Transformation Groups, Vol. 14, No. 2, 2009, pp.361-386 (©Birkhauser Boston (2008)

TRIALITARIAN AUTOMORPHISMS OF
LIE ALGEBRAS

M.-A. KNUS

ETH Ziirich
Mathematik Departement
CH-8092 Ziirich, Switzerland

knus@math.ethz.ch

Abstract. Over an algebraically closed field of characteristic zero simple Lie algebras
admit outer automorphisms of order 3 if and only if they are of type D4. Moreover, there
are two conjugacy classes of such automorphisms. Among orthogonal Lie algebras over
arbitrary fields of characteristic zero, only orthogonal Lie algebras relative to quadratic
norm forms of Cayley algebras admit outer automorphisms of order 3. We give a complete
list of conjugacy classes of outer automorphisms of order 3 for orthogonal Lie algebras
over arbitrary fields of characteristic zero. For the norm form of a given Cayley algebra,
one class is associated with the Cayley algebra and the others with central simple algebras
of degree 3 with involution of the second kind such that the cohomological invariant of
the involution is the norm form.

1. Introduction

Simple Lie algebras over algebraically closed fields of characteristic zero are
classified by their Dynkin diagrams, and the group of automorphisms of the Lie
algebra modulo the subgroup of inner automorphisms is isomorphic to the group
of symmetries of the corresponding Dynkin diagram. In most cases this group
of symmetries has at most two elements. The case of the Lie algebra of skew-
symmetric (8 x 8)-matrices is exceptional. The Dynkin diagram is of type Dy:

and has the permutation group S3 as a group of automorphisms. The existence of
peculiar automorphisms of order 3 for Lie algebras of type D4 is one aspect of the
phenomenon known as triality.

The automorphisms of the Dynkin diagram can easily be extended to automor-
phisms of the Lie algebra using the root system. Thus over an algebraically closed
field, the classes of automorphisms modulo inner automorphisms are explicitly
known.

A complete list of conjugacy classes of outer automorphisms of order 3 over an
algebraically closed field of characteristic zero can be deduced from the classifica-
tion of automorphisms of finite order of simple Lie algebras. Such a classification
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is given for example in [WG], [N], [K69], [K85], [H] or [JZ]. Besides the con-
jugacy class of the automorphism constructed with the help of the root system,
whose fixed point algebra is of type G, there is one more conjugacy class in the
full group of automorphisms, whose fixed point algebra is a simple Lie algebra of
type As.

In this work we consider outer automorphisms of order 3 of orthogonal Lie alge-
bras over arbitrary fields of characteristic 0. The orthogonal Lie algebra relative to
the quadratic norm form of a Cayley algebra always admits such automorphisms.
This is known as the “local triality principle” (see, e.g., [VBS], [J64], [SV] or Ex-
ample 7). The following converse also holds: if an orthogonal Lie algebra of type
D4 admits an outer automorphism of order 3, then it is the orthogonal Lie algebra
relative to the quadratic norm form of a Cayley algebra. Thus (local) triality and
octonions are mutually “responsible” (Tits [T]) for existence. By descent, conju-
gacy classes of order 3 outer automorphisms must have as fixed point algebras Lie
algebras of type Gy or Ay. We show that conjugacy classes of the orthogonal Lie
algebra relative to a given norm form are classified by the set consisting of the
isomorphism class of the corresponding Cayley algebra (type G2) and the isomor-
phism classes of central simple algebras of degree 3 with specific involutions of the
second kind over the quadratic extension generated by a cubic root of unity (type
As). We describe an explicit rational construction of a set of representatives of
conjugacy classes of outer automorphisms of order 3. For example, over R there
are two conjugacy classes for both the identity norm form and the hyperbolic norm
form.

In Section 2 we reproduce the construction of outer automorphisms based on
a Cartan decomposition of the Lie algebra. Symmetric compositions and their
Lie algebras of derivations are discussed in Sections 3 and 4. We then recall in
Section 5 the construction of outer automorphisms via symmetric compositions
given in [KMRT]. In the last section we give a proof that local triality for an
orthogonal Lie algebra g implies that g is the orthogonal Lie algebra of a norm of
a Cayley algebra and we show that the classification of symmetric compositions
leads to a classification of conjugacy classes of outer automorphisms of order 3
of the Lie algebra. In the Appendix (in collaboration with Larissa Cadorin), we
compare the definitions of triality given in Sections 2 and 5.

If not explicitly mentioned, we assume in the whole paper that fields have
characteristic 0. However, it should be enough to assume characteristic different
from 2 and 3.

Acknowledgements. We thank Alberto Elduque and Skip Garibaldi for detecting
flaws in preliminary versions, Erhard Neher for showing us a copy of [N] and telling
us about [WG], and O. Loos for useful discussions. The author is also very thankful
to the referees for many improvements.

