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Abstract. Over an algebraically closed field of characteristic zero simple Lie algebras
admit outer automorphisms of order 3 if and only if they are of type D4. Moreover, there
are two conjugacy classes of such automorphisms. Among orthogonal Lie algebras over
arbitrary fields of characteristic zero, only orthogonal Lie algebras relative to quadratic
norm forms of Cayley algebras admit outer automorphisms of order 3. We give a complete
list of conjugacy classes of outer automorphisms of order 3 for orthogonal Lie algebras
over arbitrary fields of characteristic zero. For the norm form of a given Cayley algebra,
one class is associated with the Cayley algebra and the others with central simple algebras
of degree 3 with involution of the second kind such that the cohomological invariant of
the involution is the norm form.

1. Introduction

Simple Lie algebras over algebraically closed fields of characteristic zero are
classified by their Dynkin diagrams, and the group of automorphisms of the Lie
algebra modulo the subgroup of inner automorphisms is isomorphic to the group
of symmetries of the corresponding Dynkin diagram. In most cases this group
of symmetries has at most two elements. The case of the Lie algebra of skew-
symmetric (8× 8)-matrices is exceptional. The Dynkin diagram is of type D4:

c c

c

c

��

@@

and has the permutation group S3 as a group of automorphisms. The existence of
peculiar automorphisms of order 3 for Lie algebras of type D4 is one aspect of the
phenomenon known as triality.

The automorphisms of the Dynkin diagram can easily be extended to automor-
phisms of the Lie algebra using the root system. Thus over an algebraically closed
field, the classes of automorphisms modulo inner automorphisms are explicitly
known.

A complete list of conjugacy classes of outer automorphisms of order 3 over an
algebraically closed field of characteristic zero can be deduced from the classifica-
tion of automorphisms of finite order of simple Lie algebras. Such a classification
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is given for example in [WG], [N], [K69], [K85], [H] or [JZ]. Besides the con-
jugacy class of the automorphism constructed with the help of the root system,
whose fixed point algebra is of type G2, there is one more conjugacy class in the
full group of automorphisms, whose fixed point algebra is a simple Lie algebra of
type A2.

In this work we consider outer automorphisms of order 3 of orthogonal Lie alge-
bras over arbitrary fields of characteristic 0. The orthogonal Lie algebra relative to
the quadratic norm form of a Cayley algebra always admits such automorphisms.
This is known as the “local triality principle” (see, e.g., [VBS], [J64], [SV] or Ex-
ample 7). The following converse also holds: if an orthogonal Lie algebra of type
D4 admits an outer automorphism of order 3, then it is the orthogonal Lie algebra
relative to the quadratic norm form of a Cayley algebra. Thus (local) triality and
octonions are mutually “responsible” (Tits [T]) for existence. By descent, conju-
gacy classes of order 3 outer automorphisms must have as fixed point algebras Lie
algebras of type G2 or A2. We show that conjugacy classes of the orthogonal Lie
algebra relative to a given norm form are classified by the set consisting of the
isomorphism class of the corresponding Cayley algebra (type G2) and the isomor-
phism classes of central simple algebras of degree 3 with specific involutions of the
second kind over the quadratic extension generated by a cubic root of unity (type
A2). We describe an explicit rational construction of a set of representatives of
conjugacy classes of outer automorphisms of order 3. For example, over R there
are two conjugacy classes for both the identity norm form and the hyperbolic norm
form.

In Section 2 we reproduce the construction of outer automorphisms based on
a Cartan decomposition of the Lie algebra. Symmetric compositions and their
Lie algebras of derivations are discussed in Sections 3 and 4. We then recall in
Section 5 the construction of outer automorphisms via symmetric compositions
given in [KMRT]. In the last section we give a proof that local triality for an
orthogonal Lie algebra g implies that g is the orthogonal Lie algebra of a norm of
a Cayley algebra and we show that the classification of symmetric compositions
leads to a classification of conjugacy classes of outer automorphisms of order 3
of the Lie algebra. In the Appendix (in collaboration with Larissa Cadorin), we
compare the definitions of triality given in Sections 2 and 5.

If not explicitly mentioned, we assume in the whole paper that fields have
characteristic 0. However, it should be enough to assume characteristic different
from 2 and 3.

Acknowledgements. We thank Alberto Elduque and Skip Garibaldi for detecting
flaws in preliminary versions, Erhard Neher for showing us a copy of [N] and telling
us about [WG], and O. Loos for useful discussions. The author is also very thankful
to the referees for many improvements.

2. Orthogonal Lie algebras

Let V be a finite-dimensional vector space over a field F and let q : V → F be a
quadratic form on V , with associated polar form bq(x, y) = q(x+ y)− q(x)− q(y).
We call the pair (V, q) a quadratic space if bq is nonsingular. The adjoint involution
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σq on EndF (V ) is defined through the formula bq
(

σq(f)(x), y
)

= bq
(

x, f(y)
)

for x,
y ∈ V and f ∈ EndF (V ). The space

o(V, q) = o(q) = Skew
(

EndF (V ), σq

)

= {f ∈ EndF (V ) | σq(f) = −f}
= {f ∈ EndF (V ) | bq

(

x, f(y)
)

+ bq
(

f(x), y
)

= 0}

of skew-symmetric elements of EndF (V ) with respect to the involution σq is a
Lie subalgebra (of dimension n(n− 1)/2) of EndF (V ) for the Lie bracket [f, g] =
f ◦ g− g ◦ f of EndF (V ). The Lie algebra o(q) is called the orthogonal Lie algebra

relative to q.

Example 1. Let V = F 2m, m > 4, and let b2m be the symmetric bilinear form
on V given by the matrix

s =

(

0 Im
Im 0

)

where Im is the m-dimensional identity matrix. The quadratic space (F 2m, b2m)
is the 2m-dimensional hyperbolic space H2m. A basis (e1, . . . , em, f1, . . . , fm) with

b2m(ei, ej) = 0, b2m(fi, fj) = 0, b2m(ei, fi) = 1, i, j = 1, . . . ,m,

is called hyperbolic. The corresponding orthogonal Lie algebra o2m can be identified
with the set of matrices

(

X Y
Z −Xt

)

where X , Y , Z are (m × m)-matrices, Y and Z are skew-symmetric and X t is
the transpose of X . Orthogonal Lie algebras relative to quadratic spaces of even
dimension 2m are forms of o2m, i.e., isomorphic to o2m over an algebraic closure
F of F .

A similitude of quadratic spaces (V, q) and (V ′, q′) is an isometry of (V, q) with
(V ′, λq′) for some λ ∈ F× = F \{0}. Any similitude s induces an isomorphism
Int (s) :

(

EndF (V ), σq

) ∼→
(

EndF (V ′), σq′
)

of algebras with involutions and a

Lie algebra isomorphism o(s) : o(q)
∼→ o(q′). Similitudes of the quadratic space

(V, q) are linear automorphisms f of V with q
(

f(x)
)

= µ(f)q(x), where µ(f) ∈
F× is the multiplier of the similitude. They form a group denoted by GO(q).
If dimF V = 2m is even, a similitude f is proper if det(f) = µ(f)m. Proper
similitudes form a normal subgroup GO+(q) of GO(q) of index 2. Elements of
GO(q) act by inner conjugation as automorphisms of

(

EndF (V ), σq

)

and the group

of automorphisms of the algebra with involution
(

EndF (V ), σq

)

is isomorphic to

the projective group PGO(q) = GO(q)/F×. The group PGO+(q) = GO+(q)/F×

also acts on o(q) by conjugations and the corresponding automorphisms are called
inner automorphisms of o(q). Inner automorphisms can be identified over an
algebraically closed field with invariant automorphisms of the Lie algebra o(q) (see
[J62, Chap. IX]). Inner automorphisms form a normal subgroup Int

(

o(q)
)

of the

full automorphism group Aut
(

o(q)
)

of o(q). Automorphisms which are not inner
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automorphisms are called outer automorphisms. The definitions of inner and outer
automorphisms are invariant under base field extensions and are independent of
the realization of the Lie algebra in the form o(q).

