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Infinite groups with large balls of torsion
elements and small entropy

By

Laurent Bartholdi and Yves de Cornulier

Abstract. We exhibit infinite, solvable, virtually abelian groups with a fixed number of gen-
erators, having arbitrarily large balls consisting of torsion elements. We also provide a sequence
of 3-generator non-virtually nilpotent polycyclic groups of algebraic entropy tending to zero. All
these examples are obtained by taking appropriate quotients of finitely presented groups mapping
onto the first Grigorchuk group.

The Burnside Problem asks whether a finitely generated group all of whose elements
have finite order must be finite. We are interested in the following related question: fix n

sufficiently large; given a group �, with a finite symmetric generating subset S such that
every element in the n-ball is torsion, is � finite? Since the Burnside Problem has a negative
answer, a fortiori the answer to our question is negative in general. However, it is natural to
ask for it in some classes of finitely generated groups for which the Burnside Problem has
a positive answer, such as linear groups or solvable groups. This motivates the following
proposition, which in particular answers a question of Breuillard to the authors.

Proposition 1. For every n, there exists a group G, generated by a 3-element subset
S consisting of elements of order 2, in which the n-ball consists of torsion elements, and
which satisfies one of the additional assumptions:

(i) G is solvable, virtually abelian, and infinite (more precisely, it has a free abelian
normal subgroup of finite 2-power index); in particular it is linear.

(ii) G is polycyclic but not virtually nilpotent.
(iii) G is solvable but not polycyclic.

Mathematics Subject Classification (2000): Primary 20F50; Secondary 20F16, 20F05.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159152418?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Vol. 87, 2006 Large balls of torsion and small entropy 105

R e m a r k 2.

(1) The groups in Proposition 1 can actually be chosen to be 2-generated:
indeed, if G is generated by three involutions a, b, c, then the subgroup generated
by ab and bc has index at most two.

(2) Natural stronger hypotheses are the following: being linear in fixed dimension; being
solvable of given solvability length. We have no answer in these cases. It is also
natural to ask what happens it we fix a torsion exponent.

(3) By [12, Corollaire 2, p. 90], if G is a group and S is any finite generating subset
for which the 2-ball of G consists of torsion elements, then G has Property (FA):
every action of G on a tree has a fixed point. In particular, if G is infinite, then by
Stallings’ Theorem [13] it cannot be virtually free.

(4) For every sufficiently large prime p, and for all n, there exists a non-elementary,
2-generated word hyperbolic group in which the n-ball consists of elements of
p-torsion [9].

(5) We give more precise statements in the sequel: in (i), the free abelian subgroup can
be chosen of index 2an , where an ∼ 13nk (that is, an/(13nk) → 1), where k ∼= 6.60
is a constant (see Corollary 10).

With a similar construction, we obtain results on the growth exponent. Let G be generated
by a finite symmetric set S, and denote by Bn the n-ball in G. Then, by a standard argu-
ment [7, Proposition VI.56], the limit h(G, S) = lim 1

n
log(#(Bn)) exists. The (algebraic)

entropy of G is defined as h(G) = infS h(G, S), where S ranges over all finite symmetric
generating subsets of G. Osin has proved in [10], [11] that, for an elementary amenable
finitely generated group, h(G) = 0 if and only if G is virtually nilpotent; on the other hand,
Wilson [14] has constructed a finitely generated group with h(G) = 0 which is not virtually
nilpotent; see [2] for a simpler example. Relying on former work by Grigorchuk [5], Osin
observes in [11] that there exist elementary amenable groups (actually they are virtually
solvable) with h > 0 arbitrary close to 0. This last result can be improved as follows.

Proposition 3. For every ε > 0, there exists a polycyclic, virtually metabelian,
3-generated group G with 0 < h(G) < ε.

Propositions 1 and 3 are obtained by approximating the Grigorchuk group, first introduced
in [4], by finitely presented groups.

We recall below the definition of a family of 3-generated groups �n, which are successive
quotients (�n+1 is a quotient of �n for all n). These are finitely presented groups obtained by
truncating a presentation of Grigorchuk’s group. They are proved in [6] to be virtually direct
products of nonabelian free groups; they have larger and larger balls of torsion elements,
and their entropy tends to zero. We get Propositions 1 and 3 by considering appropriate
solvable quotients of the groups �n.

