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Abstract. We set up a simple dynamic macroeconomic model with (i) polluting consumption
and a preference for a clean environment, (ii) increasing returns in abatement giving rise to an

EKC and (iii) sustained growth resulting from a linear final-output technology. There are two
sorts of market failures caused by external effects associated with consumption and envi-
ronmental effort. The model is employed to investigate the determinants of the turning point

and the cost effectiveness of different public policies aimed at a reduction of the environmental
burden. Moreover, the model offers a potential explanation of an N-shaped pollution–income
relation. It is shown that the model is compatible with most empirical regularities on economic

growth and the environment.
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1. Introduction

The Environmental Kuznets Curve (EKC) hypothesis states that there is an
inverted U-shaped relationship between environmental degradation and the
level of income. Starting with Grossman and Krueger (1993) this pattern has
been intensively debated in empirical terms; recent reviews are provided by
Dasgupta et al. (2002) and Stern (2004). The EKC has also captured con-
siderable attention from policymakers and theorists. This is due to the fact
that the EKC hypothesis implies that pollution diminishes once a critical
threshold level of income is reached. As a consequence, there is the hope that –
loosely speaking – the environmental problem sooner or later peters out as
the economy grows.

There are two major strands within the theoretical EKC literature. In the
first class of models an EKC arises from shifts in the use of production
technologies, which differ in their pollution intensity (Stokey 1998; Smulders
et al. 2005). The second class focuses on the characteristics of the abatement
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technology (John and Pecchenino 1994; Selden and Song 1995; Andreoni and
Levinson 2001; Chimeli and Braden 2002; Brock and Taylor 2004).

In an important paper, Andreoni and Levinson (2001) (thereafter AL) set
up a static model to show that an EKC can be explained with increasing
returns to scale (IRS) in the abatement technology. This approach can be
viewed as a reduced form of a large number of models which focus on very
different mechanisms (e.g. a shift in technology or a shift in institutions).

The level of income at which pollution peaks (labelled ‘‘the turning
point’’) and the associated level of pollution are of fundamental interest from
the perspective of public policy. A sound understanding of the pollution–
income relation (PIR) could provide important information for public poli-
cies aimed at a reduction of the environmental burden. The empirical EKC
literature has accordingly devoted much effort to the determination of this
critical threshold. The results show, however, a large dispersion across dif-
ferent studies. For instance, the reported turning points for sulphur dioxide
range from $2,900 to $908,200 and for nitrogen oxides from $5,500 to
$30,800 (in 1985 PPP$; Lieb 2003). Given these diverse empirical results, it is
clearly desirable to better understand the determinants of the turning point
from a theoretical perspective.

We set up a simple dynamic EKC model with the following characteristics:
Pollution is a by-product of consumption activities, it is modelled as flow
pollution and it creates disutility. Households can spend resources on
abatement to reduce gross pollution. Following AL we assume that there are
IRS in abatement giving rise to an EKC. There are two market distortions
due to external effects associated with consumption and abatement activities.
Permanent growth results from an accumulable stock of capital and a linear
final-output technology.

The paper at hand focuses on two issues: First, we employ the simple
dynamic EKC model to better understand the determinants of the turning
point. The factors which are of major interest in this type of models are
the preference for a clean environment, the degree of IRS in abatement
and the magnitude of external effects. Second, we investigate the effec-
tiveness of public policy measures aimed at a reduction of the environ-
mental burden. In this context, it is important to have a model with
multiple market failures so that the question of relative policy effectiveness
can be studied.

Pollution is modelled as flow pollution. The reason lies in the fact that an
EKC is more likely to arise for flow pollutants than for stock pollutants. This
is best illustrated by Lieb (2004, p. 484) who reports that ‘‘almost all studies
agree that there is an EKC for sulphur dioxide (SO2), suspended particulate
matter (SPM), oxides of nitrogen (NOx), carbon monoxide (CO), and for
some (but not all) sorts of river pollution (PR)... Although all these pollutants
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are stock pollutants, they all have short life-times and can therefore be
considered as flow pollutants from a long-run point of view.’’

