resulted in an
immense and immediate effect on the bacterial community
composition and did not return to the control composition
either (Figs. 4c, S8). Surprisingly, the variation between
communities from the NB treatment completely surpassed
that of the others. Both IRD-800 and IRD-700 datasets for
the NB treatment samples were again in good agreement
(0.87, P=0.01, Table 3). In terms of pairwise dataset
comparisons, almost 25% of the tRFs between NB
treatment and control were unique to either dataset, vs up
to 5% for bacterial inoculation with or without mecoprop
compared to the control (Table 5).

Discussion

Natural Variability

In this paper, we studied bacterial community fluctuations
in a regular agricultural soil as a function of seasonal
influences and human activities. Detecting such “natural”
variations is important because they form the baseline
against which changes in microbial diversity can be
detected. For example, we might be interested in inoculat-
ing specific bacteria for bioremediation of agricultural
chemicals, but possible negative effects on microbial
diversity must be related to a background of natural
variability. Various authors have reported that the inherent
relative band intensity deviation among replicate T-RFLP
analyses is in the order of between 5 and 15% [1, 16, 33],
with sample replicate similarity indices of between 0.85 to
0.97, which is similar to what we found here. Fluctuations
in community profiles, which are smaller than the inherent
method variability, can thus not be discerned, except when

Table 3 Correlation of distance matrices of bacterial 16S rRNA gene
profiles obtained with T-RFLP

Dataset Simulated similaritya Simulated P valueb

dd700×dd800c 0.42 0.01
s700×s800 0.29 0.02
nb700×nb800 0.87 0.01
b700×b800 0.87 0.01
bm700×bm800 0.84 0.01

a Similarity value produced from 999 repetitions in a Monte Carlo
permutation test
b Simulated significance value
c Datasets: dd700 T-RFLP data IRD-700 channel (primer 6F) from soil
community DNA, dd800 idem IRD-800 (primer 926R), s700 soil
microcosm, nb700 soil microcosm with nutrient broth added, b700
soil microcosm with bacteria inoculated, bm700 soil microcosm with
bacteria plus mecoprop added
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the number of replicate analyses is increased. It is interesting
to note that the bacterial community in the soil as examined
via variability of the 16S rRNA genes and 16S–23S rRNA
intergenic spacer region using T-RFLP and RISA, respective-
ly, remained overall highly constant during the seasons (with
changing temperature and rainfall) and despite human
activities (plowing, maize and winter lettuce, fertilization).
The highly stable bacterial community is well documented by
the overall community parameters richness and Simpson’s
diversity indices and by PCA, clustering, and bootstrapping
on complete tRF datasets. There was a tendency for the
December sample (“F”) to be different from the rest (Table 2),
but IRD-700 and IRD-800 datasets did not consistently place
this sample outside the rest. One component in PCA was
largely sufficient to explain the variability among the
samples but did not correlate with the sampling date or
season itself. Clustering and bootstrapping of distance
matrices suggested that none of the clustering branches was
significant (i.e., occurring in more than 50% of the boot-
strapped trees) or occurred similarly in both IRD-700 and
IRD-800 datasets, implying that the sampled communities do
not follow a clear trend and thus remain the same in
statistical terms. Because we sampled more or less randomly
in time, we may have missed changes resulting from rainfall,
which were already leveled out at the time of sampling.
However, other authors have reported that normal soil
moisture fluctuations (drought and rewetting) have relatively
little effect on bacterial community composition as measured
by 16S rRNA gene or transcript diversity [14].

Nevertheless, a significant number of individual tRFs
did vary in relative intensity (Fig. 1, Table 2), both for the
IRD-700 and the IRD-800 datasets, and there was a slight
tendency that samples E, F, and G (fall, winter, and spring)
were more variable in number of unique differences
(Table 2). This and the magnitude of some tRF fluctuations
(up to 358-fold) leads us to conclude that individual
populations within the soil microbial community do vary,
whereas this may be leveled out at the variance level of all
tRFs. We are aware that a single tRF in the analysis can
actually be comprised from different bacterial populations,
which happen to have the same restriction cleavage position
in their 16S rRNA gene with respect to the PCR primer-
binding site and that, therefore, even a nonchanging tRF in
the analysis may be the consequence of fluctuating
subpopulations. In addition, misinterpretations may occur
in band designations in particular among similarly sized
bands [33] and as a result of PCR artifacts [10]. For the
time being and without further information on the tRFs
sequences, therefore, we do not assign specifically fluctu-
ating tRFs to particular bacterial populations. This problem,
although, is partially overcome at the level of the complete
datasets by the use of both end-labeled-amplified 16S
rRNA gene fragments.

Detecting Community Changes

We could thus conclude that the soil bacterial community
overall did not change significantly (within the limits and
sensitivity set by the inherent method variability and
accuracy of T-RFLP or RISA), whereas a limited number
of individual bacterial populations did vary (Table 2). Not
many studies have specifically addressed natural commu-
nity fluctuations in soil microbiota, and those which did
reported contradicting results or applied different method-
ologies and statistical analyses. For example, the soil
microbial communities in a pine forest soil in Java were
shown to remain stable throughout a wet and a dry season
but differed according to soil organic carbon content [21],
whereas Laverman et al. [23] concluded that populations of
ammonium-oxidizing bacteria remained stable throughout
the year in a temperate, acid forest soil, although the total
bacterial community structure dramatically differed. In the
previously mentioned studies of Buckley and Schmidt [3]
and Lipson and Schmidt [26], significant changes in
taxonomic group sizes of soil bacterial communities were
detected during the seasons, amounting to approximately
twofold increase or decrease per taxonomic group. How-
ever, of the four reports, Krave et al. [21] employed rRNA
rather than 16S rRNA gene abundance, whereas none of the
other reports included community-wide statistical analysis,
making comparisons about the magnitude of changes rather
difficult. Because clear community differences were ob-
served in long-term studies between differently treated
soils, several authors concluded that soil communities
respond at time scales of 10 or more years [3, 22, 44],
which would also suggest that seasonal changes in
community composition remain small.