It is a classical result (see, e.g., [J62, Chap. IX] or [SP]) that, over an alge-
braically closed field of characteristic zero, the factor group

Out
(

o(q)
)

= Aut
(

o(q)
)

/Int
(

o(q)
)

is isomorphic to the group of automorphisms of the Dynkin diagram of type Dm:

αm−1

αm

c

α1

c

α2

p p p c

αm−2

c

c

��

@@

If m 6= 4, the Dynkin diagram admits only one nontrivial automorphism, of
order 2 (which corresponds to the automorphism of the Lie algebra given by con-
jugation with a similitude which is not proper). The case of type D4 is exceptional,
in the sense that the group of automorphisms of the Dynkin diagram is S3, the
group of permutations of three objects. Thus we have an exact sequence

1 → Int
(

o8

)

→ Aut
(

o8

)

→ S3 → 1. (2)

Proposition 3. Let (V, q) and (V ′, q′) be quadratic spaces of even dimension 2m,

m > 4.

(1) Any similitude s : (V, q)
∼→ (V ′, q′) induces an isomorphism

Int (s) :
(

EndF (V ), σq

) ∼→
(

EndF (V ′), σq′
)

of algebras with involution and conversely any isomorphism

(

EndF (V ), σq

) ∼→
(

EndF (V ′), σq′
)

of algebras with involution is of the form Int (s) for a similitude s : (V, q)
∼→

(V ′, q′).
(2) The quadratic spaces (V, q) and (V ′, q′) are similar if and only if the Lie

algebras o(q) and o(q′) are isomorphic.

Proof. The first claim follows from the fact that any isomorphism of algebras
EndF (V )

∼→ EndF (V ′) is induced by an isomorphism V
∼→ V ′. Claim (2), for

m 6= 4, is in [J62] and in [J64] for m = 4. �

Following [N] (see also [WG]) we construct in this section outer automorphisms
of order 3 of the Lie algebra o8 using root systems. We fix a Cartan subalgebra h

of o8, for example

h =

{(

D 0
0 −D

) ∣

∣

∣

∣

D = diag(λ1, . . . , λ4), λi ∈ F
}

.
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Let (Eij , i, j = 1, . . . , n) be the standard basis of the algebra Mn(F ) of (n × n)-
matrices with entries in F . The matrices

uj = Ejj −Ej+4,j+4, j = 1, . . . , 4, (4)

form a basis of h. We have a Cartan decomposition of o8,

o8 = h ⊕
(

⊕

α

gα

)

,

where the one-dimensional root spaces gα are generated by the 24 matrices

GX
ij = Ei,j −Ej+4,i+4 1 6 i, j 6 4, i 6= j,

GY
ij = Ei,j+4 −Ej,i+4 1 6 i < j 6 4,

GZ
ij = Ei+4,j −Ej+4,i 1 6 i < j 6 4.

Let h∗ be the dual space of H and let εi ∈ h∗, i = 1, . . . , 4, be the dual basis of
the basis (uj) of h. The simple roots are

α1 = ε1 − ε2, α2 = ε2 − ε3, α3 = ε3 − ε4, and α4 = ε3 + ε4.

The rule α1 7→ α4, α4 7→ α3, α3 7→ α1, α2 7→ α2 defines an automorphism ρ of the
Dynkin diagram D4. Let ρ be its (unique) extension to h∗. The automorphism ρ
is given by the matrix

R =
1

2









1 1 1 −1
1 1 −1 1
1 −1 1 1
1 −1 −1 −1









(5)

with respect to the basis (εi). Similarly, let π be the automorphism of the Dynkin
diagram given by α3 7→ α4, α4 7→ α3, α1 7→ α1, α2 7→ α2. Its extension π to h∗

has the matrix

P =
1

2









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1









.

One checks that R3 = 1, P 2 = 1 and PR = R2P . Thus {R,P} generates a group
isomorphic to S3. Let H ∈ h and eα 6= 0 ∈ gα. Any automorphism φ of the root
system induces an automorphism fφ of o8:

fφ

(

H +
∑

α

sαeα

)

= (φ∗)−1(H) +
∑

α

sαeφ(α)

where φ∗ is the dual of φ and the sum is taken over all roots. In particular, ρ and
π induce automorphisms fρ and fπ. Let ω be a primitive cubic root of 1. Let (vi)
be the dual basis of (αi), so that v2 = u1 + u2. The map

f2

(

H +
∑

α

sαeα

)

= H +
∑

α

ωα(v2)sαeα

is an automorphism of order 3 of o8 and is invariant, since it is the identity on the
Cartan algebra (see [J62]). Hence it is an inner automorphism. Moreover, fρ and
f2 commute. Let f ′ρ = fρ ◦ f2. We have (see [N] or [WG]):
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Theorem 6. Assume that F is algebraically closed.

(1) Every outer automorphism of order 3 of o8 is conjugate in Aut(o8) to fρ

or f ′ρ and in Int (o8) to f±1
ρ or to f ′±1

ρ .

(2) The set {fρ, fπ} generates a group isomorphic to S3.

(3) The fixed point algebra of fρ is a Lie algebra of type G2 and that of f ′ρ of

type A2.

(4) Fixed point subalgebras under outer automorphisms of order 3 are isomor-

phic if and only if the automorphisms are conjugate in Aut(o8).

Example 7. Let C be a Cayley algebra with norm n and multiplication x, y 7→ xy.
The classical local triality principle (see, e.g., [VBS], [SV] or [J64]) states that for
every s ∈ o(n) ⊂ EndF (C) there are unique t, u ∈ o(n) such that

t(x)y + xs(y) = u(xy) for all x, y ∈ C.

Moreover, the map f : s 7→ t is an automorphism of order 3 and the map g : s 7→ u
is an automorphism of order 2 of o(n); they generate a group isomorphic to S3.
The fixed point Lie algebra Fix(f) = {s ∈ o(n) | f(s) = s} is the Lie algebra
of derivations of C which is a Lie algebra of type G2. Thus by Theorem 6 f is
conjugate to fρ over an algebraic closure of F .

3. Symmetric compositions

Let S be a finite-dimensional F -vector space with a bilinear multiplication
(x, y) 7→ x ? y. We say that a quadratic form n on S is multiplicative if

n(x ? y) = n(x)n(y) (8)

for all x, y ∈ S. A triple (S, ?, n) with a nonsingular multiplicative quadratic form
n is called a composition algebra and n is the norm of S. By a classical result of
Hurwitz (see, e.g., [KMRT, (33.17)]), a complete list of composition algebras with
identity is given by the base field F , quadratic separable algebras, quaternion alge-
bras and Cayley algebras over F . Composition algebras with identity are usually
called Hurwitz algebras. If a composition algebra does not have an identity, one
can define a new multiplication such that the corresponding algebra is a compo-
sition algebra with identity with the same norm (see Kaplansky [KA] or [KMRT,
(33.27)]). Thus:

Proposition 9. Composition algebras only occur in dimensions 1, 2, 4 and 8, and

their norms are norms of Hurwitz algebras.

Let α1, . . . , αn ∈ F×. We denote by 〈α1, . . . , αn〉 the diagonal quadratic form

〈α1, . . . , αn〉 = α1x
2
1 + · · ·+ αnx

2
n

and by 〈〈α1, . . . , αk〉〉 the k-fold Pfister quadratic form

〈〈α1, . . . , αk〉〉 = 〈1, α1〉 ⊗F · · · ⊗F 〈1, αk〉.
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Norm forms of composition algebras are k-Pfister forms for k = 1, 2 and 3.
We recall that a symmetric bilinear form b on an algebra (S, ?) is called asso-

ciative or invariant with respect to the multiplication ? of S if

b(x ? y, z) = b(x, y ? z)

holds for all x, y, z ∈ S. If the polar form bn of a composition algebra S is asso-
ciative, we say that (S, ?, n) is a symmetric composition. Symmetric compositions
have the following nice property (see [OO] or [KMRT, (34.1)].

Proposition 10. Let (S, ?) be an algebra and let be n be a nonsingular multiplica-

tive quadratic form on S. The following conditions are equivalent:

(1) (S, ?, n) is a symmetric composition.

(2) The norm form n satisfies the relations x ? (y ? x) = n(x)y = (x ? y) ? x for

x, y ∈ S.

If (S, ?) is a symmetric composition, the opposite algebra (Sop, ?) is also a
symmetric composition.