There are a number of theoretical papers on the EKC which consider the
determinants of the turning point; some of these papers also investigate the
role of public policies. Brock and Taylor (2004) use an augmented Solow
model to demonstrate that an EKC arises along the transition to the steady
state. Although there is polluting production in this model, there is no market
failure. Lieb (2004) uses an overlapping generations model with a stock
pollution and a flow pollution. He focuses on the different pollution paths of
the stock and the flow pollution. The model captures several external effects
associated with production and abatement. However, only the problem of a
myopic government is analysed implying that the intragenerational exter-
nalities are internalised, while the intergenerational externalities are not.
Moreover, the effectiveness of public policy measures is not considered since
the unregulated market economy is not investigated. Chimeli and Braden
(2002) employ a simple endogenous growth model with environmental
quality. They show that environmental quality follows a V-shaped pattern,
thereby explaining an EKC for a stock pollution. There is single external
effect associated with polluting production. Hence, the consequences of
multiple external effects cannot be studied. Finally, Anderson and Cavendish
(2001) employ a dynamic simulation model to investigate the consequences of
public policy measures on the turning point. This computable equilibrium
model has the advantage of being able to directly include different aspects of
the real world which are important in this context. However, general equi-
librium feedback effects are excluded and optimal taxes cannot be derived.

In section 2, the basic AL model is sketched. In section 3, a simple
dynamic EKC model is set up. The decentralised and the centralised solution
are investigated and the optimal tax scheme is determined. In section 4, a
parameterised version of the model is employed to investigate the determi-
nants of the turning point and the relative effectiveness of public policies. In
section 5, it is shown that the model can potentially explain an N-shaped
PIR. Section 6 demonstrates that the model is compatible with important
stylised facts on economic growth and the environment. Section 7 summa-
rises and concludes.

2. The Andreoni and Levinson EKC Model

The AL (2001) model is sketched to provide a reference point for the fol-
lowing discussion. Utility of the representative agent depends positively on
consumption C and negatively on pollution P. The utility function is:

U ¼ UðC;PÞ: ð1Þ
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Pollution is a function of C and environmental effort E according to:

P ¼ C� BðC;EÞ: ð2Þ

Pollution increases one-to-one with consumption (gross pollution), the first
term on the RHS. On the other hand, pollution decreases due to abatement,
the second term. The abatement technology B(C,E) is increasing in both
arguments. Both ‘‘inputs’’ are essential for abatement, i.e.
B(0,E) = B(C,0) = 0. Finally, the resource constraint is Y = C + E, where
Y denotes available resources.

There are two conditions which together guarantee the existence of an
EKC (AL 2001, p. 277). The first – related to preferences – states that ‘‘the
marginal willingness to pay to clean up the last speck of pollution does not go to
zero as income approaches infinity’’. This rather weak condition is easily
satisfied since pollution abatement can be regarded as a normal good.1 The
second condition – related to abatement technology – states that there must
be IRS in abatement.

Using U(C,P) = C ) zP with z = 1 and B(C,E) = CaEb, AL show that
an EKC results provided that a + b > 1. This can be seen by inspecting the
pollution function in terms of Y:

PðYÞ ¼ a
aþ b

Y� a
aþ b

� �a b
aþ b

� �b

Yaþb: ð3Þ

The preceding equation results from P = C ) CaEb, C� ¼ a
aþbY and

E� ¼ b
aþbY; where C* and E* are the optimal levels of C and E. Equation (3)

implies that P(Y) is concave in Y provided that a +b> 1. Hence, IRS in
abatement (a + b > 1) represent a necessary condition for the existence of
an EKC.

3. A General Dynamic EKC Model

A simple dynamic EKC model is set up. Pollution results as a by-product of
consumption activities and is modelled as flow pollution. Households can
reduce pollution by spending resources on abatement. The abatement tech-
nology is characterised by IRS, which gives rise to an EKC. There is a
homogeneous final-output good which is produced under constant returns to
scale using (physical and human) capital as the sole input factor. Households
earn income by renting capital to firms. Output and factor markets are
perfectly competitive. We consider two types of externalities and hence the
decentralised solution diverges from the centralised solution. At first, the
market economy is considered and then the centralised solution is investi-
gated. Finally, the optimal tax scheme is determined.2
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3.1. THE DECENTRALISED ECONOMY

There is a large number of identical households ordered on the interval [0,1].
The representative household derives utility from consumption C and dis-
utility from net pollution P. The instantaneous utility function is U(C,P) with
UC>0, UCC<0, UP<0 and UPP<0.3 The flow of pollution (per period of
time) is the difference between gross pollution GðC; �CÞ and abatement
BðC;E; �EÞ:

PðC; �C;E; �EÞ ¼ GðC; �CÞ �minfBðC;E; �EÞ;GðC; �CÞg; ð4Þ

where E is environmental effort and a ‘‘bar’’ above a variable denotes its
economywide average. Pollution is modelled to result from consumption.4

Note that this definition implies that pollution cannot turn negative, which is
appropriate for a pure flow pollution (Lieb 2004, p. 488; Egli 2005).

