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Abstract The Airy jet is a wall-bounded flow belonging
to the similarity class of the well known free jet but, in
contrast to the latter, its far field behavior is an alge-
braically decaying rotational flow. The present paper
investigates the thermal characteristics of the Airy jet
over a wall with prescribed constant heat flux. The
scaling behavior found for small and large values of the
Prandtl number is compared to those obtained earlier
for (a) the case of a wall with prescribed constant tem-
perature and for (b) the case of a preheated Airy jet
adjacent to an insulated wall.

List of symbols

Ai, Bi Airy functions
cp specific heat at constant pressure
f(g) similar stream function, Eq. 3
G normalized temperature variable, Eq. 15
k thermal conductivity
L reference length
Nu Nusselt number
Pr Prandtl number
q heat flux
Q convected heat flux, Eq. 13
T temperature
T* reference temperature
u streamwise velocity component
x, y dimensionless Cartesian coordinates
z argument of the Airy functions, Eq. 3

Greek symbols

c power-law exponent, Eq. 1a
C Gamma function
g independent similarity variable, Eq. 1b
J (g) similarity temperature variable, Eq. 1a
h modified similarity temperature variable,

Eqs. 18 and 19
t kinematic viscosity
q density

Subscripts and superscripts

ad adiabatic
w wall conditions
¥ far field condition
¢ derivative with respect to g or z

1 Introduction

The algebraically decaying Airy wall jet has first been
considered by Weidman et al. [1] on impermeable and
more recently by Magyari et al. [2] on permeable walls.
Some of its thermal characteristics for prescribed con-
stant wall temperature and an insulated wall were
reported by Magyari et al. [3]. The thermal characteris-
tics of the preheated Airy jet were further investigated
and compared in detail with those of the classical
(exponentially decaying) Tetervim [4], Akatnov [5] and
Glauert [6] wall jet by Magyari and Weidman [7].

The present paper investigates the thermal charac-
teristics of the Airy jet over a wall with prescribed con-
stant heat flux and compares the scaling behavior found
for small and large values of the Prandtl number to
those obtained for (a) the case of a wall with prescribed
constant temperature [3] and for (b) the case of a
preheated Airy jet adjacent to an insulated wall [7].
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2 Similarity formulation and the Airy jet solution [3]

The Airy wall jet of incoming heat flux Q per unit span
issuing through a narrow slot is considered. The z-axis
lies along the slot, and x and y are the dimensionless
streamwise and wall normal Cartesian coordinates,
respectively. For incompressible flow in the boundary
layer approximation, neglecting buoyancy and viscous
self-heating effects, the governing equations for the cor-
responding similar temperature field are of the form [3]:

T ðx; yÞ ¼ T1 þ T�xc#ðgÞ; g ¼ x�2=3y ð1a; bÞ
3

Pr
#00 þ f#0 � 3cf 0# ¼ 0 ð2Þ

Here f is the similar stream function of the Airy wall jet
[3],

f ðgÞ ¼ ð24Þ1=3
ffiffiffi

3
p

Ai0ðzÞ þ Bi0ðzÞ
ffiffiffi

3
p

AiðzÞ þ BiðzÞ
; z ¼ 3�2=3g ð3Þ

corresponding to the asymptotic condition f¢(g)=g� 1/2

as g fi ¥ (i.e., to the value 1 of the parameter b of
[3]).

3 Temperature solutions

The coupling of the thermal boundary-value problems
to the flow solution (3) for the three cases of interest are
described below.

3.1 Case I: prescribed constant wall heat flux

Having in mind that

qwðxÞ ¼ �ðkT�=LÞxc�2=3#0ð0Þ ð4Þ

the temperature exponent c=2/3 is required for
qw=constant. Thus, the corresponding thermal bound-
ary value problem is

3

Pr
#00 þ f#0 � 2f 0# ¼ 0 ð5aÞ

#0ð0Þ ¼ �1; # 1ð Þ ¼ 0 ð5b; cÞ

The quantity of physical interest is the temperature field
(1a), where the reference temperature T* is specified by
the prescribed value of the wall heat flux, qw=kT* /L. In
this way Eq. 1a gives

T ¼ T1 þ
qwL

k
x2=3#ðgÞ ð6Þ

and the wall temperature distribution is

Tw ¼ T1 þ
qwL

k
x2=3#ð0Þ ð7Þ

The dimensionless wall temperature J (0) depends on
the Prandtl number. This functional dependence is

obtained from the solution of the boundary value
problem (5) (see Section 4).