Example 11 ((Symmetric compositions of type G2, [KMRT]) or [EM])). Let C
be a Hurwitz algebra with multiplication (x, y) 7→ xy and norm n. The algebra C
admits a conjugation π0 : x 7→ x which satisfies

1 = 1, x = x, xy = y x and bn(xy, z) = bn(x, zy) for all x, y, z ∈ C. (12)

The form n is also multiplicative for the multiplication

(x, y) 7→ x ? y = x y

and it follows from (12) that n is associative for the ?-multiplication. We call
(C, ?, n) a para-Hurwitz algebra. In dimension 8 para-Hurwitz algebras are called
para-Cayley algebras (resp., symmetric compositions of type G2).

Example 13 ((Symmetric compositions of type A2, [KMRT]) or [EM])). Assu-
me that the base field contains a primitive cubic root ω of 1. Let A be a cen-
tral simple algebra of dimension 9 over F (e.g., A = M3(F )). Let

PA,a(X) = X3 − TA(a)X2 + SA(a)X2 −NA(a)

be the reduced characteristic polynomial of A and let A0 be the eight-dimensional
space of reduced trace zero elements

A0 = {x ∈ A | TA(x) = 0}.

We define a multiplication ? on A0 by

x ? y = µxy + (1− µ)yx− 1
3TA(xy)1A (14)

where µ = (1− ω)/3. The algebra (A0, ?) is a symmetric composition algebra with
norm n(x) = − 1

3SA(x) = 1
6TA(x2) (see, e.g., [KMRT, (34.19)]).
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If F does not contain a primitive cubic root of unity ω, one considers central
simple algebras B of dimension 9 over the quadratic field extension K = F (ω) =
F (
√
−3), with an involution τ of the second kind, i.e., τ |K 6= 1K . Let Sym(B, τ)

be the set of symmetric elements in B and let

Sym(B, τ)0 = {x ∈ Sym(B, τ) | TB(x) = 0}.

The multiplication defined on B0 by (14) induces a product on Sym(B, τ)0 and
with the quadratic form n(x) = 1

6TB(x2), the space
(

Sym(B, τ)0, ?, n
)

is a sym-
metric composition. This type of composition was first considered by Okubo [O]
for matrix algebras and by Faulkner [F] for cubic alternative algebras. They are
called Okubo compositions or symmetric compositions of type A2, more precisely
of type 1A2 (resp., of type 2A2) depending if F contains a primitive cubic root of
1 or not.

It follows from the classification of symmetric compositions (see [EM] or [KMRT,
(34.37)]) that in dimensions 1, 2, and 4 para–Hurwitz and Okubo compositions
are essentially the same. In dimension 8 we have ([EM] or [KMRT, (34.37)]):

Theorem 15. Let F be a field of characteristic different from 2 and 3. A sym-

metric composition (S, ?, n) of dimension 8 is either isomorphic to:

(1) A para-Cayley algebra (C, ?) for a Cayley algebra C.
(2) A composition algebra of the form (A0, ?) for a central simple F -algebra A

of degree 3 if F contains a primitive cubic root of unity.

(3) A composition algebra of the form
(

Sym(B, τ)0, ?, n
)

for a central simple

F (ω)-algebra B of degree 3 with an involution τ of the second kind if F
does not contain a primitive cubic root of unity ω.

If the quadratic extension K is allowed to be split, i.e., K ' F × F , then
types 1

A2 and 2
A2 need not to be distinguished: we replace A of type 1

A2 by
B = H(A) = A×Aop and τ is the twist of the two factors. We say also in this case
that H(A) is central simple over K/F and from now on symmetric compositions
of type A2 will be represented as Sym(B, τ)0. The algebras C, A or (B, τ) in
Theorem 15 are uniquely determined up to isomorphisms by the corresponding
symmetric compositions. More precisely,

Proposition 16.

(1) Any isomorphism C1 ' C2 of Cayley algebras is an isomorphism of the

associated para-Cayley algebras and conversely.

(2) Let (Bi, τi), i = 1, 2, be central simple of degree 3 with involutions of the

second kind over K = F [x]/(x2 + 3). Any K-isomorphism (B1, τ1) '
(B2, τ2) of algebras with involution induces by restriction an isomorphism

Sym(B1, τ1)
0 ' Sym(B2, τ2)

0 of the associated Okubo algebras and con-

versely.

(3) Any F -isomorphism (B1, τ1) ' (B2, τ2) of algebras with involution induces

by restriction an isomorphism or an anti-isomorphism Sym(B1, τ1)
0 '

Sym(B2, τ2)
0 of the associated Okubo algebras and conversely.
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Proof. Claim (1) follows from the fact that isomorphisms of Cayley algebras are
compatible with conjugations. We refer to [KMRT, (34.35)] for claim (2). Claim
(3) follows from the fact that if φ : (B1, τ1) ' (B2, τ2) is an F -isomorphism which
is not K-linear, then τ2 ◦ φ = φ ◦ τ1 is a K-anti-isomorphism, hence induces an
anti-isomorphism of the associated Okubo algebras. �

The conjugation π0 of a Cayley algebra (C, n) is an F -linear involution for the
associated para-Cayley algebra (C, ?):

π0(x ? y) = π0(y) ? π0(x), π2
0 = 1C , (17)

for x, y ∈ C. The map π0 is an isometry of n, but is improper since det(π0) = −1.
For symmetric composition algebras of type A2 we have:

Proposition 18. Let (B, τ) be a central simple F (ω)-algebra B of degree 3 with

an involution τ of the second kind. The following properties are equivalent:

(1) The symmetric composition S =
(

Sym(B, τ)0, ?, n
)

admits an F -linear

involution π0.

(2) S is isomorphic to its opposite algebra Sop.

(3) B is split.

Proof. Claim(1) clearly implies claim (2). If φ is an F -linear anti-automorphism
of (S, ?), then φ also defines a K-anti-automorphism of B since the multiplication
of B restricted to B0 is given by

xy = (1 + ω)x ? y − ω y ? x+ bn(x, y) · 1
(see [KMRT, §34]. It follows that B has order 2 in the Brauer group of K. Since
B, being of degree 3, has exponent 1 or 3, B is split. If B is split and x 7→ x, x ∈
M3(K), is elementwise conjugation, then τ : x 7→ τ(x) is an F -linear involution of
B, hence (1). �

4. Derivations of symmetric compositions

For any F -algebra A (i.e., an F -vector space with a bilinear multiplication
(x, y) 7→ xy), the set of F -derivations

Der(A) = {d ∈ EndF (A) | d(xy) = xd(y) + d(x)y}

is a Lie subalgebra of EndF (A). Let (C, n) be a Cayley algebra with norm n and
let

(C, n) = F · 1 ⊥ (C0, n0)

where (C0, n0) is the quadratic subspace of trace 0 elements. The Lie algebra
Der(C) is a subalgebra of o(n) (see [J39]) and the eight-dimensional representation
Der(C) ⊂ EndF (C) decomposes as the sum of a one-dimensional trivial represen-
tation and the seven-dimensional standard representation

γ : Der(C) ⊂ o(n0) ⊂ EndF (C0) (19)

which is known to be absolutely irreducible (see [J39]).
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Proposition 20. Let φ : Der(C) → o(q) be a faithful orthogonal representation for

some seven-dimensional quadratic space (V, q). There exists a similitude s : (V, q)
∼→

(C0, n0) such that Int (s) ◦ φ = γ.

Proof. The claim is true over an algebraically closed field (see [J39]). Let t : (V, q)
∼→

(C0, n0) be a similitude over an algebraic closure F of F such that Int (t) ◦ φ = γ.
Since γ

(

Der(C)
)

generates EndF (C0) (see [J39]), Int (t) is unique, hence by descent

restricts to an isomorphism ψ :
(

EndF (V ), σq

) ∼→
(

EndF (C0), σn0

)

of algebras with

involution. By Proposition 3 we have ψ = Int (s) for a similitude s : (V, q)
∼→

(C0, n0). �

Corollary 21. Let (C, n) and (C ′, n′) be Cayley algebras. If the Lie algebra Der(C)
is isomorphic to a subalgebra of o(n′), then C and C′ are isomorphic.

Proof. For reasons of dimension the representation Der(C) ⊂ o(n′) ⊂ EndF (C′)
decomposes into a one-dimensional representation V1 and a seven-dimensional ir-
reducible representation V2. We claim that the decomposition C ′ = V1 ⊕ V2 is
orthogonal with respect to the norm n′. Let b′ be the polar of n′ and let xi ∈ Vi,
i = 1, 2. The one-dimensional representation is the trivial representation, hence

b′
(

d(x2), x1

)

= −b′
(

x2, d(x1)
)

= 0.