Direct examples for polluting consumption activities would be the use of
automobiles and central heating. Turning to environmental effort, we can
interpret the model in the sense that both households as well as firms conduct
abatement. It is, however, plausible and convenient to let the incidence of
abatement costs fall on households. To clarify this aspect, consider a real-world
example: Abatement in the case of driving automobiles comprises the instal-
lation of catalytic converters and strainers. Although the major part of this
abatement activity (development and installation) is conducted by firms,
households face the decision for, andbear the costs of this environmental effort.

There are two kinds of externalities: First, polluting consumption is only
partially taken into account by the representative household, i.e. there is a
(negative) pollution externality. Second, environmental effort aimed at
reducing (net) pollution affects also the society as a whole, i.e. there is a
(positive) externality resulting from environmental effort. As an example,
consider again the use of automobiles. It is the household who bears the
financial burden but it is society that primarily benefits from the imple-
mentation of catalytic converters and strainers. External effects are associ-
ated with �C and �E:

Let r denote the rental price of capital K owned by the representative
household, who earns income of rK. Gross expenditures (including taxes) are
given by (1 + sC)C + (1 + sE)E, where sC and sE represent taxes (subsi-
dies) on C and E. Tax revenues T are redistributed in a lump-sum manner
according to a balanced-budget rule, i.e. T = sCC + sEE. Households
maximise the present value of an infinite utility stream. The associated
dynamic problem may be expressed as (time index suppressed):

max
fC;Eg

Z1

0

UðC;PÞe�qtdt ð5Þ
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s:t: PðC; �C;E; �EÞ ¼ GðC; �CÞ �minfBðC;E; �EÞ;GðC; �CÞg ð6Þ

_K ¼ rK� ð1þ sCÞC� ð1þ sEÞEþ T ð7Þ

Kð0Þ ¼ K0; ð8Þ

where q is the time preference rate, t the time index, _K the rate of change of K
per period of time and K0 the initial stock of capital, respectively.

The (current-value) Hamiltonian for this problem reads:

H ¼ U½C;PðC; �C;E; �EÞ� þ k½rK� ð1þ sCÞC� ð1þ sEÞEþ T�; ð9Þ

where k is the shadow price of K. The necessary conditions are given by:5

UC þUPPC

1þ sC
¼ k ð10Þ

UPPE

1þ sE
¼ k ð11Þ

_k ¼ �kðr� qÞ; ð12Þ

where Ux and Px denote the partial derivatives of U and P with respect to
x2{C,E}, respectively. For ease of interpretation, assume that sC = sE = 0.
Equation (10) then shows that along the optimal growth path the (private)
marginal utility of consumption must equal k. Marginal utility of con-
sumption comprises two components: (i) direct utility from consumption UC

and (ii) disutility from pollution UPPC. Remember that PC captures a gross
pollution effect GC and an abatement effect BC. Similarly, (11) indicates that
marginal utility from environmental effort UPPE must equal k. Equation (12)
shows that k vanishes at rate r)q>0.

The representative final-output firm produces a homogeneous good using
capital only. The constant returns to scale technology is Y = AK, where Y is
final output and A a constant technology parameter. Capital depreciates at
constant rate d ‡ 0. Output maximisation implies r = A)d.

3.2. THE CENTRALISED ECONOMY

The social planner maximises welfare of the representative individual, taking
the external effects into account. The associated problem reads:

max
fC; �C;E; �Eg

Z1

0

UðC;PÞe�qtdt ð13Þ
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s:t: PðC; �C;E; �EÞ ¼ GðC; �CÞ �minfBðC;E; �EÞ;GðC; �CÞg ð14Þ

_K ¼ FðKÞ � dK� C� E ð15Þ

Kð0Þ ¼ K0: ð16Þ

The (current-value) Hamiltonian reads:

H ¼ U½C;PðC; �C;E; �EÞ� þ k½FðKÞ � dK� C� E� ð17Þ

and the necessary conditions are given by:6

UC þUPðPC þ P �CÞ ¼ k ð18Þ

UPðPE þ P �EÞ ¼ k ð19Þ

_k ¼ �kðFK � d� qÞ: ð20Þ

Comparing (18) and (19) to (10) and (11) shows the differences between the
two solutions. When deciding on the optimal levels of C and E the social
planner, in contrast to the private agent, takes the external consequences
associated with �C and �E into account. Specifically, the social planner
considers also the effects of �C on gross pollution ðUPP �C ¼ UPG �CÞ as well as
the consequences of �E on abatement ðUPP �E ¼ �UPB �EÞ:

