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2Département de Mathématiques, Université Montpellier II, UMR CNRS 5149, Place
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Introduction

In this paper we propose a numerical method for the uniformization of Riemann
surfaces and algebraic curves in genus two with higly accurate results.

Let G be a Fuchsian group acting on the unit disk D, and let S = D/G. As is
well known S is also in natural way an algebraic curve. We propose to describe
a practical way to compute, in genus 2, the uniformizing function from the unit
disk to the algebraic curve. By practical we mean that the method we are going
to describe leads to a simple algorithm easy to implement that will compute an
approximation of the uniformizing function.

The basic idea underlying our method is to reduce the problem to the known
case of genus 1 (for which solutions to the uniformization problem are known
since the XIXth century). Geometrically, a natural way to associate a genus 1 sur-
face to a genus 2 surface is the following. Let X be a genus 2 surface and let Y be
a genus 3 double cover. Let ϕ be the involution such that X =Y/ϕ. By a classical
result of Enriques such a genus 3 surface is hyperelliptic. Let τ be the hyperelliptic
involution on Y. Then the quotient of Y by τ ◦ϕ is of genus 1. In practice we will
work with a fundamental octagon representing the genus 2 surface S, take G to
be the group generated by the side paring of opposite sides, and produce from G

a group G′ such that S′ = D/G′ is of genus 1. This surface S′ has also a natural
representation as C/�. From this we will show how to construct a holomorphic
function f : D → C such that the composition T� ◦ f , of f with a �-equivariant
function T�, is a G-equivariant meromorphic function.
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Fenchel–Nielsen coordinates are a more familiar way of parameterizing
Teichmüller space (or if one prefers, hyperbolic surfaces). In a second part we will
show how one can associate octagons in terms of Fenchel–Nielsen coordinates and
vice-versa, using essentially algebraic relations.

Combining these two parts we obtain a way to produce a fairly simple algo-
rithm to compute an approximation of uniformizing functions. This algorithm has
been implemented, and in the third part we give a few examples of the results.
The code in Maple form, and in C (with a Maple interface), together with a
worksheet containing documentation and examples is available at http://www.math.
univ-montp2.fr/∼rs (see in particular [7]).

1. From the Octagon to the Uniformizing Function

Let G be a Fuchsian group acting on the unit disk D and such that D/G= S is
a genus 2 surface. We assume here that G does not contain parabolic or elliptic
elements. It is well known that under this condition one can choose a geodesic
octagon for the fundamental domain that has a central symmetry and such that
G operates by identification of opposite sides. Conjugating G in PSL2(R), if nec-
essary, we may assume in addition that the octagon is symmetric with respect to
the origin and has the midpoint of one of its sides on the real axis.

Let us now assume that such an octagon, P, is given. We label the vertices
q1, . . . , q8 and the midpoints of the sides p1, . . . , p8 as in Figure 1. The preimages
of the Weierstrass points of S are 0, the pi ’s and the qi ’s. Call gi the element of
G such that gi(pi +4)=pi . Then G is generated by {g1, . . . , g4}.

The uniformizing function for the corresponding algebraic curve will be obtained
from this data.

Figure 1.

As is well known an elliptic element of Aut(D) of a given order is completely
determined by its fixed point in D. We will denote by h2i the elliptic transfor-
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mations of order 2 with fixed points p2i and call G′ the group generated by
{g1, g3, h2, h4, h6, h8}. The crucial observation is that P is also a fundamental
domain for the action of G′ and, moreover, for each g′ ∈G′ there exists a g∈G such
that either g′(z)=g(z) or g′(z)=g(−z).

The surface S′ =D/G′ is a surface of genus 1 with four cone points, the images
of the p2i ’s.

The key to our construction is contained in the next Lemma.