2. Orthogonal Lie algebras

Let V be a finite-dimensional vector space over a field F and let ¢ : V' — F be a
quadratic form on V, with associated polar form by(z,y) = ¢(z +y) — q(x) — ¢(y).
We call the pair (V, ¢) a quadratic space if by is nonsingular. The adjoint involution
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o4 on Endp (V) is defined through the formula by (o4 (f)(z),y) = by(z, f(y)) for z,
y €V and f € Endp(V). The space

o(V,q) = o(q) = Skew (Endr(V),04)
={f €Endr(V) | 0q(f) = —f}
= {f S EndF(V | bq(os,f(y)) + bq(f(x),y) = 0}
of skew-symmetric elements of Endp (V) with respect to the involution oy is a
Lie subalgebra (of dimension n(n — 1)/2) of Endp (V') for the Lie bracket [f,g] =

fog—go fof Endp(V). The Lie algebra o(q) is called the orthogonal Lie algebra
relative to q.

—_ —

Example 1. Let V = F?™ m > 4, and let by, be the symmetric bilinear form
on V given by the matrix
. < 0 1m>
I, O

where I, is the m-dimensional identity matrix. The quadratic space (F?™, ba,)
is the 2m-dimensional hyperbolic space Hap,. A basis (e1,...,em, f1,..., fm) with

b2m(ei;ej)207 me(fufJ):O7 b2m(ei7fi):17 Z.7 j:17"'7m7
is called hyperbolic. The corresponding orthogonal Lie algebra 02,, can be identified

with the set of matrices
X Y
7 =Xt

where X, Y, Z are (m x m)-matrices, Y and Z are skew-symmetric and X* is
the transpose of X. Orthogonal Lie algebras relative to quadratic spaces of even
iimension 2m are forms of 09,,, i.e., isomorphic to 09, over an algebraic closure
F of F.

A similitude of quadratic spaces (V,¢) and (V',¢’) is an isometry of (V| ¢) with
(V',A¢") for some A € F* = F\{0}. Any similitude s induces an isomorphism
Int (s) : (Endp(V),04) = (Endp(V’),04) of algebras with involutions and a
Lie algebra isomorphism o(s) : 0(g) — o(q’). Similitudes of the quadratic space
(V,q) are linear automorphisms f of V with ¢(f(z)) = u(f)q(z), where u(f) €
F> is the multiplier of the similitude. They form a group denoted by GO(g).
If dimpV = 2m is even, a similitude f is proper if det(f) = w(f)™. Proper
similitudes form a normal subgroup GO (q) of GO(q) of index 2. Elements of
GO(g) act by inner conjugation as automorphisms of (End r(V), aq) and the group
of automorphisms of the algebra with involution (End r(V), aq) is isomorphic to
the projective group PGO(q) = GO(q)/F*. The group PGO™ (¢q) = GO™(q)/F*
also acts on 0(g) by conjugations and the corresponding automorphisms are called
inner automorphisms of o(q). Inner automorphisms can be identified over an
algebraically closed field with invariant automorphisms of the Lie algebra o(q) (see
[J62, Chap. IX]). Inner automorphisms form a normal subgroup Int (o(q)) of the

full automorphism group Aut(o(q)) of o(q). Automorphisms which are not inner
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automorphisms are called outer automorphisms. The definitions of inner and outer
automorphisms are invariant under base field extensions and are independent of
the realization of the Lie algebra in the form o(q).

It is a classical result (see, e.g., [J62, Chap. IX] or [SP]) that, over an alge-
braically closed field of characteristic zero, the factor group

Out(o(q)) = Aut(o(q))/Int (0(q))

is isomorphic to the group of automorphisms of the Dynkin diagram of type D,,:

Am—1

A

If m # 4, the Dynkin diagram admits only one nontrivial automorphism, of
order 2 (which corresponds to the automorphism of the Lie algebra given by con-
jugation with a similitude which is not proper). The case of type Dy is exceptional,
in the sense that the group of automorphisms of the Dynkin diagram is Ss, the
group of permutations of three objects. Thus we have an exact sequence

1 — Int (08) — Aut(Og) — S3 — 1. (2)

Proposition 3. Let (V,q) and (V',q") be quadratic spaces of even dimension 2m,
m > 4.

(1) Any similitude s : (V,q) = (V',q') induces an isomorphism
Int (s): (Endp(V),04) = (Endp(V'),04)
of algebras with involution and conversely any isomorphism
(Endp(V),04) = (Endp(V'),04)

of algebras with involution is of the form Int (s) for a similitude s: (V,q) =
v',.q).

(2) The quadratic spaces (V,q) and (V',q") are similar if and only if the Lie
algebras o(q) and o(q") are isomorphic.