3.3. OPTIMAL TAX SCHEME

Comparing (18) and (19) to (10) and (11) yields the optimal tax scheme:

s�C ¼ �
UPP �C

UC þUPðPC þ P �CÞ
> 0 ð21Þ

s�E ¼ �
P �E

PE þ P �E

<0: ð22Þ

Equation (22) shows that the optimal subsidy on environmental effort s�E
equals the ratio of the external marginal effect of environmental effort on
pollution P �E<0 and the overall (private and external) marginal effect of
environmental effort on pollution PE þ P �E<0: Similarly, the optimal con-
sumption tax s�C is the ratio of the external marginal consumption effect on
utility UPP �C<0 and the overall marginal consumption effect on utility given
by UC þUPðPC þ P �CÞ>0.7
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Consider the consequences of a consumption tax on the decisions of the
representative household. Implementing sC>0 reduces the LHS of (10).
Holding k constant, (10) then requires the marginal utility of consumption to
increase. This calls for a reduction of C. An analogous interpretation (with
sE<0) applies to (11).

4. A Specific Dynamic EKC Model

A parameterised version of the model is employed to investigate the
determinants of the turning point and the effectiveness of public policies. At
first, we consider the centralised solution. Subsequently, we turn to the
more relevant case of an unregulated/imperfectly regulated economy.

4.1. PARAMETERISATION

We parameterise instantaneous utility U(C,P), gross pollution GðC; �CÞ and
abatement BðC;E; �EÞ as follows:

UðC;PÞ ¼ logðC� zPÞ with z > 0; C � zP ð23Þ

GðC; �CÞ ¼ C1�x �Cx with 0<x<1 ð24Þ

BðC;E; �EÞ ¼ CaEb �Eg with 0<a; b; g<1; ð25Þ

where z shows the desire for a clean environment. A lower value of z means
that a given amount of pollution causes less disutility and individuals will
accordingly spend more on C and less on E. In (24) C1-x represents the
internal effect of consumption on gross pollution and �Cx is the corre-
sponding external effect. Similarly, Eb is the private and �Eg the external effect
of environmental effort in abatement.8

A short explanation of the instantaneous utility function (23) is indicated.
Since C ¼ �C and E ¼ �E; pollution is P = C)Ca Eb+g . Moreover, assuming
z = 1 one gets U½C;PðC;EÞ� ¼ logðCaEbþgÞ.9 This formulation has the
advantage that C and E enter utility additively separable, which enables an
analytical solution for the social planner’s problem.
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4.2. ANALYTICAL RESULTS

The PIR is derived analytically and the determinants of the turning point are
discussed. The focus is on the centralised solution with z = 1, which allows
derivation of analytical results.

4.2.1. The time path of pollution P(t) and the PIR P(Y)

The model under study is an augmented AK-model which implies:

K ¼ K0e
ðA�d�qÞt ð26Þ

k ¼ aþ bþ g
K0q

e�ðA�d�qÞt: ð27Þ

From (18), (19), (27) and (23) to (25) one gets:

PðtÞ ¼ K0e
ðA�d�qÞtaq

aþ bþ g
� K0e

ðA�d�qÞtaq
aþ bþ g

� �a
K0e

ðA�d�qÞtðbþ gÞq
aþ bþ g

� �bþg

ð28Þ
Furthermore, the PIR may be expressed as follows:

PðYÞ ¼ cY� ðcYÞaðhYÞbþg; ð29Þ

where c :¼ C
Y is the consumption rate and h :¼ E

Y the ‘‘environmental effort
rate’’. From K̂ ¼ A� d� q ¼ A� d� C=K� E=K and the parameterised
versions of (18) and (19) one gets:

c ¼ aq
Aðaþ bþ gÞ and h ¼ ðbþ gÞq

Aðaþ bþ gÞ : ð30Þ

The PIR is illustrated in Figure 1(a) and the time path of pollution in Fig-
ure 1(b). These graphs use the baseline set of parameters (section 3). As in
AL (2001), IRS in abatement is a necessary condition for a hump-shaped
PIR.10

Figure 1(a) shows that pollution first rises with income, then declines and
eventually becomes zero. This EKC represents a balanced growth phenom-
enon. Although pollution does not grow at constant rate, the illustrated
pollution path represents a balanced growth phenomenon since pollution
results from two endogenous variables (C and E), which both grow at con-
stant rates. The required time span until pollution reaches its peak and
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becomes zero is quite long. The ‘‘EKC story’’ takes nearly 250 years, as
displayed in Figure 1(b).

The EKC pattern displayed in Figure 1(a) is in line with empirical evi-
dence reported by Grossman and Krueger (1995), which indicates that the
PIR is asymmetric with an upper tail that declines relatively gradually.

4.2.2. The turning point

The determinants of the turning point are analysed. Closed-form solutions
can only be obtained for the centralised economy with z = 1. Under these
restrictions one can investigate the impact of basic technology and preference
parameters on the turning point analytically. This represents an interesting
limiting case, which is relevant in the sense that the qualitative results largely
hold true also for the decentralised economy with z<1, as investigated in
section 4.3.