Thus Der(C)(V2) is orthogonal to V1 and since Der(C) generates EndF (V2) as an
F -algebra, we have an orthogonal decomposition

(C′, n′) = (V1, 〈λ〉) ⊥ (V2, q)

for some quadratic form q on V2. By Proposition 20 the form q is isometric to
〈µ〉 · n0 for some µ ∈ F×, thus we get n′ ' 〈λ〉 ⊥ 〈µ〉 · n0. Since det(n′) is
congruent to 1 modulo squares in F , 〈λ〉 ' 〈µ〉 and

n′ ' 〈µ〉 ⊥ 〈µ〉 · n0 ' 〈µ〉 · n.

Thus n and n′ are similar, which implies that C and C ′ are isomorphic (see, e.g.,
[KMRT, (33.19)]). �

Corollary 22. Let (C, n) be a Cayley algebra, let γ : Der(C) → o(n) be the stan-

dard embedding and let g be a Lie subalgebra of o(n) isomorphic to Der(C). Any

isomorphism φ : γ
(

Der(C)
) ∼→ g can be extended to an inner automorphism of o(n).

Proof. The isomorphism φ induces an eight-dimensional representation

φ̃ : Der(C)
∼→ g ⊂ o(n) ⊂ EndF (C)

which decomposes as a direct sum of a one-dimensional and a seven-dimensional
representation

(C, n) = (F · e, 〈λ〉) ⊥ (V, q).

By Proposition 20 there is an isometry s : (V, q)
∼→ 〈µ〉 · (C0, n0), µ ∈ K×, such

that Int (s) ◦ φ̃ = γ. Since det(n) is congruent to 1 modulo squares, the element
e can be chosen such that n(e) = µ−1 and e 7→ 1 extends s to a similitude of
(C, n), also denoted s. If s is improper, we may replace s by π0 ◦ s, where π0 is the
conjugation of C, since Int (π0) is the identity on Der(C) ([S, III.8, (3.75)]). �
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Proposition 23.

(1) Let (S, ?) be the para-Cayley algebra associated with a Cayley algebra C.
Then Der(S, ?) = Der(C), so that Der(S, ?) is a simple Lie algebra of type

G2.

(2) Let (Ci, ni) be Cayley algebras with norms ni. Any isomorphism Der(C1) '
Der(C2) of Lie algebras is induced by a unique isomorphism C1 ' C2 of

Cayley algebras.

Proof. We refer to [J39] for a proof of 2). To prove 1), first let d be a derivation
of C, d(xy) = xd(y) + d(x)y. In view of [S, III.8, (3.75)], we have d(x) = d(x) for
x ∈ C. It follows that

d(x ? y) = d(x y) = x d(y) + d(x) y = x ? d(y) + d(x) ? y

and d is also a derivation of the associated para-Cayley algebra. Conversely, if d
is a derivation of the para-Cayley algebra, one first checks that d(1) = 0, which
implies that d(x) = −d(x). Using that the conjugation π0 : x 7→ x is an involution
of the para-Cayley algebra, we get

d(x ? y) = d(y) ? x+ y ? d(x).

With x = 1 this implies d(y) = d(y) and one concludes that d is also a derivation
of the Cayley algebra. �

Let K/F be a quadratic extension and let (B, τ) be a central simple algebra
over K/F with an involution τ of the second kind. The quadratic form Q : B →
F, Q(x) = TB

(

xτ(x)
)

is nonsingular, the involution τ is an isometry of Q and we
have

bQ(xy, z) = bQ
(

x, zτ(y)
)

for x, y and z ∈ B. Let Skew(B, τ)0 = [Skew(B, τ), Skew(B, τ)] be the Lie algebra
of skew-symmetric elements of B of reduced trace 0. The quadratic form Q : B →
F, Q(x) = TB

(

xτ(x)
)

restricts to a nonsingular quadratic form on Skew(B, τ)0

denoted by Q− and to a nonsingular quadratic form on Sym(B, τ)0 denoted by Q+.

Proposition 24. The map ad: Skew(B, τ)0 → EndF

(

Skew(B, τ)0
)

, ady(x) =
[x, y], induces an orthogonal representation

Skew(B, τ)0 → o(Q−)

which is absolutely irreducible.

Proof. The map ad induces an isomorphism

Skew(B, τ)0
∼→ Der

(

Skew(B, τ)0
)

(25)

of Lie algebras since Skew(B, τ)0 is simple and any derivation of Skew(B, τ)0 is
inner. Using again that any derivation of Skew(B, τ)0 is inner, it is easy to check
that Der

(

Skew(B, τ)0
)

⊂ o(Q−). Thus the adjoint representation is orthogonal.
The fact that it is absolutely irreducible is for example in [J62]. �
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Proposition 26. Let (B, τ) be a central simple algebra of rank 9 over K/F with

an involution of the second kind τ .

(1) Let (V, q) be a eight-dimensional quadratic space and let φ : Skew(B, τ)0 →
o(q) be a faithful orthogonal representation. There exists a similitude

s : (V, q)
∼→

(

Skew(B, τ)0, Q−
)

such that Int (s) ◦ φ = ad.

(2) Let g be a Lie subalgebra of o(Q−) isomorphic to Der
(

Skew(B, τ)0
)

. Any

isomorphism of Lie algebras φ : Der
(

Skew(B, τ)0
) ∼→ g can be extended to

an automorphism of o(Q−) of the form Int (s), for a similitude s of Q−.

Proof. (1) Over an algebraic closure F of F , the adjoint representation is up to
isomorphism the unique irreducible eight-dimensional orthogonal representation
of Skew(B, τ)0. Thus the map φ can be extended to an isomorphism ψ = Int (t)
of

(

EndF (V ), σq

)

⊗F F onto
(

EndF

(

Skew(B, τ)0
)

, σQ−

)

⊗F F , which is uniquely
determined by the condition Int (t) ◦ φ = ad, since the image of the map ad in
EndF

(

Skew(B, τ)0
)

generates EndF

(

Skew(B, τ)0
)

. By descent ψ restricts to an

isomorphism of
(

EndF (V ), σq

)

onto
(

EndF

(

Skew(B, τ)0
)

, σQ−

)

, hence is induced

by a similitude of (V, q) with
(

Skew(B, τ)0, Q−
)

by Proposition 3. Claim (2) fol-
lows from claim (1). �

Proposition 27. Let K = F [x]/(x2 + 3) and let (B, τ) be central simple of rank

9 over K/F , with an involution of the second kind τ . Let (S, ?, n) = Sym(B, τ)0

be the symmetric composition of type A2 associated with (B, τ). Let u be a skew-

symmetric nonzero element of K.

(1) The map `u : x 7→ ux induces a similitude

(

Sym(B, τ)0, n
) ∼→

(

Skew(B, τ)0, Q−
)

(28)

and an isomorphism

Int (`u) : Der(S, ?)
∼→ Der

(

Skew(B, τ)
)

(29)

of Lie algebras. Hence the Lie algebra Der(S, ?) is a simple Lie algebra of

type A2.

(2) Let (Bi, τi) be central simple algebras with involutions of the second kind

over K/F , i = 1, 2. Any isomorphism of Lie algebras Skew(B1, τ1)
0 ∼→

Skew(B2, τ2)
0 can be uniquely extended to an F -isomorphism (B1, τ1)

∼→
(B2, τ2) and to a K-isomorphism or a K-anti-isomorphism (B1, τ1)

∼→
(B2, τ2).

Proof. The first claim of (1) is clear since n = 1
6Q+ and since Q+ and Q− are

similar. The second claim follows by a computation using (14) and (17). The fact
that Der(S, ?, n) is a Lie algebra of type A2 is a consequence of (29) and (25). For
a proof of (2), see for example [J62]. �
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Corollary 30. Let (B,τ) be a central simple algebra of degree 3 over a quadratic ex-

tension K of F , with an involution of the second kind. The Lie algebra Skew(B, τ)0

is a subalgebra of the orthogonal Lie algebra of a 3-Pfister form n if and only if

K = F [x]/(x2 + 3).