LEMMA 1.1. In the above situation there exists a unique τ in the upper half plane
H and a unique holomorphic function f : D→C such that

(i) f is odd;

(ii) f is conformal on D except at the points p2i and their images under G (or G′)
and f (z) – f (p2i ) is exactly of order 2 at p2i ;

(iii) f (g1(z))=2+f (z) and f (g3(z))=2τ +f (z);

(iv) f (h2i (z))=f (z) for i from 1 to 4.

Proof. From a conformal point of view S′ is a genus 1 surface with a distin-
guished homology basis defined by the images of the axes of g1 and g3. Hence
there is a unique τ such that we have a conformal equivalence from S′ to C/�,
where � is the lattice generated by 2 and 2τ , and the image of [−1, 1] (resp.
[−τ, τ ]) under the canonical projection π2 : C → C/� = S′ is in the same homol-
ogy class as the image of the geodesic arc [p5, p1] (resp. [p7, p3]). Note that these
arcs are on the geodesic axes of g1 and g3 respectively. The conditions define the
equivalence up to a translation in C/�. We make it unique by requiring that the
intersection of the axes maps to π2(0) and write S′ =C/�.

Call π1 the covering map D→S′. Since π2: C→S′ is the universal cover of S′

and D is simply connected, π1 lifts to a map f : D→C, and this lifting is unique
if we impose f (0)=0.

It is readily checked that multiplication by −1 in D induces, via π1, a non-trivial
involution on S′. Since π1(0)=π2(0) is fixed by this involution it is also induced,
via π2, by multiplication by −1 in C . Since by construction we have π2 ◦f =π1,
this proves that f is odd.

Since π2 is localy biholomorphic and π1 is locally biholomorphic except at the
p2i ’s and their images under G (or G′) where it is 2 to 1, f satifies (ii).

By construction there exists γ1 and γ3 in � such that f (g1(z))=f (z)+ γ1 and
f (g3(z)) = f (z) + γ3. To compute these we first note that π1([p5, p1]) is a simple
closed curve α in S′. In the same way the image of [p7, p3] is a simple closed curve
β. Both α and β have a natural orientation induced by the orientations of the
intervals. On the other hand we have a canonical identification �∼=H1(S

′,Z), and
by definition of � the homology class of α is identified with 2 and β with 2τ . In
other words, γ1 =2 and γ3 =2τ . Hence f satisfies (iii).

Again, for each i there exist aγ ∈� such that f (h2i (z))=f (z)+γ . Applying this
at the fixed point p2i we find γ =0. Hence, f satisfies (iv).
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Note the following important consequences of the properties of f . Since p5 =
−p1 and p1 =g1(p5) we have f (p1)= 1. In the same way we have f (p3)= τ . We
also have f (q1)=f (q2), f (q3)=f (q4) and so forth. On the other hand q1 =g1(q4)

and q3 =g3(q6)=g3(−q2). Combining these relations we find f (q1)=f (q2)=1+ τ,

f (q3)=f (q4)=−1+ τ .

Figure 2 gives an illustration of how the map f of the Lemma maps an octa-
gon. To compute the function f we will use the following simpler characterization

Figure 2.

LEMMA 1.2. Let notations be as above and let f̃ be a holomorphic function defined
on a neighbourhood U of the octagon P. If there exists a τ̃ ∈C such that the follow-
ing hold,

(i) f̃ is odd,

(ii) f̃(g1(z))=2+ f̃ (z) for points on the geodesic arc [q4, q5],

(iii) f̃(g3(z))=2τ̃ + f̃ (z) for points on the geodesic arc [q6, q7],

(iv) f̃(h2i (z))= f̃ (z) on [q2i−1, q2i ] for i equal 1 and 2,

then f̃ =f on U , where f is the function defined in Lemma 1.1.
Proof. Let �̃ be the lattice generated by 2 and 2τ̃ . Let S̃′ =C/�̃ and π̃2 be the

canonical projection from C to S̃′. Finally let ϕ̃ = π̃2 ◦ f̃ and ϕ =π2 ◦f , where π2