The point in time at which pollution reaches its maximum (t*) is:

t� ¼ � log½Kaþbþg�1
0 aa�1ðbþ gÞbþgðaþ bþ gÞ2�a�b�gqaþbþg�1�

ðaþ bþ g� 1ÞðA� d� qÞ : ð31Þ

Note that z and x do not appear on the RHS due to the restriction z = 1 and
the fact that C ¼ �C: The turning point in terms of income (Y*) is:11

Y� ¼ Aa
1�a

aþbþg�1ðbþ gÞ�
bþg

aþbþg�1ðaþ bþ gÞ1�
1

aþbþg�1

q
: ð32Þ

This critical income level is determined by the marginal product of capital A,
the rate of time preference q, the elasticity of consumption in abatement a as
well as the elasticities of environmental effort in abatement b and g. It is
independent of d and K0.

(a) (b)

Figure 1. P(Y) and P(t) with IRS in abatement (a +b +g>1).
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Table I shows the comparative static results.12 The first row shows that Y*
increases with A. For ease of interpretation, let us assume that a = b + g
such that C = E.13 In this case, the level of pollution depends only on
consumption. Since an increase in A reduces the consumption rate [see (30)],
the required level of income for pollution to reach its maximum increases.
The second row indicates that Y* falls as q rises. An analogous reasoning is
applicable here. The rate of consumption rises with q [see (30)] and hence the
required level of income for pollution to reach its maximum falls. The signs
of the partial derivatives of Y* with respect to a and b are indetermined.14 In
most instances, the derivatives with respect to a and b are negative. An
increase in the degree of IRS in abatement leads, ceteris paribus, to a higher
abatement output for each level of income and hence to a lower turning
point. However, a positive sign cannot be excluded in general; for instance,
under the restrictions a = b + g and z = 1 the derivative with respect to a is
positive.15

4.3. NUMERICAL ANALYSIS

The preceding analysis focused on the centralised solution with z = 1
implying that consumption and pollution have the same weight in the utility
function. We now investigate the importance of external effects, the effec-
tiveness of public policies and the implications of different environmental
preferences, allowing for z<1. To accomplish this task, the transition pro-
cess is simulated using the backward integration procedure (e.g. Brunner and
Strulik 2002).

4.3.1. Calibration

Table II shows the employed baseline set of parameters. The time preference
rate q and the depreciation rate d are similar to the parameter values used in
previous exercises (e.g. Ortigueira and Santos 1997; Eicher and Turnovsky
2001). Given these values A is chosen such that the implied net rate of return
on capital (A ) d) and the growth rate of per capita income (A)d)q) are in

Table I. Comparative static results for Y*

@Y �

@x for x 2{A,q ,a ,b}

A Y � 1
A >0

q Y � �1
q <0

a Y � ðc�1Þð�aþbþgÞþacðlog½c�þðbþgÞðlog½bþg��log½a�Þ
acðc�1Þ2 ?

b Y � 2þcðlog½c��2Þþcða�1Þðlog½a��log½bþg�Þ
cðc�1Þ2 ?
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line with empirically plausible numbers (6% and 2%). We choose x and g
such that the relative external effect of consumption in pollution (x) and the
relative external effect of environmental effort in abatement ð g

bþgÞ are both
10%, implying fairly moderate external effects.

We assume a + b + g> 1. As in AL (2001), IRS in abatement are
necessary for an EKC. This is in line with Xepapadeas (1994), where IRS in
the pollution abatement sector (due to knowledge spillovers) is a necessary
condition for unbounded growth without excess pollution (similarly Michel
1993). Alternatively, IRS in abatement may result from technological pro-
gress in the abatement technology (Anderson and Cavendish 2001).
Regarding the empirical evidence, AL (2001, p. 281) argue that ‘‘at the level
of US states, average pollution abatement costs per dollar of GSP [gross state
product] decline with industry size, across states and industries, and over time.’’
Maradan and Vassiliev (2005) report that the marginal opportunity costs of
carbon dioxide abatement are negatively associated with income. Moreover,
b and g crucially determine the ratio of abatement expenditures and income,
which ranges from about 3% for z = 0.5 to 15% for z = 1. These values are
in line with the empirical figures reported by Brock and Taylor (2004, p. 6).