Proof. Assume that Skew(B, τ)0 is a subalgebra of the orthogonal Lie algebra of
a 3-Pfister form n. In view of Proposition 26 the form Q− is similar to n. It is
also similar to

(

Sym(B, τ)0, Q+

)

and, if K = F [x]/(x2 − α),

(

Sym(B, τ)0, Q+

)

' 〈2, 6〉 ⊥ 〈2〉 · 〈〈−α〉〉 · q0, (31)

where q0 is a quadratic space over F of dimension 3 and determinant 1 (see [HKRT]
or [KMRT, §19]). Thus the determinant of Q− is congruent to −3α modulo
squares. Since the determinant of a 3-Pfister form is congruent to 1, α must
be congruent to −3. The converse follows from Proposition 24. �

By Proposition 9, the norm form n of a symmetric composition of type A2 is a
3-Pfister form. More precisely:

Proposition 32. The norm of a symmetric composition of type A2 is of the form

〈〈3, b, c〉〉 for some b, c ∈ F×. If F contains a primitive cubic root of 1, n is

hyperbolic.

Proof. By Corollary 30 the element α in (31) is congruent to −3 and, if we write
q0 in (31) as 〈b, c, bc〉, we get

n ' 〈 1
6 〉 ·Q+ ' 〈1, 1

3 〉 ⊥ 〈1, 1
3 〉 · 〈b, c, bc〉 ' 〈〈3, b, c〉〉

as claimed. �

Remark 33. The isomorphism class of the 3-Pfister form given by the norm of
the symmetric composition Sym(B, τ)0 defines a cohomological invariant which
classifies involutions of the second kind on B. For details see [HKRT] or [KMRT,
(19.6)], where this invariant is denoted by π(τ). Those involutions for which the
invariant is trivial (i.e., the form is hyperbolic) are called distinguished. Any central
simple algebra of degree 3 with involution of the second kind admits a distinguished
involution (see [HKRT] or [KMRT, (19.30)]). If B is a matrix algebra and τ
is the Hermitian transpose composed with conjugation by the Hermitian matrix
〈δ1, δ2, δ3〉, δi ∈ F×, then π(τ) ' 〈〈3, δ1δ2, δ1δ3〉〉.
Example 34. If F = R and B = M3(C), there are two types of involutions of the
second kind on B: the Hermitian transpose, for which the cohomological invariant
is the identity form and the Hermitian transpose conjugated with 〈−1, 1, 1〉, which
is distinguished. Thus there are four classes of symmetric compositions over R.

Proposition 35. Two symmetric compositions of dimension 8 are isomorphic or

anti-isomorphic if and only if their Lie algebras of derivations are isomorphic.

Proof. Derivations of S are obviously also derivations of Sop. Conversely, in view
of Theorem 15 of symmetric compositions, it suffices to check the claim for symmet-
ric compositions S of types G2 and A2. The claim then follows from Corollary 21
and Proposition 27. �
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5. The Clifford algebra of a symmetric composition

Let (V, q) be a quadratic space and let C(V, q) be the Clifford algebra of the
quadratic space (V, q). We recall that C(V, q) = TV/I where TV is the tensor
algebra of V and I is the ideal of TV generated by the elements x⊗ x − q(x) · 1,
x ∈ V . The space V , identified with a subspace of C(V, q) through the natural map
V → C(V, q), generates C(V, q) as an algebra. The even Clifford algebra C0(V, q)
is the subalgebra of C(V, q) generated by products of an even number of elements
of V . The Clifford algebra is characterized by a universal property: any F -linear
map α of (V, q) to an associative F -algebra A such that α(x)2 = q(x) for all x ∈ V
factorizes over C(V, q). There is a unique F -linear involution τ on C(V, q) which
is the identity on V . The structure of the Clifford algebra is described in the
following proposition (see, e.g., [SCH] for a proof).

Proposition 36. Let (V, q) be a nonsingular quadratic space of even dimension

n = 2m.

(1) The F -algebra C(V, q) is central simple of dimension 2n.

(2) The center Z of the even Clifford algebra is an étale quadratic extension of

F of the form Z = F (
√
δ) where δ = (−1)m det(bq). The algebra C0(V, q) is

central separable over Z of rank 22m−1. Suppose that m is even. Then the

involution τ restricts to an involution τ0 of C0(V, q) which is the identity

on Z. Further, τ0 is of orthogonal type if m is congruent to 0 modulo 4
and is of symplectic type if m is congruent to 2 modulo 4.

The Lie algebra o(q) can be identified with a Lie subalgebra of Skew
(

C0(V, q),τ0
)

,
as follows. For x, y, z ∈ V and the Lie product [x, y] = xy−yx in C(V, q) we have

[[x, y], z] = 2
(

bq(y, z)x− bq(x, z)y
)

∈ V. (37)

Let [V, V ] be the subspace of C0(V, q) spanned by the [x, y] = xy − yx for all x,
y ∈ V . In view of (37) we have a linear map

ad: [V, V ] → EndF (V ), ξ 7→ adξ,

defined by adξ(z) = [ξ, z] for ξ ∈ [V, V ] and z ∈ V .

Lemma 38. The subspace [V, V ] of C0(q) is a Lie subalgebra of Skew
(

C0(V, q), τ0
)

and ad induces an isomorphism of Lie algebras:

ad: [V, V ]
∼→ o(q).

Proof. See [KMRT, Lemma (45.3)]. �

It readily follows from the definition of Clifford algebras that isometries of (V, q)
induce automorphisms of C(V, q). For similitudes we have:

Proposition 39. Any similitude f ∈ GO(q) with multiplier m(f) induces an au-

tomorphism C(f) of
(

C0(V, q), τ0
)

such that C(f)(xy) = m(f)−1f(x)f(y) for x,
y ∈ V . The automorphism C(f) restricts to the identity on the center Z of C0(V, q)
if and only if f is proper. Further the automorphism ad ◦ C(f) ◦ ad−1 of o(q) is

equal to the restriction of Int (f) to o(q) in EndF (V ).

374



TRIALITARIAN AUTOMORPHISMS

Proof. The first two claims are standard (see, e.g., [KMRT]). Using (37) we have,
for x, y, z ∈ V ,

(

ad ◦ C(f)
)(

[x, y]
)

(z) = 2µ(f)−1
((

f(x)bq(f(y), z
)

− f(y)bq
(

f(x), z
))

and

(

Int (f) ◦ ad
)(

[x, y]
)

(z) = 2f
(

xbq(y, f
−1(z))− ybq(x, f

−1(z))
)

= 2
(

f(x)bq(y, f
−1(z))− f(y)bq(x, f

−1(z))
)

.

The last claim follows from µ(f)−1bq
(

f(y), z
)

= bq(y, f
−1(z)

)

. �

Let (S, ?, n) be a symmetric composition of dimension 8. Let C(S, n) be the
Clifford algebra and C0(S, n) the even Clifford algebra of (S, n). Let τ be the
involution of C(S, n) which is the identity on S. Let rx(y) = y?x and `x(y) = x?y
for x, y ∈ S.

Proposition 40 (([KMRT, 35.1])). The map S → EndF (S ⊕ S) given by

x 7→
(

0 `x
rx 0

)

induces isomorphisms

αS :
(

C(S, n), τ
) ∼→

(

EndF (S ⊕ S), σn⊥n

)

and

αS :
(

C0(S, n), τ
) ∼→

(

EndF (S), σn

)

×
(

EndF (S), σn

)

(41)

of algebras with involution. Further αS maps [S, S] ⊂ C0(S, n) to o(n)× o(n).

Proof. We have rx ◦ `x(y) = `x ◦ rx(y) = n(x) · y by Proposition 10. Thus the
existence of the map αS follows from the universal property of the Clifford algebra.
We refer to [KMRT, (35.1)] for a proof of the other claims. �

We get an (injective) homomorphism

αS ◦ ad−1 : o(n) → o(n)× o(n) ⊂ EndF (S)× EndF (S). (42)

For any λ ∈ o(n), let
αS ◦ ad−1(λ) = (λ+, λ−).

Theorem 43. For any λ ∈ o(n), the elements λ+, λ− ∈ o(n) satisfy

λ+(x ? y) = λ(x) ? y + x ? λ−(y),

λ−(x ? y) = λ+(x) ? y + x ? λ(y),

λ(x ? y) = λ−(x) ? y + x ? λ+(y),

for all x, y ∈ o(n). Any of the above three relations determines the other two.