is as in the proof of Lemma 1.1.
From the conditions satisfied by f and f̃ it easily follows that ϕ̃ ◦ϕ−1 extends

to a holomorphic map from S′ to S̃′ that sends π2(0) to π̃2(0). By standard ellip-
tic curve theory this implies that ϕ̃ ◦ ϕ−1 is induced by a map z �→ az in C (see
for example [8] p. 159). But this implies that f̃ =af for some complex number a.
Since the conditions on f̃ imply, in the same way as for f , that f̃ (p1)=1=f (p1)

we find a =1 and f̃ =f .
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We can now give the construction of the G-equivariant function.
By standard elliptic function theory, we know that there exists an even mer-

omorphic function Tτ : C → P
1(C) such that Tτ is �-periodic, i.e., Tτ (z + 2) =

Tτ (z), Tτ (z+2τ)=Tτ (z). Moreover we can normalize it so that Tτ (0)=0, Tτ (1)=1
and Tτ (τ )=∞. Explicitly we use the function,

Tτ (z)=− w

K

∞∏

k=0

(w − ζ 2k)2(1− ζ 2k+2w)2

(w − ζ 2k+1)2(1− ζ 2k+1w)2
, (1.3)

where

ζ = exp(πiτ ), w = exp(πiz) and K =4
∞∏

k=1

(
1+ ζ 2k

1+ ζ 2k−1

)4

,

(we have adapted for our purpose the function defined in Nehari [5], Chap. VI,
Section 3).

PROPOSITION 1.4. Let, as in the beginning of this section, G be a Fuchsian group
identifying opposite sides of the octagon P and let S = D/G. Let f and τ be as
Lemma 1.1 and finally let F =Tτ ◦f (Tτ as above). Then,

– For all g ∈G,F(g(z))=F(z).

– If a1 =F(qi), a2 =F(p2) and a3 =F(p4) then

y2 =x(x −1)(x −a1)(x −a2)(x −a3)

is an equation for the algebraic curve coresponding to S.
Proof. By the construction of f we have F(g1(z)) = F(z) and F(g3(z)) =

F(z). So to prove the first point we only need to prove that F(g2(z)) = F(z)

and F(g4(z)) = F(z). For this we note that g2(z) = −h6(z). Hence, f (g2(z)) =
f (−h6(z)) = −f (z) by the construction of f . Since Tτ is even we are done. The
proof for g4 is the same.

For the second point, recall that

f (0)=0, f (p1)=1, f (q1)=1+ τ and f (p3)= τ. (1.5)

Now note that F is precisely branched over ∞,0,1, a1 (the branch points of Tτ ),
a2 and a3 (these induced by f ). Since S is of genus 2, and in particular hyper-
elliptic, this implies that F , which is G-equivariant, is a lifting of the hyperelliptic
projection S →P

1(C). The assertion then follows from the fact that ∞,0,1 and the
ai ’s are the images of the Weierstrass points.

If we write the equation of the algebraic curve C in the form of y2 =
x(x −1)(x −a1)(x −a2)(x −a3), then the function F(z) will be the x coordinate of the
corresponding point in C. Now F is an even function, and hence the same holds for
PS : z �→F(z)(F (z)−1)(F (z)−a1)(F (z)−a2)(F (z)−a3). Since PS has also a zero of
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order 2 at the origin, PS has a development at the origin of the form
∑

anz
2n (with

a1 �= 0). From this it is a trivial matter to define a meromorphic square root of PS

and hence a G-equivariant function giving the y coordinate.

Remark 1.6. For technical reasons we have used the function Tτ , but we could
have used to the same effect any even �-periodic function. In particular we could
have used the Weierstrass ℘ function.

The numerical part in our approach is the computation of the function f . Here
the essential point is that f maps P to a bounded domain. This allows as to use
polynomial approximation (cf. points 3.2, 3.3 for details).