4.3.2. The turning point

The dependence of Y* on the model parameters is investigated numerically.
Three different values of z are considered. In addition, the unregulated econ-
omy (Table III) is distinguished from an imperfectly regulated economy
(Table IV).16We focus on these two cases since we believe that the real world is
best represented by an unregulated or imperfectly regulated economy. The
basic assumption here is that politicians know the optimal taxes but due to
imperfections in the political process do not fully implement optimal taxes. The
numbers reported in Tables III and IV show the elasticities of Y* with respect
to different model parameters, i.e. DY�=Y�

Dx=x with x 2 {x, g, A, q, a, b, z}.17

Three points should be noted: First, the case of z = 1 is qualitatively
identical to the cases of z<1. By lowering z, the results change only grad-
ually. The respective elasticities show the same sign for the unregulated
economy (Table III) and for the imperfectly regulated economy (Table IV).
Second, the analytical results from Table I are confirmed and the ambiguous

Table II. Baseline set of parameters

Final output technology A = 0.12; d = 0.06

Preferences q = 0.04

Abatement technology a = 0.6; b = 0.45; g = 0.05

Gross pollution x = 0.1
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effects of a and b are determined, at least numerically. Third, compared to the
case investigated above (centralised solution with z = 1) the impact of
additional model parameters (x and g) can be assessed.

The first column of Table III shows the elasticity of Y* with respect to x.
The displayed positive impact can be explained as follows: Since the gross
pollution function is linear, the level of centralised C remains constant.
Increasing x leads to a larger gap between the centralised and the decen-
tralised allocation. This implies that decentralised C rises, which, ceteris
paribus, causes a higher level of P at each level of income. Graphically
speaking, the EKC is expanded outwards and the turning point increases.
This column also shows that the impact of x on Y* increases with z. A higher
value of z (i.e. greener preferences) leads to a larger gap between the cen-
tralised and the decentralised solution, as can be seen by inspecting (18). This
implies that the strength of the mechanism described above is reinforced.
Finally, the effect of x on Y* is smaller for the imperfectly regulated economy
(Table IV).

The second column of Table III gives the impact of a variation in g on Y*,
which is negative. An increase in g has two separate effects: First, environ-
mental effort falls. Tounderstand this effect, consider the case of a variation in g
assuming that b + g= constant. This implies that centralised E remains
constant. Since the magnitude of the distortion increases, the gap between the
centralised and the decentralised solution gets larger. Hence, E must decrease
implying that pollution rises at each level of income and that the turning point
increases as well. Second, by holding b fixed (assumed in Tables III and IV), an
increase in g leads to ahigher degree of IRScausingpollution to fall at each level

Table III. Elasticities of Y* with respect to model parameters; unregulated economy (h = 0)

x g A q a b z

Y* z = 1 0.67 )0.79 0.97 )0.90 )4.41 )5.74 )4.70
Y* z = 0.75 0.46 )1.45 0.98 )0.90 )7.48 )7.40 )4.42
Y* z = 0.5 0.28 )2.22 0.99 )0.91 )9.06 )8.61 )4.19

Table IV. Elasticities of Y* with respect to model parameters; imperfectly regulated economy
(h = 0.5)

x g A q a b z

Y* z = 1 0.30 )0.75 0.99 )0.90 )2.71 )4.87 )4.98
Y* z = 0.75 0.21 )1.46 1.00 )0.91 )6.92 )7.00 )4.60
Y* z = 0.5 0.14 )2.27 1.00 )0.91 )8.90 )8.43 )4.29
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of income. Consequently, the turning point decreases. The second effect
dominates the first and hence the sign of this elasticity is negative.18

The third column (A) and the fourth column (q) are in line with the
analytical results obtained from the special case investigated in section 4.2.
The fifth (a) and sixth column (b) contain negative values. Increasing either a
or b increases the degree of IRS in abatement, which has a strong negative
impact on the turning point.19 Finally, the last column (z) shows that an
increase in z has a strong negative impact on Y*.

4.3.3. The cost effectiveness of public policies

So far we have considered first-best policies in an unconstrained welfare-
maximising setting. We now turn to a cost-effectiveness analysis. It is argued
that there is a maximum level of pollution, which should not be exceeded.
This threshold is determined outside the economic model under study and
might be the result of ecological considerations; it is not determined by cost-
benefit analysis. Moreover, to simplify matters, it is assumed that the regu-
lator has only one policy instrument available in order to cap pollution.
Specifically, this objective can be achieved by either implementing a tax on
polluting consumption or a subsidy on environmental effort. This analysis
aims to shed light on the following question: Is it optimal to primarily avoid
pollution by taxing consumption, or is it instead optimal to primarily correct
the problem of pollution by subsidising abatement activities?20

As a first step in trying to answer this question, we conduct the following
policy experiment. The social planner implements the second-best policy
(either sC or sE) taking the optimal behaviour of the private sector into
account such that the constraint P £ Pmax holds. Implementing a second-best
consumption tax while setting the subsidy on environmental effort equal to
zero is labelled a sC-regime. The reverse situation is labelled a sE-regime.
Figure 2 illustrates the result of this policy experiment based on the baseline
set of parameters (Table II) and assuming that K0 = 70, z = 0.8 and
Pmax = 0.6. Figure 2(a) shows the resulting EKC under both a sC-regime
and a sE-regime. Figure 2(b) shows the respective pollution paths
along the time dimension. Note that the dashed segments of the respective
EKCs are not realised. At those points in time where P £ Pmax becomes
binding, the policy instruments are adjusted such that pollution remains
below Pmax.