Further, the pair (λ+, λ−) is uniquely determined by any of the three relations.
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Proof. See [KMRT, §45]. �

Let ρS (resp., ρ′S) be the endomorphisms of o(n) defined by ρS(λ) = λ+ and
ρ′S(λ) = λ− for λ ∈ o(n), so that αS◦ad−1 = (ρS , ρ

′
S) ∈ EndF

(

o(n)
)

×EndF

(

o(n)
)

.
Theorem 43 leads to a description of local triality which is more symmetric than
the description given in Example 7.

Theorem 44. The endomorphisms ρS and ρ′S are outer automorphisms of o(n)
and satisfy the relations ρ2

S = ρ′S, ρ3
S = 1. Hence ρS generates a cyclic subgroup of

order 3 of AutF

(

o(n)
)

. The Lie algebra of fixed points under ρS is the Lie algebra

of derivations of (S, ?). Moreover, if Sop is the opposite symmetric composition,

then ρSop = ρ2
S, so that ρS and ρSop generate the same cyclic subgroup of order 3

of AutF

(

o(n)
)

.

Proof. The fact that ρ2
S = ρ′S and that ρS generates a cyclic subgroup of order 3

of AutF

(

o(n)
)

follows from Theorem 43. The automorphism ρS is not inner since
it permutes the three eight-dimensional representations of o(n) (the vector and
the two spin-representations). Another proof follows from the direct computations
given in the Appendix. The last claim readily follows from the definition of the
isomorphism αS . �

In view of Corollary 21 and Proposition 27 the fixed point Lie algebra of ρS is
a simple Lie algebra of type G2 if S is of type G2 and of type A2 if S is of type
A2. Thus the automorphism ρS is conjugate over an algebraic closure of F (with
respect to the full group of automorphisms of o(n)) to the automorphism fρ of
Theorem 6 if S is a Cayley algebra and to f ′ρ of Theorem 6 in the other case.
If the symmetric composition S is a para-Cayley algebra or is of type A2 for a
split algebra, the involution π0 of S induces an automorphism (of Lie algebras)
π : λ 7→ π0λπ0 of o(n) (the product π0λπ0 is taken in EndF (S)). Since π0 is
an isometry of (S, n), π0 induces an automorphism C(π0) of the Clifford algebra
C(S, n).

Lemma 45. For

(

f 0
0 g

)

∈ EndF (S ⊕ S), we have

(

αS ◦ C(π0) ◦ α−1
S

)

(

f 0
0 g

)

=

(

π(g) 0
0 π(f)

)

.

Proof. Since C0(S, n) is generated by all products uv, u, v ∈ S (the product is taken

in C(S, n)), it suffices to check the claim for

(

f 0
0 g

)

= αS(uv) ∈ EndF (S ⊕ S)

which is a straightforward computation. �

Theorem 46. If S is of type G2 or is of type A2 for a split algebra, the relations

π2 = 1 and π ◦ ρS = ρ2
S ◦ π hold in AutF

(

o(n)
)

and {π, ρS} generate a subgroup

of AutF

(

o(n)
)

isomorphic to S3.

Proof. The first relation is obvious. We check the second one. Since π0 is an
isometry of (S, n), π0 induces an automorphism C(π0) of the Clifford algebra
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C(S, n). We know that ad◦ C(π0)◦ ad−1 = π = Int (π0) on o(n) by Proposition 39;
further, (αS ◦ ad−1)(λ) =

(

ρS(λ), ρ2
S(λ)

)

, so that

(

π(ρ2
S(λ)), π(ρS(λ))

)

=
(

αS ◦ C(π0) ◦ α−1
S

)(

ρS(λ), ρ2
S(λ)

)

=
(

αS ◦ C(π0) ◦ ad−1
)

(λ)

=
(

αS ◦ ad−1 ◦ ad ◦ C(π0) ◦ ad−1
)

(λ)

=
(

αS ◦ ad−1
)

(π(λ))

=
(

ρS(π(λ)), ρ2
S(π(λ))

)

.

The second relation then follows from Theorem 44. Thus we get get a homomor-
phism S3 → AutF

(

o(n)
)

. It is obviously injective since ρS 6= 1. �

Remark 47. Let (S, ?, n) be a symmetric composition and let (ρ1, ρ2) be the two
automorphisms of order 3 of the Lie algebra o(n) constructed in Theorem 44. If
(S, �, n) is another symmetric composition with the same underlying quadratic
space, we get a different pair of automorphisms (φ1, φ2) of order 3 of the Lie
algebra o(n) and it follows from the exact sequence (2) that, at least over an
algebraic closure of F (and after renumbering φ1, φ2 if necessary), there exists
f, g ∈ GO+(n) such that (φ1, φ2) = Int (f, g)(ρ1, ρ2). This also follows directly
from Theorem 43 and is valid over F . Let

αS :
(

C0(S, n), τ
) ∼→

(

EndF (S), σn

)

×
(

EndF (S), σn

)

be the isomorphism defined in (41) and let α′S be the corresponding isomorphism
defined via �. Then α′S◦α−1

S is an automorphism of
(

EndF (S), σn

)

×
(

EndF (S), σn

)

and we may assume that α′S ◦ α−1
S = Int (f, g) with (f, g) ∈ GO+(n). Since

(ρ1, ρ2) = αS◦ad−1 and (φ1, φ2) = α′S◦ad−1 it follows that (α′S◦ad−1)◦(ad◦ α−1
S =

Int (f, g) and (φ1, φ2) = Int (f, g)(ρ1, ρ2).

6. Automorphisms of order 3 and composition algebras

A Lie algebra g of type D4 over F is a form of o8, i.e., there exists an isomorphism

β : g⊗F F
∼→ o8 = o8 ⊗F F ,

where F is an algebraic closure of F . The following result is well known. We
include a proof via symmetric compositions for completeness.

Theorem 48. An orthogonal Lie algebra g of type D4 over F admits an outer

automorphism of order 3 if and only if g is isomorphic to the orthogonal Lie

algebra of the norm form n of a Cayley algebra C over F .

Proof. The fact that the orthogonal Lie algebra of the norm form n of a Cay-
ley algebra admits an outer automorphism of order 3 follows for example from
Theorem 44. The proof of the converse relies on the following simple, but useful
principle, see [KMRT, (2.25)].
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Lemma 49. Let Ω and C be F -algebras, and let U ⊂ Ω be a vector subspace which

generates Ω as an F -algebra. Let f : U → C be an F -linear map. If there exists

a field extension K of F such that f ⊗F K : U ⊗F K → C ⊗F K extends to a K-

algebra homomorphism f̂K : Ω ⊗F K → C ⊗F K, then f extends to an F -algebra

homomorphism f̂ : Ω → C.

Proof. The restriction of f̂K to Ω is an F -algebra homomorphism Ω → C ⊗F

K. Since the restriction of f̂K to U is f and U generates Ω, the image of this
homomorphism is in fact contained in C. �

We return to the proof of Theorem 48. Let F be an algebraic closure of F and
let (V , q) = (V, q)⊗F F . Then (V , q) is isometric to the norm of the split Cayley
algebra (C, n) since both quadratic forms are hyperbolic over F . Let

β : (V , q)
∼→ (C, n) (50)

be an isometry. We have an induced commutative diagram

o(q)

o(β)

��

ad−1

// [V , V ]
i

//

C0(β)

��

C0(V , q)

C0(β)

��

EndF (V )× EndF (V )

Int β×Int β

��

o(n)
ad−1

// [C, C]
i

// C0(C, n)
αC

// EndF (C)× EndF (C)

Let (f ′1, f
′
2) be the two components of the map o(q) to o(q) × o(q) given by the

composition (Int β × Intβ)−1 ◦ α
C
◦C0(β) ◦ i ◦ ad−1. By Theorem 43, (f ′1, f

′
2) is a

pair of outer automorphisms of o(q). Let f1 be an outer automorphism of order
3 of o(q) and let f2 = f2

1 . In view of Remark 47 (and renumbering f1 and f2 if
necessary), there exist inner automorphisms Inth1, Inth2 of o(q) such that

f1 = Inth1 ◦ f ′1, f2 = Inth2 ◦ f ′2.