2. From Fenchel–Nielsen Coordinates to Octagons

In this section we relate the octagon P to the Fenchel–Nielsen coordinates which
are geometrically more intuitive. These parameters arize when a Riemann surface
is partitioned into pairs of pants, i.e. surfaces of signature (0, 3) with geodesic
boundary curves. In genus 2, the number of pairs of pants is two, and there are
two combinatorially different partition schemes. We take here the one in which
the partition is along (pairwise disjoint simple closed) geodesics γ1, γ2, γ3, each of
which is nonseparating. There are many ways to adapt such a partition to P, we
describe here two possibilities which have proved useful for the computations of
the examples in Section 3. These two decompositions are illustrated in Figures 3
and 4. We will describe in detail one of these (Figure 3) and only sketch the sec-
ond since the method is essentially the same.

Figure 3.

Consider the following geodesics in D: γ̃1 through q1, q2; γ̃2 through p3, p4; γ̃3

through p5, p1. On S the geodesics γi =π(γ̃i), i = 1,2,3, then form a partition of
the required type. Note that the inverse image of γ2 in P is the union of the arcs
p3p4 and p7p8.
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The length parameters of this partition are defined as

li = 1
2

(γi), i =1,2,3. (2.1)

Observe that

l1 = dist(q1, q2)/2, l2 = dist(p3, p4), l3 = dist(0, p1). (2.2)

For the twist parameters we draw, for i = 1,2,3, the shortest connection ai in D

from γ̃i−1 to γ̃i+1 (indices modulo 3) to obtain a right angled geodesic hexagon
H with sides a1, γ

H
3 , a2, γ

H
1 , a3, γ

H
2 . Under π this hexagon projects to a hexagon

on one of the pairs of pants of the partition, and it is known that


(γ H
i )= li , i =1,2,3. (2.3)

The lengths of the ai are given by

cosh ak = cosh lk + cosh lk−1 cosh lk+1

sinh lk−1 sinh lk+1
, k =1,2,3 mod 3. (2.4)

On γ̃1 there is an arc t1 connecting the end point of a3 with q2. We denote by

or (t1) its oriented length: positive if an observer walking along a3 towards γ̃1 has
to turn left in order to get to q2 (as in Figure 3), negative otherwise. There are
similar such arcs t2 on γ̃2 from a1 to p3 and t3 on γ̃3 from a2 to p1. The twist
parameters are now defined as

τi = 
or (ti)

li
, i =1,2,3. (2.5)

The computation of the Fenchel–Nielsen parameters thus defined is based on
Möbius transformations. Let M be the algebra of all 2 × 2 matrices M of type

M =
[

α β

β̄ ᾱ

]
, α, β ∈C, detM �=0.

Any M ∈M acts on D as an isometry, sending points z∈D to

M[z]= αz+β

β̄z+ ᾱ
, if det M >0, M[z]= α/z̄+β

β̄/z̄+ ᾱ
, if det M <0.

The isometry is orientation preserving if det M >0, and orientation reversing oth-
erwise.

Explicitly we shall use, for any p ∈D the matrix

H(p)= i

[
(1+|p|2) −2p

2p̄ −(1+|p|2)
]
, (2.6)

and for t ∈R the matrices

R(t)=
[

1+ cosh t sinh t

sinh t 1+ cosh t

]
, U(t)=

[
1+ cosh t i sinh t

−i sinh t 1+ cosh t

]
. (2.7)
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H(p) represents the half turn hp with center of rotation p;R(t) is the hyperbolic
isometry with axis from −1 to 1, shifting points on this axis to the right or to the
left by |t | according as t >0 or t <0; U(t) has similar properties with axis from −i

to i, shifting points on the axis upwards if t >0 and downwards if t <0.
Using Figure 3, one gets the following expressions for p1, . . . , p4, q2 in terms of

Fenchel–Nielsen coordinates, where the ak are given by (2.4).

p1 =R(l3)[0],

p2 =R(l3 − τ3l3)U(a2)R(−τ1l1)[0],

p3 =R(−τ3l3)U(a1)R(−τ2l2)[0], (2.8)

p4 =R(−τ3l3)U(a1)R(−l2 − τ2l2)[0],

q2 =R(l3 − τ3l3)U(a2)R(−l1 − τ1l1)[0].