Following Lysionok [8], the first Grigorchuk group is presented as follows. We start from
the 3-generated group �−1 = 〈a, b, c, d | a2 = b2 = c2 = d2 = bcd = 1〉. Elements un

and vn of �−1 are defined below. Then, for 0 � n � ∞, �n is defined as the quotient of �−1
by the relations ui for i < n + 1 and vi for i < n. The first Grigorchuk group � = �∞ has
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a wealth of remarkable properties. The most celebrated one is that � has non-polynomial
subexponential growth [5]. It is also a 2-group, i.e., a group in which every element is
of finite 2-power order, and is just-infinite, i.e., it is infinite but all of its proper quotients
are finite.

We now construct the relators un and vn. Consider the substitution σ defined by σ(a) =
aca, σ(b) = d , σ(c) = b, σ(d) = c; extend its definition to words in the natural way,
and finally observe that it defines a group endomorphism of �−1. Set u0 = (ad)4, v0 =
(adacac)4, un = σn(u0), vn = σn(v0).

For all n � − 1, the natural homomorphism �n → Z/2Z sending b, c, d to 0 and a to 1
has kernel �n of index two.

We will focus on the finitely presented groups �n rather than on �. Individually, and
up to commensurability, the structure of these groups is not of special interest: �n is com-
mensurable to a direct product of 2n non-abelian free groups [6, Proposition 12]. However,
since �∞ is torsion, for all n, there exists i(n) such that every element in the n-ball of
�i(n) is torsion. A quantitative statement is given in the following proposition, whose proof
appears in the appendix. Let λ ∼= 1.25 be the real root of the polynomial 2X3 −X2 −X−1,
and set i(n) = �logλ(n) − 1�.

Proposition 4. In the n-ball of �i(n) (for the word metric), every element is of 2i(n)+1-
torsion.

The following proposition, which specifies [6, Proposition 12], describes the structure
of �n.

Proposition 5. For every n � 0, �n has a normal subgroup Hn of index 2αn , where
αn � (13 · 4n − 1)/3, such that Hn is a subgroup of index 2βn in a finite direct product of
2n nonabelian free groups of rank 3, where βn � (13 · 4n − 15 · 2n + 2)/3.

R e m a r k 6. The main difference with [6, Proposition 12] is that the finite index sub-
group they construct is not normal. Of course one could take a smaller normal subgroup of
finite index, but that one need not a priori be of 2-power index, a fact we require to obtain
solvable (and not only virtually solvable) groups in Propositions 1 and 3.

We use the following elementary lemma.

Lemma 7. Let G be a group, and let H be a proper subgroup of index 2a in G, normalized
by a subgroup of index two in G. Let N be the intersection of all conjugates of H . Then
N has index 2b in G, for some integer b � 2a − 1.

P r o o f. IfH is normal inG, the result is trivial. Otherwise, consider the unique conjugate
H ′ 	= H of H , so that N = H ∩ H ′. Taking the quotient by N , we can suppose that
H ∩ H ′ = {1} and we are reduced to proving that G is a 2-group of order d � 22a−1. Let
W be the normalizer of H . Since it has index 2 in G, it is normal in G, so that H ′ ⊂ W .
Since H and H ′ are both normal subgroups of W and H ∩ H ′ = {1}, [H, H ′] = {1}.
Accordingly, HH ′ is a normal subgroup of G, contained in W , and is naturally the direct
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product of H and H ′. The order of H is d/2a , so that the order of HH ′ is d2/22a , and hence
the index of HH ′ in G is 22a/d . This proves that d is a power of 2, and d � 22a ; actually
d � 22a−1 because HH ′ is contained in W , hence has index � 2 in G. �

R e m a r k 8. In Lemma 7, the assumption that the normalizer has index at most two is
sharp: in the alternating group A4, there are four subgroups of index 4, all conjugate; they
have pairwise trivial intersection, hence of index 12, which is not a power of 2.

Recall that �0 ⊂ �0 is a subgroup of index 2; it is generated by b, c, d, aba, aca,
ada. By [6, Proposition 1], the assignment i0(b) = (a, c), i0(c) = (a, d), i0(d) = (1, b)

extends to a unique group homomorphism i0 : �0 → �−1 × �−1 such that, for all x ∈ �0,
if i0(x) = (x0, x1), then i0(axa) = (x1, x0). By [6, Proposition 10], this induces, for all
n � 1, an injective group homomorphism: in : �n → �n−1 × �n−1.