3.2 Case II: prescribed constant wall temperature [3]

According to Eq. 1a, the temperature exponent c=0 is
required for constant wall temperature. Thus, the cor-
responding thermal boundary value problem is

3

Pr
#00 þ f#0 ¼ 0 ð8aÞ

#ð0Þ ¼ þ1; #ð1Þ ¼ 0 ð8b; cÞ

The temperature field is given by Eq. 1a, where the ref-
erence temperature T* is specified by the prescribed value
Tw of the wall temperature. In this way,T*=Tw�T¥ and

T ¼ T1 þ ðTw � T1Þ#ðgÞ ð9Þ

The quantity of engineering interest is the wall heat flux
distribution, which is now given by

qwðxÞ ¼ �
kðTw � T1Þ

L
x�2=3#0ð0Þ ð10Þ

As shown in [3] the dimensionless wall temperature J (g)
and the dimensionless wall temperature gradient J¢(0)
can be obtained by quadratures, viz.

#ðgÞ ¼ 1�
R z
0 ½

ffiffiffi

3
p

AiðzÞ þ BiðzÞ��2Pr
dz

R1
0 ½

ffiffiffi

3
p

AiðzÞ þ BiðzÞ��2Pr dx
ð11Þ

#0ð0Þ ¼ �3�2=3 ½
ffiffiffi

3
p

Aið0Þ þ Bið0Þ��2Pr

R1
0 ½

ffiffiffi

3
p

AiðzÞ þ BiðzÞ��2Pr dz
ð12Þ

where
ffiffiffi

3
p

Aið0Þ þ Bið0Þ ¼ 2� 3�1=6=Cð2=3Þ [8].

3.3 Case III: insulated wall [7]

The requirement that the incoming heat flux per unit span

Q ¼ qcp

Z

1

0

u � ðT � T1Þdy ð13Þ

is an integral invariant, selects for the temperature
exponent the value c=� 1/3. Thus the corresponding
thermal boundary value problem is

ð3#0 þ Prf#Þ0 ¼ 0 ð14aÞ
#0ð0Þ ¼ 0; #ð1Þ ¼ 0 ð14b; cÞ

As shown in [7], the dimensionless wall temperature J
(g) is given in this case by

#ðgÞ ¼ #ð0Þ
ffiffiffi

3
p

Aið0Þ þ Bið9Þ
ffiffiffi

3
p

AiðzÞ þ BiðzÞ

" #2Pr

� #ð0ÞGðgÞ ð15Þ

where J (0) is still undetermined. Here the temperature
field is given by
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T ¼ T1 þ T�x�1=3#ð0ÞGðgÞ ð16Þ

The product T* g(0) of the unknown constants can un-
iquely be determined by specifying the incoming heat
flux Q0 and substituting Eq. 16 and u=(t /L)x� 1/3 f¢ (g)
into Eq. 13. The result reads

T�gð0Þ ¼
Q0

tqcp
hadðPrÞ ð17Þ

where

hadðPrÞ ¼
Z

1

0

f 0G dg

0

@

1

A

�1

ð18Þ

is the dimensionless adiabatic temperature of the wall.
Accordingly, the temperature distribution along the
insulated wall below the preheated jet is

TwðxÞ ¼ T1 þ
Q0

tqcp
x�1=3hadðPrÞ ð19Þ

4 Dependence on the Prandtl number

In this section the asymptotic variations of relevant
heat transfer properties, for small and large Prandtl
numbers, are obtained from numerical solutions of the
thermal boundary-value problem for the three cases of
interest.