The vertices of the octagon are obtained via the half turns,

q3 =H(p3)[q2], . . . , q1 =H(p1)[q8]. (2.9)

For the computation in the inverse direction we define the geometric trace

gtrM = 1
2

trace M√|det M| (2.10)

for M ∈M, and the traceless part

tl(M)=M − 1
2

trace M ·
[

1 0
0 1

]
. (2.11)

The following properties are easily checked using conjugation into a suitable nor-
mal form.

– If M is a rotation with center of rotation p∈D, then tl(M) is the half turn with
center p.

– If M is an isometry (orientation preserving or reversing) having an axis γ , then
tl(M) is the symmetry with axis γ.

– If L,L′ are half turns with centers of rotation p,p′, then

|gtr LL′|= cosh (dist(p,p′)). (2.12)

– If L is a half turn with center of rotation p and S a symmetry with axis γ , then
gtr LS = ±sinh(dist(p, γ )) with the plus sign on one side of γ and the minus
sign on the other.

Let us now assume that the octagon P is given, say in terms of the vertices
q1, . . . , q8. Using the formulae

p = ω

1+
√

1−|ω|2
, with ω= q(1−|q ′|2)+q ′(1−|q|2)

1−|qq ′|2 (2.13)
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for the midpoint p of a geodesic segment qq ′ in D we obtain the midpoints of the
sides. Abbreviating

M1 =H(q2)H(p2), M2 =H(p4)H(p3), M3 =H(p1)H(0),

L1 =H(q2), L2 =H(p3), L3 =H(p1),

and using (2.2) we then obtain the following expressions for the Fenchel–Nielsen
coordinates

cosh li =|gtr Mi |,
(2.14)

sinh τi li =gtr(Litl(tl(Mi+1)tl(Mi))), i =1,2,3,

(indices modulo 3). Here it is used that the product of the symmetries tl(Mi+1) and
tl(Mi) is a hyperbolic isometry, whose axis is the common orthogonal of the axes
of Mi+1 and Mi . In order to see that the signs are correct it suffices, by continuity,
to check this for a convenient special case.

Figure 4 shows, by way of an example, how one may obtain other octagons for
the same group G (up to conjugation). The figure on the right-hand side shows
our second decomposition that we used for the computations in Section 3.

Figure 4.

In a first step we set

p′
1 =p2, p′

2 =q2, p′
3 =H(p3)[p4], p′

4 =p3

q ′
1 =H(p2)[p1], q ′

2 =H(p′
2)[q

′
1], q ′

3 =H(p3)[p5], q ′
4 =p5,

and p′
k+4 =−p′

k, q
′
k+4 =−q ′

k, for the remaining points. It is easily checked that the
octagon P′ with these data is also a fundamental domain of G.

In the second step we rotate P′ so that the midpoint of the first side lies on the
real axis. The formulas for p′

1, . . . , p′
4, q

′
8 are
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p′
1 =R(l3 − τ3l3)U(a2)R(−τ1l1)[0],

p′
2 =R(l3 − τ3l3)U(a2)R(−τ1l1 − l1)[0],

p′
3 =R(−τ3l3)U(a1)R(l2 − τ2l2)[0], (2.8′)

p′
4 =R(−τ3l3)U(a1)R(−τ2l2)[0],

q ′
8 =R(l3)[0]

The remaining vertices are q ′
1 =H(p′

1)[q
′
8], etc. and the resulting octagon has to be

rotated by multiplying with |p′
1|/p′

1.