P r o o f o f P r o p o s i t i o n 5. Let us proceed by induction on n. We start with
the essential case when n = 0, worked out in [6, Lemma 11]. Write �0 = 〈a, b, d| a2 =
b2 = d2 = (bd)2 = (ad)4 = 1〉 (this is a Coxeter group). Let H0 be the normal subgroup
generated by (ab)2. Then, by an immediate verification, �0/H0 is isomorphic to the direct
product of a cyclic group of order 2 and a dihedral group of order 8.

We claim that H0 is free of rank 3. Let L be the normal subgroup of �0 generated by ab:
then L has index 4 in �0, contains H0, and is shown, in the proof of [6, Lemma 11], to be
isomorphic to Z ∗ (Z/2Z).

Accordingly, by Kurosh’s Theorem, if H0 were not free, then it would contain a conjugate
of ab, but this is not the case. Actually H0 is contained in a subgroup of index 8 in �0, free
of rank 2 (see the proof of [6, Lemma 11]), hence has rank 3.

Now, for n � 1, let us suppose that �n−1 has a normal subgroup Hn−1 of index 2αn−1 ,
which embeds as a subgroup of index 2βn−1 in a direct product of 2n−1 non-abelian free
groups of rank 3.

The homomorphism in described above embeds �n as a subgroup of index 8 in �n−1 ×
�n−1. Define H ′

n = i−1
n (Hn−1 × Hn−1): this a normal subgroup of index 2k in �n, with

k � 2αn−1; so H ′
n has index 2k+1 in �n.

Then, using Lemma 7, Hn = H ′
n ∩ aH ′

n has index 2αn in G, for some αn � 4αn−1 + 1.

Combining the inclusions Hn ⊂ H ′
n

∼→ Hn−1 × Hn−1 ⊂ F3
2n−1 × F3

2n−1
, we obtain

that Hn embeds as a subgroup of index 2βn in F3
2n

, with βn = [H ′
n : Hn] + 2[F3

2n−1
:

Hn−1] � 2αn−1 + 2βn−1.
Define α′

n = (13 ·4n −1)/3 and β ′
n = (13 ·4n −15 ·2n +2)/3. Then α′

0 = 4, β ′
0 = 0, and

they satisfy, for all n: α′
n = 4α′

n−1 + 1 and β ′
n = 2α′

n−1 + 2β ′
n−1. Therefore, an immediate

induction gives αn � α′
n and βn � β ′

n for all n � 0. �

It is maybe worthwhile to restate the result avoiding reference to the particular
sequence �n.

Corollary 9. For every finitely presented group G mapping onto the first Grigorchuk
group �, there exist normal subgroups N � H in G, with H of finite 2-power index, such
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that H/N is isomorphic to a finite index subgroup in a direct product of non-abelian free
groups.

P r o o f. Let p : G → � be onto. Since G is finitely presented, p factors through �n

for some sufficiently large n, so that there exists a map p′ from G onto �n. Then take
N = Ker(p′) and H = p′−1(Hn). �

Combining Propositions 4 and 5, we also obtain the following statement:

Corollary 10. In the group �i(n), the n-ball consists of 2i(n)+1-torsion elements, and
there exists a normal subgroup of index 2αi(n) , which embeds in a direct product of free
groups, with αi(n) � (13 · nlogλ(4) − 1)/3, and logλ(4) ∼= 6.60. �

P r o o f o f P r o p o s i t i o n 1. By Proposition 4, we may take i sufficiently large so
that the n-ball of �i consists of torsion elements. Since Hi is a finite index subgroup in a
nontrivial direct product of free groups (see Proposition 5), it has infinite abelianization.
There is a short exact sequence

1 → Hi/[Hi, Hi] → �i/[Hi, Hi] → �i/Hi → 1 .

Accordingly, G = �i/[Hi, Hi] is an infinite, virtually abelian group, in which the n-ball
consists of torsion elements. Moreover, since �i/Hi is a finite 2-group, G is also solvable.
This proves (i).

For (iii), take, instead, G = �i/[[Hi, Hi], [Hi, Hi]]. Since Hi maps onto a non-abelian
free group, its metabelianization is not virtually polycyclic, so that G is virtually metabelian,
but not virtually polycyclic.