Proof. The first claim follows from the fact that any isomorphism of algebras
Endp(V) = Endg(V’) is induced by an isomorphism V' = V’. Claim (2), for
m # 4, is in [J62] and in [J64] for m =4. O

Following [N] (see also [WG]) we construct in this section outer automorphisms
of order 3 of the Lie algebra og using root systems. We fix a Cartan subalgebra b
of og, for example

h{(lg —0D> ‘Ddiag()\l,...,/\4), /\ZEF}
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Let (Eij, i, = 1,...,n) be the standard basis of the algebra M,,(F) of (n x n)-
matrices with entries in F'. The matrices

’LLj ZEjj _Ej+4,j+47 j = 17...747 (4)

form a basis of h. We have a Cartan decomposition of og,

og=bh D <@ga>a

where the one-dimensional root spaces g, are generated by the 24 matrices

Gy = Eij — Ejtaisa 1<4,j<4,i#7,
Gy =Eijta — Ejia 1<i<j<4,
Gf = Eivaj— Bjpa, 1<i<j<A4
Let b* be the dual space of $ and let ¢; € h*, ¢ = 1,...,4, be the dual basis of

the basis (u;) of h. The simple roots are
o] = €1 — €9, Qg = €9 — €3, a3 = €3 — €4, and 4 = €3+ €4.
The rule o — ay, a4 — a3, ag+— a1, @y — as defines an automorphism p of the
Dynkin diagram Dy4. Let p be its (unique) extension to h*. The automorphism p
is given by the matrix
1 1 1 -1
1 1 1 -1 1
B=511 -1 1 1 (5)
1 -1 -1 -1
with respect to the basis (g;). Similarly, let 7 be the automorphism of the Dynkin
diagram given by as — a4, a4 — a3z, a1 — a1, as — ag. Its extension 7 to h*
has the matrix

100 0
1o 10 o0
P=310 01 o

000 —1

One checks that R? =1, P2 = 1 and PR = R?P. Thus {R, P} generates a group
isomorphic to S3. Let H € h and e, # 0 € g,. Any automorphism ¢ of the root
system induces an automorphism fg4 of os:

fo (H + Z{; saea> = (¢")"\(H) + ; SaCp(a)

where ¢* is the dual of ¢ and the sum is taken over all roots. In particular, p and
7 induce automorphisms f, and fr. Let w be a primitive cubic root of 1. Let (v;)
be the dual basis of («;), so that vo = u1 + us. The map

f2 (H + Z 5a6a> =H+ Zwa(UZ)saea

is an automorphism of order 3 of 0g and is invariant, since it is the identity on the
Cartan algebra (see [J62]). Hence it is an inner automorphism. Moreover, f, and
f2 commute. Let f, = f, o fo. We have (see [N] or [WG]):
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Theorem 6. Assume that F is algebraically closed.

1) Ewvery outer automorphism of order 3 of og is conjugate in Aut(og) to
P
or f, and in Int (0g) to fgd or to f;ﬂ.
2) The set , [=} generates a group isomorphic to Ss.
P
3) The fixed point algebra o is a Lie algebra of type Go and that of f! o
12 I
type As.
(4) Fized point subalgebras under outer automorphisms of order 3 are isomor-
phic if and only if the automorphisms are conjugate in Aut(og).

Example 7. Let C be a Cayley algebra with norm n and multiplication z,y — xy.
The classical local triality principle (see, e.g., [VBS], [SV] or [J64]) states that for
every s € o(n) C Endp(C) there are unique ¢, u € o(n) such that

t(@)y +as(y) = u(zy)  forallz,y €C.

Moreover, the map f: s — t is an automorphism of order 3 and the map g: s — u
is an automorphism of order 2 of o(n); they generate a group isomorphic to Ss.
The fixed point Lie algebra Fix(f) = {s € o(n) | f(s) = s} is the Lie algebra
of derivations of C which is a Lie algebra of type Gs. Thus by Theorem 6 f is
conjugate to f, over an algebraic closure of F'.

3. Symmetric compositions

Let S be a finite-dimensional F-vector space with a bilinear multiplication
(z,y) — xxy. We say that a quadratic form n on S is multiplicative if

n(z *y) = n(x)n(y) (8)

for all z, y € S. A triple (S, ,n) with a nonsingular multiplicative quadratic form
n is called a composition algebra and n is the norm of S. By a classical result of
Hurwitz (see, e.g., [KMRT, (33.17)]), a complete list of composition algebras with
identity is given by the base field F', quadratic separable algebras, quaternion alge-
bras and Cayley algebras over F'. Composition algebras with identity are usually
called Hurwitz algebras. If a composition algebra does not have an identity, one
can define a new multiplication such that the corresponding algebra is a compo-
sition algebra with identity with the same norm (see Kaplansky [KA] or [KMRT,
(33.27)]). Thus:

Proposition 9. Composition algebras only occur in dimensions 1, 2, 4 and 8, and
their norms are norms of Hurwitz algebras.