4.1 Case I: prescribed constant wall heat flux

The quantity of interest here is the dimensionless wall
temperature J (0) as a function of the Prandtl number,
obtained from the numerical solution of the boundary-
value problem (5). The result is displayed in Fig. 1 where
1/J (0) has been plotted as a function of Pr. Numerical
computations furnish the following scaling laws for
asymptotically small and large values of the Prandtl
number:

1

#ð0Þ !
1:56018 � Pr2=3 as Pr! 0
0:60183 � Pr1=3 as Pr!1

�

ð20Þ

The Nusselt number Nu=(qw L/k)/(Tw � T¥) for this
case is

NuI ¼
x�2=3

#ð0Þ ð21Þ

It is worth noticing that the asymptotic formula (20) for
large Pr provides reasonably accurate results down to
O(1) values of Pr; for Pr=1, e.g., the approximate value
1/J (0)=0.60183 exceeds the (numerically) exact value 1/
J (0)=0.589282 only by 2%.

4.2 Case II: prescribed constant wall temperature

The plot of the dimensionless wall temperature gradient
(12) as a function of Pr is also shown in Fig. 1. These
numerical solutions of boundary-value problem (8) yield
the following large and small Prandtl number asymp-
totic behaviors

�#0ð0Þ ! 0:64513 � Pr2=3 as Pr ! 0
0:37328 � Pr1=3 as Pr !1

�

ð22Þ

and the Nusselt number for this constant wall temper-
ature problem is

NuII ¼ x�2=3½�#0ð0Þ� ð23Þ

Again, for large values of Pr the asymptotic formula (22)
furnishes quite accurate estimates down to O(1) values
of Pr; for Pr=3, e.g., the approximate value �
J¢(0)=0.538363 exceeds the (numerically) exact value �
J¢(0)=0.526761 only by 2.2%.

4.3 Case III: insulated wall

For comparison, we have included in Fig. 1 the Prandtl
number variation of dimensionless adiabatic wall tem-
perature (18) reported in [7]. As shown in [7], the
asymptotic behaviors of h w (Pr) for small and large Pr
are given by:

hadðPrÞ ! 0:42731 � Pr1=3 as Pr! 0
0:36924 � Pr2=3 as Pr!1

�

ð24Þ

5 Summary and conclusions

The thermal characteristics of Airy wall jets for constant
wall heat flux qw, for constant wall temperature Tw, and

Fig. 1 Dependence of the thermal characteristics of the Airy wall
jet on the Prandtl number: Curve I Plot of 1/J (0) for constant wall
heat flux; see Eqs. 7, 20, and 21; Curve II Plot of � J¢(0) for
constant wall temperature; see Eqs. 10, 12, 22, and 23; Curve III
Plot of had for the preheated jet over an insulated wall; see Eqs. 18,
19, and 24
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for a preheated jet flowing over an insulated wall are
summarized in Table 1 in which their streamwise
dependence and asymptotic Prandtl number scalings are
compared. The explicit numerical variations of the rel-
evant dimensionless quantities 1/J (0), � J¢(0), and had
in the range 0 < Pr £ 10 are plotted in Fig. 1.

Table 1 shows that the Nusselt numbers NuI and NuII
scale with Pr and x in the same manner. Thus, their ratio
goes to constant values at all downstream stations x for
both small and large values of the Prandtl number

NuI

NuII
¼ 1=#ð0Þ
�#0ð0Þ !

2:41839 as Pr ! 0
1:61227 as Pr !1

�

ð25Þ

A notable feature of the thermally active Airy jet is that
the scaling behavior of the wall temperature distribution
both with respect to Pr and x is quite different for a
constant wall heat flux qw compared to the preheated jet
flowing over an insulated wall where qw=0; see Eqs. 7
and 19 and the first and third rows of Table 1.
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Table 1 Overview of the
Prandtl number dependence of
the thermal characteristics of
the Airy wall jet

Thermal characteristics Pr fi 0 Pr fi ¥

qw=const.NuI=x�2/3/J(0) 1/J (0)=1.56018ÆPr2/3 1/J (0)=0.60183ÆPr1/3

Tw=const.NuII=x�2/3 [�J¢(0)] � J¢(0)=0.64513ÆPr2/3 � J¢(0)=0.37328ÆPr1/3

Adiabatic wall (qw=0) TwðxÞ�T1
ðQ0=tqcpÞ ¼ x�1=3hadðPrÞ had=0.42731ÆPr1/3 had=0.36924ÆPr2/3
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