For (ii), take a morphism from Hi onto a polycyclic group W which is not virtually
nilpotent, and let K be the kernel of this morphism. Since the normalizer of K has finite

index in �i , K has finitely many conjugates K1, . . . , K�. Set L =
�⋂

j=1
Ki . Then the

diagonal map Hi/L →
�∏

j=1
Hi/Ki is injective, hence embeds Hi/L in W�. On the other

hand, observe that Hi/L projects onto W , so is not virtually nilpotent. It follows that
G = �i/L is polycyclic but not virtually nilpotent. If W has been chosen metabelian, then
we also have that G is virtually metabelian. �

P r o o f o f P r o p o s i t i o n 3. Keep the last construction in the previous proof.
Then h(�i/L) � h(�i). Moreover, h(�i/L) > 0 since �i/L is solvable but not virtually
nilpotent [10]. On the other hand, it is proved in [6] that h(�i) → 0. Thus we can obtain
h(G) arbitrarily small. �

R e m a r k 11. Consider for every i an infinite quotient Qi of �i . In the topology of
marked groups (defined in [5]; see also, for instance, [3]), the sequence (Qi) converges to
the Grigorchuk group �. Indeed, otherwise by compactness it would have another cluster
point, which would be a proper quotient of �, and therefore would be finite. This is a
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contradiction since the infinite groups form a closed subset in the topology of marked
groups.

Appendix. We gather here the technical results concerning torsion in the groups �n. They
are slight modifications of results in the papers [6] and [1].

Recall that λ ∼= 1.25 denotes the real root of the polynomial 2X3 − X2 − X − 1. We
introduce on �−1 (and hence on all of its quotients) the metric | · | of [1]: it is defined by
attributing a suitable weight to each of the generators a, b, c, d: |a| = 2(λ − 1) ∼= 0.47,
|b| = 1 − |a| = λ−3 ∼= 0.53, |c| = 2λ2 − 3λ + 1 ∼= 0.34, and |d| = −2λ2 + λ + 2 ∼= 0.19.
Throughout this appendix the balls and the lengths are meant in the sense of this weighted
metric.

To check that the length of a, b, c, d is exactly the weight we have imposed, it suffices to
check this in the abelianization of �−1, the F2-vector space with basis (a, b, d) (which is
also the abelianization of all �n). There, it is a straightforward verification that the mapping
|·| just defined extends to a length function by setting |aξ | = |a| + |ξ | for all ξ ∈ {b, c, d}.

Observe that if ξ ∈ {b, c, d}, and in(ξ) = (ξ0, ξ1), we have

|ξ0| + |ξ1| = λ−1(|ξ | + |a|).(1)

Lemma 12. Let x ∈ �0 be any element. Set x′ = x if x ∈ �0 and x′ = xa otherwise;
and set i0(x

′) = (x0, x1).
Then |x0| + |x1| � λ−1(|x| + |a|).

Suppose moreover that x is of minimal length among its conjugates, and that x /∈ {b, c, d}.
Then |x0| + |x1| � λ−1|x|.

P r o o f. Fix x ∈ �0, and let w be a word in the letters {a, b, c, d}, of minimal length1) ,
representing x. Since every element in {b, c, d} is the product of the two others, w can be
chosen so that no two consecutive letters are in {b, c, d}.

Suppose now that x is of minimal length within its conjugacy class and that w is not a
single letter. Maybe conjugating x by the last letter of w, we can suppose that w ends with
the letter a. The minimality assumption then implies that w begins with a letter in {b, c, d}.

F i r s t c a s e. x ∈ �0. Write w = ξ1(aξ2a) . . . ξ2n−1(aξ2na), where ξ i ∈ {b, c, d} for
i = 1, . . . , 2n. Write i(x) = (x0, x1) and i(ξ i) = (ξ i

0, ξ
i
1), so that i(ξ i) = (ξ i

1, ξ
i
0). Then

|x0| + |x1| � (|ξ1
0 | + |ξ2

1 | + · · · + |ξ2n−1
0 | + |ξ2n

1 |)
+ (|ξ1

1 | + |ξ2
0 | + · · · + |ξ2n−1

1 | + |ξ2n
0 |)

= (|ξ1
0 | + |ξ1

1 |) + (|ξ2
0 | + |ξ2

1 |) + · · · + (|ξ2n
0 | + |ξ2n

1 |).

1)If w = u1 . . . un, the length of w is defined as |u1| + · · · + |un|.
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By (1), we get

|x0| + |x1| � λ−1
2n∑
i=1

(|ξ i | + |a|).

On the other hand, |x| =
2n∑
i=1

(|ξ i | + |a|), so that finally |x0| + |x1| � λ−1|x|.