Let g, ..., a, € F*. We denote by (aq,...,ay,) the diagonal quadratic form
(1, .. o) = a12? + -+ apz?
and by (a1, ...,ar) the k-fold Pfister quadratic form

<<a17"'7ak>> = <17a1> QF - OF <1,Oék>-
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Norm forms of composition algebras are k-Pfister forms for k = 1, 2 and 3.
We recall that a symmetric bilinear form b on an algebra (S, *) is called asso-
ciative or invariant with respect to the multiplication * of S if

b(zxy,z) =b(x,y* 2)

holds for all z, y, z € S. If the polar form b, of a composition algebra S is asso-
ciative, we say that (S, *,n) is a symmetric composition. Symmetric compositions
have the following nice property (see [OO] or [KMRT, (34.1)].

Proposition 10. Let (S,*) be an algebra and let be n be a nonsingular multiplica-
tive quadratic form on S. The following conditions are equivalent:
(1) (S,*,n) is a symmetric composition.
(2) The norm form n satisfies the relations x* (yxx) = n(x)y = (x*y)*xx for
x,yeSs.

If (S,%) is a symmetric composition, the opposite algebra (S°P,x) is also a
symmetric composition.

Example 11 ((Symmetric compositions of type Gz, [KMRT]) or [EM])). Let C
be a Hurwitz algebra with multiplication (z,y) — xy and norm n. The algebra C
admits a conjugation my: x +— T which satisfies

8|

1=1, =x, TY=yT and by(xy,2)=by(z,2y) forall z,y,z€C. (12)

The form n is also multiplicative for the multiplication
(r,y) »a*xy =72y

and it follows from (12) that n is associative for the x-multiplication. We call
(C,*,n) a para-Hurwitz algebra. In dimension 8 para-Hurwitz algebras are called
para-Cayley algebras (resp., symmetric compositions of type Ga).

Example 13 ((Symmetric compositions of type Ag, [KMRT]) or [EM])). Assu-
me that the base field contains a primitive cubic root w of 1. Let A be a cen-
tral simple algebra of dimension 9 over F' (e.g., A = M3(F)). Let

Pao(X) = X3~ Ta(a)X?+ Sa(a)X? — Na(a)

be the reduced characteristic polynomial of A and let A° be the eight-dimensional
space of reduced trace zero elements

A®={z € A|Ta(z) = 0}.
We define a multiplication x on A° by
wxy = pry + (1 — pyz — $Ta(ry)la (14)

where = (1 — w)/3. The algebra (A, ) is a symmetric composition algebra with
norm n(z) = —35a(x) = §Ta(z?) (see, e.g., [KMRT, (34.19)]).
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If F does not contain a primitive cubic root of unity w, one considers central
simple algebras B of dimension 9 over the quadratic field extension K = F(w) =
F(v/=3), with an involution 7 of the second kind, i.e., 7|k # 1g. Let Sym(B,T)
be the set of symmetric elements in B and let

Sym(B,7)° = {z € Sym(B, 1) | T(z) = 0}.

The multiplication defined on B° by (14) induces a product on Sym(B,7)? and
with the quadratic form n(z) = Tp(x?), the space (Sym(B,7)%,*,n) is a sym-
metric composition. This type of composition was first considered by Okubo [O]
for matrix algebras and by Faulkner [F] for cubic alternative algebras. They are
called Okubo compositions or symmetric compositions of type Az, more precisely
of type 1Ay (resp., of type 2A3) depending if F' contains a primitive cubic root of
1 or not.

It follows from the classification of symmetric compositions (see [EM] or [KMRT,
(34.37)]) that in dimensions 1, 2, and 4 para—Hurwitz and Okubo compositions
are essentially the same. In dimension 8 we have ([EM] or [KMRT, (34.37)]):

Theorem 15. Let F be a field of characteristic different from 2 and 3. A sym-
metric composition (S,x,n) of dimension 8 is either isomorphic to:

(1) A para-Cayley algebra (C,*) for a Cayley algebra C.

(2) A composition algebra of the form (A°,x) for a central simple F-algebra A
of degree 3 if F' contains a primitive cubic root of unity.

(3) A composition algebra of the form (Sym(B,'r)O,*7 n) for a central simple
F(w)-algebra B of degree 3 with an involution T of the second kind if F
does not contain a primitive cubic Toot of unity w.