The composition

(Inth1 × Inth2) ◦ (Intβ × Intβ)−1 ◦ α
C
◦ C0(β)

maps the algebraC0(V, q) to EndF (V )×EndF (V ) and its restriction to [V, V ] has as
image the image of (f1, f2) which is contained in o(q)×o(q) ⊂ EndF (V )×EndF (V ).
Since o(q)

∼→ [V, V ] generates C0(V, q) as an algebra, it follows from Lemma 49
that (f1, f2) ◦ ad−1 extends to isomorphism γ : C0(V, q)

∼→ EndF (V ) × EndF (V ).
Replacing q by a multiple λq if necessary, we may assume that there is an element
e ∈ V such that q(e) = 1. Let

V = F · e ⊥ U.

For any u ∈ U , let γ(eu) = (φu, ψu) ∈ EndF (V ) × EndF (V ). Since eu + ue = 0
in C0(q), we have 2eu = [e, u] ∈ [V, V ] and (φu, ψu) ∈ o(q) × o(q), moreover
(φu, ψu)2 = γ(eu)2 = −q(u) · (1, 1) and

bq
(

φu(y), φu(z)
)

= −bq
(

φ2
u(y), z

)

= q(u)bq(y, z) (51)
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for all u ∈ U , y, z ∈ V . Let x = λe+ u ∈ V . It follows from (51) that the bilinear
product on V given by

x � y = λy + φu(y), y ∈ V,

satisfies
bq(x � y, x � y) = q(x)bq(y, z),

hence defines a composition algebra on (V, q). By Proposition 9 q is the norm form
of a Cayley algebra. �

A result corresponding to Theorem 48 for projective groups of similitudes is
proved in [WO] with a quite settled geometric argument.

Theorem 52. Let o(n) be the orthogonal Lie algebra relative to a 3-Pfister form n.

(1) The cyclic subgroups G(f) and G(g) of Aut
(

o(n)
)

generated by two outer

automorphisms f, g of o(n) of order 3 are conjugate and only if they have

isomorphic fixed point subalgebras.

(2) Each conjugacy class of a cyclic subgroup G(f) of Aut
(

o(n)
)

, generated by

an outer automorphism f of order 3, is the class of a subgroup G(fS) for

an automorphism fS induced by some symmetric composition (S, ?). The

Lie algebra Der(S, ?) is the fixed point algebra of the group G(fS). Up to

isomorphism the conjugacy class of G(fS) is uniquely determined by the

pair {S, Sop}.
Proof. (1) If G(f) and G(g) are conjugate and for example g = φ ◦ f ◦ φ−1 with
φ ∈ Aut

(

o(n)
)

, then φ restricts to an isomorphism Fix
(

G(f)
) ∼→ Fix

(

G(g)
)

.

Conversely, let g = Fix
(

G(f
)

) and h = Fix
(

G(g)
)

be isomorphic Lie algebras. By
Theorem 6, g and h are both of type G2 or of type A2. If they are both of type
G2, they are isomorphic to derivation algebras of Cayley algebras C1 and C2. In
view of Corollary 21 we may assume that C1 = C2 = C, where C is the (up to
isomorphism) unique Cayley algebra with norm n. Moreover, we can assume that
Der(C) is canonically embedded in o(n). Let φ1 : g

∼→ Der(C) and φ2 : h
∼→ Der(C)

be isomorphisms. In view of Corollary 22, the isomorphisms φ1 and φ2 can be
extended to inner automorphisms si of o(n). Conjugating f by s−1

1 and g by
s−1
2 we are reduced to the case where f and g have the same fixed point algebra

Der(C). It then follows from Remark 47 that f ◦ g−1 or f2 ◦ g−1 is an inner
automorphism s = Int (t), t ∈ GO+(n). Let C = C0 ⊥ F · 1. The image of Der(C)
in o(n) ⊂ EndF (C) lies in EndF (C0) and t commutes with this image. Thus t is of
the form µ · 1C0 + λ · 1F , λ, µ ∈ F×. The multiplier of t is equal to λ2 and to µ2,
so that λ = ±µ. Since t is proper, the case λ = −µ cannot occur and s = Int (t) is
the identity on o(n). A similar proof, using Proposition 26 and Corollary 30, holds
if both fixed point algebras are of type A2. Observe that in this case, we only get
conjugation up to automorphisms, not necessarily inner automorphisms.

(2) Let f be an outer automorphism of order 3 of o(n) and let Fix(f) = g. Then
g is of type G2 or A2. Assume first that g ' Der(C) for a Cayley algebra C. Let
fC be an outer automorphism of o(n) induced through the para-Cayley algebra C
(see Theorem 44). In view of (1) G(f) and G(fC) are conjugate. If g is of type A2
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we know by descent that g ' Skew(B, τ)0 for B central simple of degree 3 over
a quadratic extension K/F . In view of Corollary 30, K must be isomorphic to
F [x]/(x2 + 3). Let (S, ?, n) be the symmetric composition associated with (B, τ).
The fixed point algebra of the corresponding automorphism fS of order 3 of o(n)
is isomorphic to Fix(f). Hence by (1) the cyclic subgroups G(f) and G(fS) are in
the same conjugacy class. Unicity follows from Proposition 35. �

In view of the classification of symmetric compositions we have the following
classification of outer automorphisms.

Corollary 53. Let n be a 3-Pfister form over a field F of characteristic zero and

let Conj(n) be the set of conjugacy classes of order 3 outer automorphisms of the

orthogonal algebra o(n).

(1) If F does not contain a primitive cubic root of 1, then Conj(n) is in bijection

with the set consisting of the isomorphism class of a Cayley algebra with

norm n and all F (
√−3)-isomorphism classes of pairs consisting of a central

simple algebra of degree 3 over F (
√
−3)/F and an involution of the second

kind such that the cohomological invariant of the involution is the class

of n.
(2) If F contains a primitive cubic root of 1 and n is hyperbolic, then Conj(n)

is in bijection with the set consisting of the isomorphism class of the split

Cayley algebra and the isomorphism classes of central simple algebras of

degree 3 over F .

(3) If F contains a primitive cubic root of 1 and n is anisotropic, then Conj(n)
reduces to the isomorphism class of a Cayley algebra with norm n.

Proof. (1) If the composition algebra S admits an involution σS , then by The-
orem 46 fS and f2

S = fSop are conjugate in Aut
(

o(n)
)

. Thus in this case the
conjugacy class is determined by S. The left cases are where the central simple
algebra B of degree 3 is not split. Then B and Bop are not isomorphic so that
S and Sop are not isomorphic either. The claim then follows from the fact that
the form n determines the isomorphism type of the involution of the second kind
on B. Claims (2) and (3) follow from (1) and the fact that n is hyperbolic if F
contains a primitive cubic root of unity (see Proposition 32). �

Remark 54. As observed in [HKRT], given an algebra B of degree 3 with an involu-
tion of the second kind and given a norm form n, B does not necessarily admits an
involution of the second kind with invariant n. However, since any central simple
algebra B of degree 3 with an involution of the second kind admits a distinguished
involution, there is at least one class of outer automorphisms of order 3 for each
isomorphism class of central simple algebras B of degree 3 admitting an involution
of the second kind over the extension F [x]/(x2 + 3).

Example 55. Over R, there are two 3-Pfister forms, the hyperbolic form and
the identity form, hence two isomorphism classes of orthogonal Lie algebras ad-
mitting outer automorphisms of order 3. For each one there is a conjugacy class
of outer automorphisms of order 3 given by the corresponding Cayley algebra.
Moreover, we have two classes of involutions of the second kind on M3(C) (see
Example 34). For the Hermitian transpose τ , the invariant is the identity form.
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The other class of involutions is given by the distinguished involution Int (u) ◦ τ ,
where u = diag(−1, 1, 1) (see Example 34). Thus we have two classes of outer
automorphisms of order 3 for each of the two 3-Pfister forms.

7. Appendix (in collaboration with Larissa Cadorin)

Using adequate multiplication tables of symmetric compositions, one can use
Theorem 43 to give explicit descriptions of trialitarian actions defined through
symmetric compositions. Computations of this kind were done in [KPS] and [C].
We first consider the case of a split para-Cayley algebra Cs. Let Qs = M2(F ) be
the split quaternion algebra, with basis v1 = 1, v2, v3, v4 = v2v3 and relations
v2
2 = v2

3 = 1 and v2v3 + v3v2 = 0. Let x 7→ x be the conjugation in Qs. We set
Cs = Qs + v5Qs and define the multiplication in Cs by

(a+ v5b)(a
′ + v5b

′) = (aa′ + b′b̄) + v5(āb
′ + a′b) for a, a′, b, b′ ∈ Qs.