S e c o n d c a s e. x /∈ �0, so that xa ∈ �0. Write w = ξ1(aξ2a) . . . ξ2n−1(aξ2na)

ξ2n+1a, so that ξ1(aξ2a) . . . ξ2n−1(aξ2na)ξ2n+1 represents xa in �0. Write i0(xa) =
(x0, x1), and i0(ξ

i) = (ξ i
0, ξ

i
1). Then

|x0| + |x1| � (|ξ1
0 | + |ξ2

1 | + · · · + |ξ2n−1
0 | + |ξ2n

1 | + |ξ2n+1
0 |)

+ (|ξ1
1 | + |ξ2

0 | + · · · + |ξ2n−1
1 | + |ξ2n

0 | + |ξ2n+1
1 |)

= (|ξ1
0 | + |ξ1

1 |) + (|ξ2
0 | + |ξ2

1 |) + · · · + (|ξ2n+1
0 | + |ξ2n+1

1 |)

= λ−1

(
2n+1∑
i=1

(|ξ i | + |a|)
)

again by (1).

Since |x| =
2n+1∑
i=1

(|ξ i | + |a|), we get |x0| + |x1| � λ−1|x|.

The other inequality |x0| + |x1| � λ−1(|x| + |a|) is proved similarly: we must deal with
the following cases:

• w begins and ends with the letter a: considering whether or not x ∈ �0, in both cases
we obtain the stronger inequality |x0| + |x1| � λ−1(|x| − |a|).

• w begins and ends with letters in {b, c, d}: considering whether or not x ∈ �0, in both
cases we obtain the inequality |x0| + |x1| � λ−1(|x| + |a|).

• w begins with the letter a and ends with a letter in {b, c, d}: in this case, replacing
x by x−1 and w by w−1 (this is the word w read from right to left — recall that the
generators are involutions), we reduce to the case, already carried out, in which w

begins with a letter in {b, c, d} and ends with the letter a, obtaining the inequality
|x0| + |x1| � λ−1|x|.

Since the verifications are similar to the computations above and since we do not use this
case in the sequel, we omit the details. �

Lemma 13. For every n � − 1, and every element in the open λn−1-ball of �−1, its
image in �n is of 2n+1-torsion.

P r o o f. For n = −1 we have λ−2 = |a| + |d| ∼= 0.66, and the elements in the open
λ−2-ball are 1, a, b, c, and d , and are of 2-torsion in �−1.
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For n = 0 we have λ−1 = |a| + |c| ∼= 0.81, and the elements in the open λ−1-ball are,
besides the elements in the open λ−2-ball already quoted, ad and its inverse da, which are
of 4-torsion in �0.

We can start an induction, and suppose that, for some n � 1, we have already proved
that for every element in the open λn−2-ball of �−1, its image in �n−1 is of 2n-torsion.
Pick x in the open λn−1-ball of �−1. We want to show that x2n+1 = 1. We can suppose
that x is of minimal length among its conjugates, and that x /∈ {b, c, d}. Define x′ as in
Lemma 3, i.e., {x′} = {x, xa} ∩ �−1. Denote by [·] the projection of �−1 onto �0. Set
i0([x′]) = (x0, x1).

F i r s t c a s e. x ∈ �−1, i.e., x = x′. By Lemma 12, we have |xi | � |x0| +
|x1| � λ−1|x| � λn−2 for all i ∈ {0, 1}. By the induction hypothesis, x0 and x1 are of 2n-
torsion in �n−1. Since i0 induces an injection of �n into �n−1 × �n−1, this implies that x

is of 2n-torsion, hence of 2n+1-torsion in �n.

S e c o n d c a s e. x /∈ �−1, i.e., x′ = xa. Then x2 ∈ �−1, and

i0([x
2]) = i0([xaaxaa]) = i0([xa])i0([a(xa)a]) = (x0x1, x1x0),

which is conjugate to (x0x1, x0x1) in �−1 × �−1. By Lemma 12, we have |x0x1| � |x0| +
|x1| � λ−1|x| � λn−2. By the induction hypothesis, x0x1 is of 2n-torsion in �n−1, so i0([x2])
is of 2n-torsion in �n−1 ×�n−1. Since i0 induces an injection of �n into �n−1 ×�n−1, this
implies that x2 is of 2n-torsion in �n ⊂ �n, hence x is of 2n+1-torsion in �n. �

P r o o f o f P r o p o s i t i o n 4. Suppose that x has word length � n. Then

|x| � |b|n = λ−3n = λlogλ(n)−3 < λi(n)−1.

By Lemma 13, the image of x in �i(n) is of 2i(n)+1-torsion. �
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