If the quadratic extension K is allowed to be split, i.e., K ~ F x F, then
types 'Ay and 2A; need not to be distinguished: we replace A of type Ay by
B = H(A) = Ax A° and 7 is the twist of the two factors. We say also in this case
that H(A) is central simple over K/F and from now on symmetric compositions
of type Ay will be represented as Sym(B,7)?. The algebras C, A or (B,7) in
Theorem 15 are uniquely determined up to isomorphisms by the corresponding
symmetric compositions. More precisely,

Proposition 16.

(1) Any isomorphism C; ~ C2 of Cayley algebras is an isomorphism of the
associated para-Cayley algebras and conversely.

(2) Let (By, i), i = 1,2, be central simple of degree 3 with involutions of the
second kind over K = F[z]/(z* + 3). Any K-isomorphism (B1,71) =~
(B2, 72) of algebras with involution induces by restriction an isomorphism
Sym(B1,71)° =~ Sym(Ba,72)° of the associated Okubo algebras and con-
versely.

(3) Any F-isomorphism (B1,71) ~ (B2, T2) of algebras with involution induces
by restriction an isomorphism or an anti-isomorphism Sym(By,1)? =~
Sym(Ba, 72)° of the associated Okubo algebras and conversely.
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Proof. Claim (1) follows from the fact that isomorphisms of Cayley algebras are
compatible with conjugations. We refer to [KMRT, (34.35)] for claim (2). Claim
(3) follows from the fact that if ¢: (B1,71) ~ (B2, 72) is an F-isomorphism which
is not K-linear, then 75 0 ¢ = ¢ o 7y is a K-anti-isomorphism, hence induces an
anti-isomorphism of the associated Okubo algebras. [

The conjugation g of a Cayley algebra (C,n) is an F-linear involution for the
associated para-Cayley algebra (C,*):

mo(z*y) = mo(y) *mo(x), 7w = lc, (17)

for z, y € C. The map o is an isometry of n, but is improper since det(my) = —1.
For symmetric composition algebras of type Ay we have:

Proposition 18. Let (B,7) be a central simple F(w)-algebra B of degree 3 with
an involution T of the second kind. The following properties are equivalent:
(1) The symmetric composition S = (Sym(B,T)O,*7 n) admits an F-linear
involution .
(2) S is isomorphic to its opposite algebra S°P.
(3) B is split.
Proof. Claim(1) clearly implies claim (2). If ¢ is an F-linear anti-automorphism

of (S,%), then ¢ also defines a K-anti-automorphism of B since the multiplication
of B restricted to BY is given by

zy=(14+wzrxy—wyxx+by(z,y)- 1
(see [KMRT, §34]. It follows that B has order 2 in the Brauer group of K. Since
B, being of degree 3, has exponent 1 or 3, B is split. If B is split and z — T, = €

M;5(K), is elementwise conjugation, then 7: x +— 7(x) is an F-linear involution of
B, hence (1). O

4. Derivations of symmetric compositions

For any F-algebra A (i.e., an F-vector space with a bilinear multiplication
(z,y) — xy), the set of F-derivations

Der(A) = {d € Endr(A) | d(zy) = zd(y) + d(z)y}

is a Lie subalgebra of Endpr(A). Let (C,n) be a Cayley algebra with norm n and
let
(C,n)=F-11(C°n%

where (C°,n°) is the quadratic subspace of trace 0 elements. The Lie algebra
Der(C) is a subalgebra of o(n) (see [J39]) and the eight-dimensional representation
Der(C) C Endp(C) decomposes as the sum of a one-dimensional trivial represen-
tation and the seven-dimensional standard representation

7: Der(C) € o(n”) € Endr(C%) (19)

which is known to be absolutely irreducible (see [J39)]).
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Proposition 20. Let ¢: Der(C) — o(q) be a faithful orthogonal representation for
some seven-dimensional quadratic space (V,q). There exists a similitude s: (V, q) =
(C% n) such that Int (s) o ¢ = 1.

Proof. The claim is true over an algebraically closed field (see [J39]). Let t: (V, q) =
(€°,n%) be a similitude over an algebraic closure F of F such that Int (t) o ¢ = 7.
Since v(Der(C)) generates Endp(CY) (see [J39]), Int (¢) is unique, hence by descent
restricts to an isomorphism ¢: (Endr(V),0,) = (Endp(C°), 0,0) of algebras with
involution. By Proposition 3 we have 1) = Int (s) for a similitude s: (V,q) —
c%n%. O

Corollary 21. Let (C,n) and (C',n’) be Cayley algebras. If the Lie algebra Der(C)
is isomorphic to a subalgebra of o(n’), then C and C' are isomorphic.

Proof. For reasons of dimension the representation Der(C) C o(n’) C Endp(C’)
decomposes into a one-dimensional representation V; and a seven-dimensional ir-
reducible representation Vo. We claim that the decomposition C' = Vi & V, is
orthogonal with respect to the norm n’. Let b be the polar of n’ and let x; € V,
1 = 1,2. The one-dimensional representation is the trivial representation, hence

b'(d(xg),xl) = —b'(arg,d(xl)) =0.