The norm n of Cs with respect to the basis (v1, . . . , v4, v5, v6 = v5v2, v7 = v5v3, v8 =
v5v7) is the diagonal form 〈1,−1, . . . , 1,−1〉. It is more convenient to work with
the basis

e1 = 1
2 (v4 − v8), e2 = 1

2 (−v2 + v6), e3 = 1
2 (−v3 + v7), e4 = 1

2 (v1 + v5),

f1 = 1
2 (v4 + v8), f2 = 1

2 (v2 + v6), f3 = 1
2 (v3 + v7), f4 = 1

2 (v1 − v5),

which is hyperbolic for n. The multiplication table for the corresponding para-
Cayley algebra is given in Table 1.

Table 1.

? e1 f1 e2 f2 e3 f3 e4 f4
e1 0 −f4 f3 0 −f2 0 0 −e1
f1 −e4 0 0 e3 0 −e2 −f1 0
e2 −f3 0 0 −f4 f1 0 0 −e2
f2 0 −e3 −e4 0 0 e1 −f2 0
e3 f2 0 −f1 0 0 −f4 0 −e3
f3 0 e2 0 −e1 −e4 0 −f3 0
e4 −e1 0 −e2 0 −e3 0 f4 0
f4 0 −f1 0 −f2 0 −f3 0 e4

We have 1 = e4 + f4 and conjugation in Cs is given by π(ei) = −ei, π(fi) = −fi

for i = 1, . . . , 3 and π(e4) = f4. The following relations hold in the Clifford algebra
C(Cs, n):

eiej + ejei = fifj + fjfi = 0 and eifj + fjei = δij (56)

for all i, j = 1, . . . , 4. A computation shows that the isomorphism ad−1 : o8
∼→
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[Cs, Cs] ⊂ C0(Cs, n) of Lemma 38 is given by

GY
ij = Ei,j+4 −Ej,i+4 7→ eiej , 1 6 i < j 6 4

GZ
ij = Ei+4,j −Ej+4,i+4 7→ fifj , 1 6 i < j 6 4,

GX
ij = Ei,j −Ej+4,i+4 7→ eifj , 1 6 i, j 6 4, i 6= j,

GX
ii = Ei,i −Ei+4,i+4 7→ eifi − 1

2 , 1 6 i 6 4.

The image of a generic skew-symmetric matrix

X =
∑

16i,j64

xijG
X
ij +

∑

16i<j64

yijG
Y
ij +

∑

16i<j64

zijG
Z
ij

=

























x11 x12 x13 x14 0 y12 y13 y14
x21 x22 x23 x24 −y12 0 y23 y24
x31 x32 x33 x34 −y13 −y23 0 y34
x41 x42 x43 x44 −y14 −y24 −y34 0
0 z12 z13 z14 −x11 −x21 −x31 −x41

−z12 0 z23 z24 −x12 −x22 −x32 −x42

−z13 −z23 0 z34 −x13 −x23 −x33 −x43

−z14 −z24 −z34 0 −x14 −x24 −x34 −x44

























(57)

under the map αCs
◦ ad−1 of (42) is

αS ◦ ad−1(X )

=
∑

16i,j64

i6=j

xij

(

Lei
Rfj

0
0 Rei

Lfj

)

+

4
∑

i=1

xii

[(

Lei
Rfi

0
0 Rei

Lfi

)

− 1

2

(

I 0
0 I

)]

+
∑

16i<j64

yij

(

Lei
Rej

0
0 Rei

Lej

)

+
∑

16i<j64

zij

(

Lfi
Rfj

0
0 Rfi

Lfj

)

Let αCs
◦ ad−1(Cs) = (ρ(X ), ρ2(X )). Using the multiplication table (Table 1), it is

straightforward to show that ρ(X ) is given by

























+−−+ x12 x13 −y14 0 −x43 x42 −z23
x21 −+−+ x23 −y24 x43 0 −x41 z13
x31 x32 −−++ −y34 −x42 x41 0 −z12
z14 z24 z34 −−−− z23 −z13 z12 0
0 x34 −x24 −y23 −+ +− −x21 −x31 −z14

−x34 0 x14 y13 −x12 +−+− −x32 −z24
x24 −x14 0 −y12 −x13 −x23 + +−− −z34
y23 −y13 y12 0 y14 y24 y34 + + ++
























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and ρ2(X ) by

























+−−− x12 x13 z23 0 −z34 z24 −x14

x21 −+−− x23 −z13 z34 0 −z14 −x24

x31 x32 −−+− z12 −z24 z14 0 −x34

−y23 y13 −y12 + + +− x14 x24 x34 0
0 −y34 y24 x41 −+ ++ −x21 −x31 y23
y34 0 −y14 x42 −x12 +−++ −x32 −y13
−y24 y14 0 x43 −x13 −x23 + +−+ y12
−x41 −x42 −x43 0 −z23 z13 −z12 −−−+

























where +/− are the signs of 1
2 (x11 + x22 + x33 + x44).

The automorphism ρ restricts to an automorphism of the Cartan subalgebra h

which we used already in Section 2; the action is given by the matrix

X =
1

2









1 −1 −1 1
−1 1 −1 1
−1 −1 1 1
−1 −1 −1 −1









with respect to the basis uj = Ejj−Ej+4,j+4, j = 1, . . . , 4 of h. We recall (see (5))
that the matrix P of the automorphism fρ induced on h by the corresponding
automorphism of the Dynkin diagram is

R =
1

2









1 1 1 −1
1 1 −1 1
1 −1 1 1
1 −1 −1 −1









.

Obviously we have X = Y RY −1 with Y = diag(−1, 1, 1, 1). This shows explicitly
that both actions ρ and fρ are conjugate.

Similar computations can be made for all actions constructed with symmetric
compositions. We sketch the case of the split algebra of type A2. We represent
M3(F ) as a cyclic algebra with generators x, y and relations

yx = ωxy, x3 = 1, y3 = 1,

where ω is a primitive cubic root of 1. The monomials xiyj , (i, j) 6= (0, 0) >
0, i, j 6 2 have trace 0 and form a basis of M3(F )0. The basis

e1 = −x, e2 = −y, e3 = −ωxy, e4 = −ω2x2y,

f1 = −x2, f2 = −y2, f3 = −ωx2y2, f4 = −ω2yx2,

is hyperbolic and the multiplication ? has the following nice multiplication table
(Table 2)(see [E]).
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Table 2.

? e1 f1 e2 f2 e3 f3 e4 f4
e1 −f1 0 0 f4 0 f2 0 f3
f1 0 −e1 e4 0 e2 0 e3 0
e2 e3 0 −f2 0 f4 0 0 e1
f2 0 f3 0 −e2 0 e4 f1 0
e3 e4 0 0 e1 −f3 0 f2 0
f3 0 f4 f1 0 0 −e3 0 e2
e4 e2 0 f3 0 0 e1 −f4 0
f4 0 f2 0 e3 f1 0 0 −e4

Since the norm form is hyperbolic we choose the same Cartan subalgebra H of
o8 as above and similar computations give a trialitarian action ρ′. The image of
the generic skew-symmetric matrix (57) under ρ′ is

























−+ ++ y23 y34 −y24 0 x41 x21 x31

−z23 −−−+ x42 x43 −x41 0 −z13 z12
−z34 x24 −+−− x23 −x21 z13 0 −z14
z24 x34 x32 −−+− −x31 −z12 z14 0
0 −x14 −x12 −x13 +−−− z23 −z34 −z24
x14 0 −y13 y12 −y23 + + +− −x24 −x34

x12 y13 0 −y14 −y34 −x42 +−++ −x32

x13 −y12 y14 0 y24 −x43 −x23 + +−+

























,

where +/− are as above the signs of 1
2 (x11 + x22 + x33 + x44). Here again the

action restricts to an automorphism of the Cartan algebra, given by the matrix

X ′ =
1

2









−1 1 1 1
−1 −1 −1 1
−1 1 −1 −1
−1 −1 +1 −1









.

Since tr(X ′) = −2 and tr(X) = 1, X and X ′ are clearly not conjugate.
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