3. The Implementation and Some Examples

It is fairly straightforward to go from the method we have indicated in the first two
sections to an implementation. We have done this in the form of a Maple package
that can be obtained at [http://www.math.univ-montp2.fr/∼rs].

We describe briefly the content of the file genus2unif.mp (the Maple package).
Details on its usage are given in the files genus2unifdoc.mws (a Maple worksheet,
see [7] for an html version).

The essential functions available are

3.1. octo1 and octo2

These compute, using the formulae given in Section 2, the vertices and midpoints
of a fundamental octagon in terms of the Fenchel–Nielsen coordinates of the
hyperbolic surface. The pants decomposition will be as on the left of Figure 5 for
Octo1 and as on the right for Octo2.

Figure 5.

3.2. g2unifcoeff

This computes the coefficients of a polynomial approximation
∑N

n=1 anz
2n−1

(where N can be chosen) of the holomorphic function f , described in Lemma 1.1,
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in terms of the octagon. For this we construct an over-determined linear system
where the unknowns are τ and the coefficients an. The coefficients of the system
are the conditions of Lemma 1.2 at points on the boundary of the octagon. We
then solve this system in the sense of least squares using standard routines to do
this. The reason this works, and in fact works rather well, is that the function f

we are approximating is holomorphic on the whole unit disk so that already the
Taylor polynomials provide arbitrarily accurate approximations.

Remark 3.3. What G2unifcoeff does then is to find, for a given degree, the
best possible polynomial approximation of f on the octagon and not to compute
an approximation of the Taylor expansion. It turns out experimentally, however
that roughly the first quarter to the first third of the coefficients are rather good
approximations of the Taylor coefficients.

3.4. g2uniffunc

This is the composition of the approximation of the function f , computed by
means of 3.2, and the inverse elliptic function described in 1.3. It is an approxi-
mation of an even G-invariant function on the unit disk (see 1.4).

3.5. g2equa

This evaluates the function computed in 3.3 at the Weierstrass points. The output
is a list of 5 complex numbers: 0, the image of 0; 1, the image of p1 (in the nota-
tion of Figure 1); a1, the image of q1 (or of any qi); a2, the image of p2; and a3,
the image of p4. The remaining Weierstrass point p3 is sent to infinity by this map.

Remark 3.6. We also give variants for the case of surfaces with an order 4 auto-
morphism. Taking into account the additional symmetry allows us to speed up the
procedure somewhat.

We have also added a few further routines which may be useful (see the file
genus2unifdoc.mws or [7] for more detail).

A great number of tests has been carried out. These contain, of course, the
known cases of surfaces with a very large automorphism group, that is the sur-
faces with Fenchel–Nielsen coordinates:

– (1 + √
2, 0, 1 + √

2, 0, 3 + 2
√

2, 1
2 ) (where as before 1 + √

2 and 3 + 2
√

2 refer
to the hyperbolic cosine of half the length of the geodesic, and 0 and 1

2 are the
corresponding twist parameters). This is the surface with automorphism group
of order 48.

– (2, 0, 2, 0, 2, 0). This is the surface with automorphism group of order 24. We
have also made the computations with the coordinates (2, 1

2 , 2, 1
2 , 5, 1

2 ).
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– (3/2 + √
5/2,0,1 + √

5/2, 1
2 ,9/4 + 3

√
5/4, 1

2 ). This is the surface with automor-
phism group of order 10.

The results are the ones expected within the accuracy demanded (see [7] for
more details).

We have also tested the method on the exact examples computed in [3]. The tests
for a few of these are given in [7] but we have favored examples for which we have
no proof of exactness. These are the surfaces with Fenchel–Nielsen coordinates:

– (2, 1
2 ,4, 1

2 ,7, 1
2 ) (which is the same surface as the one with Fenchel–Nielsen coor-

dinates (
√

2,0,
√

2,0,2,0) of [3] 8.6).

– (
√

7,0,
√

7,0,2,0) of [3] 8.7.