Thus Der(C)(V2) is orthogonal to V; and since Der(C) generates Endp(V2) as an
F-algebra, we have an orthogonal decomposition

(Clvnl) = (Vla <)‘>) 1 (VQ’Q)

for some quadratic form ¢ on V5. By Proposition 20 the form ¢ is isometric to
() - n® for some p € F*, thus we get n’ ~ (A) L (u)-n° Since det(n’) is
congruent to 1 modulo squares in F', (A) ~ (u) and

n' = () L () -n® = (u) - n.

Thus n and n’ are similar, which implies that C and C’ are isomorphic (see, e.g.,
[KMRT, (33.19)]). O

Corollary 22. Let (C,n) be a Cayley algebra, let v: Der(C) — o(n) be the stan-
dard embedding and let g be a Lie subalgebra of o(n) isomorphic to Der(C). Any
isomorphism ¢: fy(Der(C)) = g can be extended to an inner automorphism of o(n).

Proof. The isomorphism ¢ induces an eight-dimensional representation
¢: Der(C) = g C o(n) C Endz(C)

which decomposes as a direct sum of a one-dimensional and a seven-dimensional
representation

(C,n)=(F-e,(\) L (V.q).
By Proposition 20 there is an isometry s: (V,q) = (u) - (C°,n°), p € K*, such

that Int (s) o ¢ = . Since det(n) is congruent to 1 modulo squares, the element
e can be chosen such that n(e) = p~! and e — 1 extends s to a similitude of
(C,n), also denoted s. If s is improper, we may replace s by mg o s, where 7 is the

conjugation of C, since Int (mg) is the identity on Der(C) ([S, IIL.8, (3.75)]). O
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Proposition 23.

(1) Let (S,*) be the para-Cayley algebra associated with a Cayley algebra C.
Then Der(S,x) = Der(C), so that Der(S,*) is a simple Lie algebra of type
Go.

(2) Let (Ciyn;) be Cayley algebras with norms n;. Any isomorphism Der(Cy) ~
Der(Cz) of Lie algebras is induced by a unique isomorphism C1 ~ Ca of
Cayley algebras.

Proof. We refer to [J39] for a proof of 2). To prove 1), first let d be a derivation
of C, d(zy) = xd(y) + d(x)y. In view of [S, II1.8, (3.75)], we have d(T) = d(z) for
x € C. It follows that

d(z*xy) = d(Ty) =Td(y) +d(@)y = xxd(y) + d(z) x y

and d is also a derivation of the associated para-Cayley algebra. Conversely, if d
is a derivation of the para-Cayley algebra, one first checks that d(1) = 0, which
implies that d(x) = —d(T). Using that the conjugation mg: x — T is an involution
of the para-Cayley algebra, we get

d(z*y) =d(y) *T + 7 * d(z).

With @ = 1 this implies d(y) = d(y) and one concludes that d is also a derivation
of the Cayley algebra. O

Let K/F be a quadratic extension and let (B, 7) be a central simple algebra
over K/F with an involution 7 of the second kind. The quadratic form Q: B —
F, Q(z) = Tp(x7(z)) is nonsingular, the involution 7 is an isometry of @ and we
have

bo(wy, =) = bo (v, 27(»))
for z, y and z € B. Let Skew(B,7)° = [Skew(B, 1), Skew (B, 7)] be the Lie algebra
of skew-symmetric elements of B of reduced trace 0. The quadratic form Q: B —
F, Q(z) = Tp(z7(z)) restricts to a nonsingular quadratic form on Skew(B, 7)°
denoted by Q_ and to a nonsingular quadratic form on Sym(B, 7)° denoted by Q..

Proposition 24. The map ad: Skew(B,7)® — Endp(Skew(B,7)°), ady,(z) =
[x,y], induces an orthogonal representation

Skew(B,7)° — 0(Q_)

which is absolutely irreducible.

Proof. The map ad induces an isomorphism
Skew(B, 7)" = Der(Skew(B, 7)°) (25)

of Lie algebras since Skew(B,7)? is simple and any derivation of Skew(B, )" is
inner. Using again that any derivation of Skew(B,7)° is inner, it is easy to check
that Der(Skew(B,7)") C o(Q-). Thus the adjoint representation is orthogonal.
The fact that it is absolutely irreducible is for example in [J62]. O
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Proposition 26. Let (B, T) be a central simple algebra of rank 9 over K/F with
an involution of the second kind 7.

(1) Let (V,q) be a eight-dimensional quadratic space and let ¢: Skew(B,7)° —
0(q) be a faithful orthogonal representation. There exists a similitude

s: (Vig) = (Skew(B,7)°, Q)

such that Int (s) o ¢ = ad.