To relate the magnitudes of observed T-RFLP variations
in the agricultural soil bacterial community to some
experimental parameter and perhaps define a “bandwidth”
of natural variability, we subjected soil in microcosms to a
number of artificial laboratory-induced perturbations, which
we expected would lead to a measurable difference in
community composition. Inoculation of 109 bacteria (S.
herbicidivorans MH) to 2 g soil resulted in a very clearly
differentiated community profile compared to a control soil,
incubated under the same conditions. On the other hand,
addition of water only and incubating for 14 days at 25°C
did not significantly change the bacterial community
profile. It is interesting to note that bacterial communities
perturbed with inoculated bacteria returned to their original
community profile after 7 days and the 480-bp band
attributed to the 16S rRNA gene of S. herbicidivorans
MH disappeared, which may indicate that the inoculated
bacteria did not survive well in the soil. Adding both
bacteria and mecoprop (a frequently used herbicide in
agricultural practice) changed the community profile to a
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a

c

b

Fig. 4 PCAs of relative band intensities of the IRD-700 datasets from
the soil microcosms. Different individual treatments are compared. a S
(control soil plus water) vs B (addition of S. herbicidivorans bacteria),
b S vs BM (bacteria and mecoprop), and c S vs NB (addition of

nutrient broth). PC 1 is plotted against PC 2. The two main
components explain 92.8 (a), 92.8 (b), and 79.6% (c) of the total
variation. Encircled data points are enlarged in separate plots. Note
the scale differences of the components among the three plots

Table 5 Number of changing labeled terminal restriction fragments between different treatments to soil in microcosms

Dataset IRD-700a IRD-800

Number of new tRFsb Disappearingc Number of new bands Disappearing

S×NB 25 (n=95)d 13 11 (n=47) 8
S×B 4 (n=75) 0 1 (n=38) 0
S×BM 5 (n=75) 0 0 (n=38) 1

a IRD-700 primer 6F, IRD-800 primer 926R
b tRFs appearing in NB, B, or BM vs S across all time samples
c Idem disappearing in NB, B, or BM vs S
d Total number of tRFs in both datasets
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lesser extent than bacteria only but to a permanently different
state after 14 days. Both these treatments, therefore, suggested
that the soil community in the field did not fluctuate as much
as the equivalent of inoculation of one strain at 109 cells or
addition of 4 μg mecoprop per gram soil. To put this in
perspective, in a recent semifield-scale bioremediation study,
Paul et al. [34] used 106 Arthrobacter cells per gram of soil
and found no significantly different community profiles
compared to a noninoculated control. Perhaps as an extreme,
addition of nutrients changed the community composition
immediately and for the full duration of the incubation. This
perturbation is similar in effect as plating soil bacteria
suspensions on nutrient agar in which case the resulting
colony diversity no longer corresponds to the original
community diversity [40].

Can a bandwidth of natural variability thus be defined,
outside which the community will develop into a different
composition? The first difficulty in this respect is to identify
the proper parameter for the bandwidth definition. Zhou et
al. [45] described no diversity differences in a soil polluted
with 20% chromium using the reciprocal of the Simpson’s
and the log series index, whereas soils from different depths
and locations did differ. The results of this work and that of
others [16] suggest that classical diversity parameters
(species richness, Simpson’s diversity) are not sufficient
for this purpose, at least not in combination with T-RFLP
data that generate some 100 observations per sample (i.e.,
number of tRFs in IRD-700 plus IRD-800 datasets). On the
contrary, the use of a pairwise similarity index was
proposed by De La Cochetière et al. [6], who studied
community fluctuations in human intestinal flora in
response to antibiotic treatment. It is interesting to note
that their data suggested that at ~70% community similarity
(calculated from TGGE diversity of amplified 16S rRNA
gene fragments), the communities still recover to their
original composition [6]. Our perturbation experiments
suggested that temporary similarities of 58% still recover,
at least in the case of bacteria inoculation, whereas at 30%
or less, the communities will differ in the long term
(Table 4, Fig. 4). However, the use of similarity indices is
not completely satisfying because it cannot differentiate
composition trends very well (viz. the different trends
between communities perturbed with bacteria alone or
bacteria plus mecoprop). In this paper, the use of coordinate
analysis (or PCA) or other types of clustering become more
appropriate [1, 16, 17], although quantitative boundary
definitions become much more difficult. In terms of
“pragmatic” definition, therefore, the use of similarity
indices or correlation coefficients between distance matrices
may be favored in which case the 70% similarity boundary
may be proposed as a rule of thumb for bacterial
communities starting to drift apart. It may be interesting
to test further types of experimental perturbations to better

define the resilience of complex microbial communities via
similarity or correlation coefficients, which may have a
more general character for any complex bacterial commu-
nity. Furthermore, we can conclude that soil microbial
communities appear to fluctuate insignificantly at the level
of T-RFLP analysis during the various seasons, which
offers good possibilities to detect future aberrant trends.
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