– (3/2, 1
2 ,3/2, 1

2 ,4, 1
2 ) (which is the same surface as the one with coordinates

(
√

6,0,
√

6,0,3/2,0) of [3] 8.8).

– (3, 0, 3, 0, 3, 0) of [3] 8.9.

The example (2, 0, 4, 0, 7, 0) comes from [6] and (4,0,
√

10/2,0,
√

10,0) comes
from [1]. The results are the same as the ones announced there. The interest of
these examples is that they have the hyperelliptic involution as only non-trivial
automorphism.

The other examples are to our knowledge new. For the first three one can in fact
prove that the results are exact, but this will be done elsewhere.

– (1+√
3, 1

4 ,1+√
3, 1

4 ,3+2
√

3, 1
2 ). For this example we find, with 25 exact digits,

the equation

y2 =x(x2 −1)(x − (
√

3+ i)/2)(x − (
√

3− i)/2).

– (1+√
3, 1

4 ,3+2
√

3,0,1+√
3, 1

4 ). For this example we find the equation

y2 = (x2 − (2−
√

3)i)(x2 −1)(x2 −1− (2−
√

3)i).

The main interest of this example is that the algebraic curve is not defined over R

(this can be checked by computing the Igusa invariants – see [7]).

– ((1+√
17)/4, 1

2 , (1+√
17)/4, 1

2 , (3+√
17)/2, 1

2 ). Here we find the equation

y2 =x(x2 −1)(x − (31−7
√

17)/64)(x − (31+7
√

17)/2).

– ((1+√
5)/2,0, (1+√

5)/2,0, (1+√
5)/2,0). We find that an equation should be

y2 =x(x −1)(x − (5+
√

5)/2)(x −1−2
√

5/5)(x −6−2
√

5).

– (3, 1
2 ,3, 1

2 ,3, 1
2 ) for which we find that an equation should be

y2 =x(x −1)(x −2/5+4i/5)(x −3/5+4i/5)(x − 1
2

+ i).

The second form (2, 1
2 ,2, 1

2 ,3,0) of this surface is also tested.
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– (3 + 2
√

2,0,3 + 2
√

2, 1
2 ,3 + 2

√
2, 1

2 ) and (1 + √
2,0,1 + √

2,0,1 + √
2, 1

2 ). The
equations found are rather complicated and it is not very meaningful to give
them here. On the other hand, the results we find suggest that the first is iso-
morphic to the algebraic curve defined by the equation,

y2 = (x2 −1)(x4 + (128−90
√

2)x2 +498−352
√

2),

while the second would be isomorphic to the one defined by

y2 = (x2 −1)(x4 + (128+90
√

2)x2 +498+352
√

2).

As for other examples the exact forms we suggest here come from comparisons
with computations made with other Fenchel–Nielsen coordinates and corrobora-
tions with computations made on transforms (those indicated in [3]). These exam-
ples are in fact 8.2 and 8.3 of [4] and hence the Fuchsian groups are arithmetic.

– The description of our last example is involved. Let L=5/2 and let

tw =arccosh

(√
(L−1)(L+1)

2L

)
/arccosh (L)

(this value of the twist parameter is to insure that the algebraic curve is in a cer-
tain family of real curves). Then for the surface with Fenchel–Nielsen coordinates
(L, tw,L, tw,2L+1,1/2) we find the equation,

y2 =x5 − 13
√

2
16

x4 + 13
√

2
16

x2 −x.

Acknowledgements

Partially supported by the Swiss National Science Foundation, Contract
20-68181.02. Many hearty thanks to Aline Aigon, Hugo Akrout and Philipe
Elbaz–Vinent for interesting discussions and important comments and suggestions.

References

1. Aigon, A. and Silhol, R.: Hyperbolic hexagons and algebraic curves in genus 3,
J. London Math. Soc. 66 (2002), 671–690.

2. Buser, P.: Geometry and Spectra of Compact Riemann Surfaces, Birkhäuser, Boston,
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