(2) Let g be a Lie subalgebra of o(Q-_) isomorphic to Der(Skew(B,)°). Any
isomorphism of Lie algebras ¢: Der(SkeW(B,T)O) = g can be extended to
an automorphism of 0(Q-) of the form Int (s), for a similitude s of Q—.

Proof. (1) Over an algebraic closure F of F, the adjoint representation is up to
isomorphism the unique irreducible eight-dimensional orthogonal representation
of Skew(B,7)". Thus the map ¢ can be extended to an isomorphism 1 = Int (¢)
of (Endp(V),04) ®F F onto (Endr (Skew(B, 7)°),0¢_) @F F, which is uniquely
determined by the condition Int (¢) o ¢ = ad, since the image of the map ad in
End(Skew(B, 7)°) generates Ends(Skew(B,7)%). By descent 1 restricts to an
isomorphism of (EndF(V)7 aq) onto (EndF (Skew(B, T)O), O’Qi), hence is induced
by a similitude of (V,q) with (SkeW(B,T)O, Q,) by Proposition 3. Claim (2) fol-
lows from claim (1). O

Proposition 27. Let K = F[z]/(2? + 3) and let (B, T) be central simple of rank
9 over K/F, with an involution of the second kind T. Let (S,x,n) = Sym(B,7)°
be the symmetric composition of type Ao associated with (B, 7). Let u be a skew-
symmetric nonzero element of K.

(1) The map £, : © +— ux induces a similitude
(Sym(B,7)°,n) = (Skew(B,7)%,Q_) (28)
and an isomorphism
Int (¢,): Der(S, ) = Der(Skew(B, 7)) (29)

of Lie algebras. Hence the Lie algebra Der(S,x) is a simple Lie algebra of
type As.

(2) Let (B, 7;) be central simple algebras with involutions of the second kind
over K/F, i = 1,2. Any isomorphism of Lie algebras Skew(By1,71)° =
Skew(Ba, 72)" can be uniquely extended to an F-isomorphism (By,71) —
(Ba,72) and to a K-isomorphism or a K-anti-isomorphism (By,71) —
(BQ,TQ).

Proof. The first claim of (1) is clear since n = %QJF and since Q4 and Q_ are
similar. The second claim follows by a computation using (14) and (17). The fact
that Der (S, x,n) is a Lie algebra of type As is a consequence of (29) and (25). For
a proof of (2), see for example [J62]. O
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Corollary 30. Let (B,7) be a central simple algebra of degree 3 over a quadratic ex-
tension K of F, with an involution of the second kind. The Lie algebra Skew(B,T)°
is a subalgebra of the orthogonal Lie algebra of a 3-Pfister form n if and only if
K = Flz]/(2? + 3).

Proof. Assume that Skew(B, 7)Y is a subalgebra of the orthogonal Lie algebra of
a 3-Pfister form n. In view of Proposition 26 the form @ _ is similar to n. It is
also similar to (Sym(B,7)%,Q4) and, if K = Flz]/(2? — o),

(Sym(B,7)°,Q+) = (2,6) L (2) - (—a)) - g0, (31)

where g is a quadratic space over F' of dimension 3 and determinant 1 (see [HKRT]
or [KMRT, §19]). Thus the determinant of _ is congruent to —3a modulo
squares. Since the determinant of a 3-Pfister form is congruent to 1, o must
be congruent to —3. The converse follows from Proposition 24. [

By Proposition 9, the norm form n of a symmetric composition of type A, is a
3-Pfister form. More precisely:

Proposition 32. The norm of a symmetric composition of type As is of the form
{(3,b,¢)) for some b, ¢ € F*. If F contains a primitive cubic root of 1, n is
hyperbolic.

Proof. By Corollary 30 the element « in (31) is congruent to —3 and, if we write
qo in (31) as (b, ¢, be), we get

~(§) - Qv =(1,5) L (1,5) - (b,c,be) = (3,b,¢)
as claimed. [

Remark 33. The isomorphism class of the 3-Pfister form given by the norm of
the symmetric composition Sym(B,7)" defines a cohomological invariant which
classifies involutions of the second kind on B. For details see [HKRT| or [KMRT,
(19.6)], where this invariant is denoted by 7(7). Those involutions for which the
invariant is trivial (i.e., the form is hyperbolic) are called distinguished. Any central
simple algebra of degree 3 with involution of the second kind admits a distinguished
involution (see [HKRT] or [KMRT, (19.30)]). If B is a matrix algebra and 7
is the Hermitian transpose composed with conjugation by the Hermitian matrix
<51, 52, 53>, 0; € F‘X7 then 71'(7') ~ <<3, 6152, 5153>>

Example 34. If F = R and B = M3(C), there are two types of involutions of the
second kind on B: the Hermitian transpose, for which the cohomological invariant
is the identity form and the Hermitian transpose conjugated with (—1,1,1), which
is distinguished. Thus there are four classes of symmetric compositions over R.