Compared to the sC-regime the sE-regime leads to a welfare gain which is
equivalent to a permanent increase in consumption of 3.6%. This is a non-
negligible number. To understand this result two points should be noted:
First, Figure 2(b) shows that pollution is higher at each point in time under
the sE-regime, which affects welfare negatively. Second, however, the sE-
regime leads to a higher level of consumption than the sC -regime (not
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shown), which is reasonable since the sC-regime aims at discouraging pol-
luting consumption. For the underlying set of parameters the second effect
dominates. It is clear that this result is especially sensitive with respect to the
parameter capturing the preference for a clean environment. Since the sC-
regime leads to both lower P and C, whereas the sE -regime is associated with
higher P and C, an increase in z reduces or may even reverse the advanta-
geousness of the sE-regime. For instance, for z = 0.82 the advantage of the
sE-regime vis-à-vis the sC-regime is reduced to a welfare gain equivalent to a
permanent increase in consumption of 1.7%.21

5. N-shaped Pollution–income Relation

A number of empirical studies argue that the PIR is N-shaped, at least for
some pollutants (Grossman and Krueger 1995, section IV; Lieb 2003). This is
important because, in this case, pollution eventually increases with income.

The model under study provides a potential explanation for this phe-
nomenon. Imagine the economy develops at first along the upward sloping
branch of the EKC resulting from the market economy (see Figure 3). At
some point in time, policy instruments are implemented and pollution
diminishes. In the model, the economy jumps to the centralised EKC; in
reality this process is distributed over time. Provided that the economy is still
below Y* of the centralised solution, pollution starts to increase again. This
produces an N-shaped PIR resulting from the interplay of public policy and
the intrinsic properties of the model. Note that this explanation implies in
fact an M-shaped PIR. As soon as the peak of pollution (on the centralised
EKC) is reached, pollution starts to decline.

Future empirical research aimed at explaining such a pattern should take
this possibility into account. This explanation implies that the first downward
movement is policy induced, i.e. it should succeed the implementation of
environmental regulations aimed at a reduction of pollution. The subsequent
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Figure 2. Comparative policy analysis.
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increase in pollution is then simply due to the fact that growth might be
accompanied by a rise in pollution. Moreover, an N-shaped pattern can
result provided that there are less than IRS in abatement. Finally, Giles and
Mosk (2003) find indeed an M-shaped EKC pattern using long-run data on
methane emissions for New Zealand.

6. Other Empirical Regularities

A dynamic EKC model should not only reproduce an inverted U-shaped
PIR. It should also be compatible with the remaining empirical regularities
on economic growth and the environment. These have been reported by
Brock and Taylor (2004) based on US data for 1950–2001: First, the emission
intensities (P/Y in our notation) for most pollutants are declining over time.
Second, despite the fact that emission intensities decline, the emission levels
(P) continue to increase for a certain period of time. Third, abatement costs
relative to GDP (E/Y) are roughly constant.

The above model is compatible with these empirical regularities. Fig-
ure 4(a) shows that the emission intensity (P/Y) is declining over time and
that the pollution level (P) continues to increase for a certain period of time
although pollution intensity is falling.22 Figure 4(b) illustrates that abate-
ment expenditures relative to GDP (E/Y) are constant over time.

The model, being an augmented AK growth model, is compatible with
most of the Kaldor (1961) facts: the growth rate of per capita output, the
capital-output ratio and the real rate of return on capital are constant.

7. Summary and Conclusions

We have set up a simple dynamic EKC model with multiple market failures
resulting from external effects associated with polluting consumption and
environmental effort. The model has been used to investigate the determinants
of the level of income at which pollution starts to decline (turning point) as well

Y

P Y

Figure 3. M-shaped PIR.
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as the relative effectiveness of public policymeasures aimedat a reductionof the
environmental burden. The main results can be summarised as follows:

(1) The turning point in the first-best solution is most strongly affected by
the degree of IRS in abatement and the preference for a clean
environment. In addition, in the decentralised economy, the magnitude
of external effects associated with polluting consumption and envi-
ronmental effort also has a substantial impact. This result indicates the
importance of public policy measures for controlling pollution.

(2) For the case policy aims at a cap on pollution, which is determined by
ecological factors without a cost-benefit analysis, we investigate the
following question: Is it optimal to primarily avoid pollution by taxing
consumption or is it instead optimal to primarily correct the problem
of pollution by subsidising abatement activities? Provided that only
one policy instrument is available, it turns out that a subsidy on
environmental effort should be preferred vis-à-vis a tax on polluting
consumption, unless the preference for a clean environment is
relatively high.

(3) It has been shown that an N-shaped PIR, observable for some specific
pollutants, can potentially be explained from the interaction of public
policy measures and the intrinsic properties of the model. Although we
do not consider this explanation to be valid in general, we think that
this kind of reasoning should be taken into account in future empirical
research aimed at explaining this pattern.

(4) In addition to the empirical EKC hypothesis, the dynamic EKC model
under study is compatible with the remaining empirical regularities
associated with economic growth and the environment (Brock and
Taylor 2004). Moreover, the model is also compatible with most of the
stylised facts on economic growth due to Kaldor (1961).

(a) (b)

Figure 4. Comparison to empirical regularities.

DYNAMIC MODEL OF THE ENVIRONMENTAL KUZNETS CURVE 31



Acknowledgements

We are grateful for helpful comments and suggestions from Geir Asheim,
Lucas Bretschger, Karen Pittel, Sjak Smulders, Scott Taylor and three
anonymous referees.

Notes

1. Lieb (2002) shows that the normality of environmental quality is a necessary condition for
the existence of an EKC.

2. There are other general growth models with pollution and external effects (e.g. Smulders

and Gradus 1996).
3. We do not restrict the cross derivatives at this stage.
4. More frequently, pollution is modelled as a by-product of production (e.g. Xepapadeas

2006). There are, however, other theoretical studies, beside AL (2001), which assume that
consumption generates pollution (e.g. John and Pecchenino 1994).

5. Since we are interested in an EKC, we consider ‘‘interior solutions’’ where B<G. In

addition, the transversality condition limt!1 e�qtkK ¼ 0 must hold. We assume that the
necessary conditions are also sufficient for a maximum of the utility functional.

6. Once again, the transversality condition limt!1 e�qtkK ¼ 0 must hold and we assume that
the necessary conditions are also sufficient.

7. Notice that UC þUPðPC þ P �CÞ ¼ k>0:
8. An appendix, available upon request, shows that the parameterised Hamiltonian

functions are concave such that the necessary conditions are also sufficient for a

maximum of the utility functional.
9. The utility function requires C)zP ‡ 0. For z £ 1 this restriction is automatically satisfied

since C is gross pollution and P is net pollution. Moreover, the utility function implies

UCP ¼ 1
ðC�zPÞ2 >0; which might appear counterintuitive. A rise in P has the same effect as

a reduction in C, hence UC increases with P. According to Michel and Rotillon (1995)
UCP>0 can be interpreted as a compensation effect.

10. In a more general version of the AL (2001) model Plassmann and Khanna (2004, p. 16)
show that ‘‘for non-constant returns to scale in gross pollution, a sufficient condition for
pollution to decline is rather that the returns to scale in abatement exceed the returns to scale
in gross pollution.’’

11. This is basically the solution for Y* one would obtain from the AL (2001) model.
12. To simplify notation, we define c = a + b + g.
13. A similar reasoning would apply to the case a „ b + g.
14. Since we are considering the centralised solution with z = 1, @Y�

@g ¼ @Y�

@b :
15. In this case, the relevant range of consumption is 0<C<1. Within this range an increase

in a lowers, ceteris paribus, abatement output. As a result, the maximum level of pollution

occurs at a higher C-level. With a = b + g the rate of consumption is independent of a
and hence a higher C-level implies a higher Y*.

16. The tax rates imposed are specified as sC ¼ hCs�C and sE ¼ hEs�E; where s�C>0 and s�E<0
are optimal taxes (section 3.3); hC ‡ 0 and hE ‡ 0 indicate the extent of tax

implementation.
17. The elasticities are based on an 10% increase of the parameter under consideration.
18. The results are nearly identical for the unregulated and the imperfectly regulated

economy. This is due to the fact that the IRS argument does not depend on the degree of
regulation.
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19. As for the analytical solution the impact of d is zero.

20. Ecologists usually argue in favour of the first strategy, whereas economists are more likely
to prefer a combined strategy.

21. Although the welfare gain shrinks as z converges to unity, the sE-regime is preferable as

long as z<1.
22. Figure 4 is based on the centralised solution with z = 1 and the baseline set of

parameters.
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