Proposition 35. Two symmetric compositions of dimension 8 are isomorphic or
anti-isomorphic if and only if their Lie algebras of derivations are isomorphic.

Proof. Derivations of S are obviously also derivations of S°P. Conversely, in view
of Theorem 15 of symmetric compositions, it suffices to check the claim for symmet-
ric compositions S of types Gy and Ay. The claim then follows from Corollary 21
and Proposition 27. U
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5. The Clifford algebra of a symmetric composition

Let (V,q) be a quadratic space and let C(V,q) be the Clifford algebra of the
quadratic space (V,q). We recall that C(V,q) = TV/I where TV is the tensor
algebra of V and I is the ideal of TV generated by the elements x ®  — ¢q(z) - 1,
x € V. The space V, identified with a subspace of C'(V, ¢) through the natural map
V — C(V,q), generates C(V, q) as an algebra. The even Clifford algebra Co(V,q)
is the subalgebra of C(V, q) generated by products of an even number of elements
of V. The Clifford algebra is characterized by a universal property: any F-linear
map « of (V, q) to an associative F-algebra A such that a(z)? = q(x) for allz € V
factorizes over C(V,q). There is a unique F-linear involution 7 on C(V, ¢q) which
is the identity on V. The structure of the Clifford algebra is described in the
following proposition (see, e.g., [SCH] for a proof).

Proposition 36. Let (V,q) be a nonsingular quadratic space of even dimension
n =2m.

(1) The F-algebra C(V,q) is central simple of dimension 2™.

(2) The center Z of the even Clifford algebra is an étale quadratic extension of
F of the form Z = F(/§) where § = (—1)"™ det(b,). The algebra Co(V,q) is
central separable over Z of rank 22™~1. Suppose that m is even. Then the
involution T restricts to an involution 1o of Co(V,q) which is the identity
on Z. Further, 19 is of orthogonal type if m is congruent to 0 modulo 4
and is of symplectic type if m is congruent to 2 modulo 4.

The Lie algebra 0(q) can be identified with a Lie subalgebra of Skew (C’O(V, q) ,7'0),
as follows. For z, y, z € V and the Lie product [z,y] = zy — yx in C(V, q) we have

[[2,y], 2] = 2(bg(y, 2)x — by(w, 2)y) € V. (37)

Let [V, V] be the subspace of Cy(V,q) spanned by the [z,y] = zy — yx for all z,
y € V. In view of (37) we have a linear map

ad: [V, V] — Endp(V), & ade,

defined by ad¢(z) = [€, 2] for £ € [V, V] and z € V.

Lemma 38. The subspace [V, V] of Cy(q) is a Lie subalgebra of Skew (C’O (V,q), To)
and ad induces an isomorphism of Lie algebras:

ad: [V, V] = o(q).

Proof. See [KMRT, Lemma (45.3)]. O

It readily follows from the definition of Clifford algebras that isometries of (V] q)
induce automorphisms of C(V, q). For similitudes we have:

Proposition 39. Any similitude f € GO(q) with multiplier m(f) induces an au-
tomorphism C(f) of (Co(V,q),m0) such that C(f)(zy) = m(f)~ F(x){(y) for z,
y € V.. The automorphism C(f) restricts to the identity on the center Z of Co(V,q)
if and only if f is proper. Further the automorphism ad o C(f) o ad™! of o(q) is
equal to the restriction of Int (f) to o(q) in Endp(V).
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Proof. The first two claims are standard (see, e.g., [KMRT]). Using (37) we have,
forz,y, z€V,

(ado C(f)) ([z,y]) (2) = 2u(f) " ((f (@)bg(f (v), 2) — f(¥)bg(f (), 2))

and

(Int (f) o ad) [z, 9]) (=) = 2f (aby(y, 1 (2)) — ybg(z, f* (= )))
= 2(f(@)bq(y, f71(2)) = F(y)ba(, f71(2))).
The last claim follows from pu(f) ™ b (f(y),2) = be(y, f(2)). O

Let (S,*,n) be a symmetric composition of dimension 8. Let C(S,n) be the
Clifford algebra and Cy(S,n) the even Clifford algebra of (S,n). Let 7 be the
involution of C'(S,n) which is the identity on S. Let r;(y) = y*x and £,(y) = z*y
for z,y € S.

Proposition 40 (([KMRT, 35.1])). The map S — Endp(S @& S) given by
(0 L
r ry O

as: (C(S,n),7) 5 (Endp(S® S),00n1n)

induces isomorphisms

and

as: (Co(S,n),7) = (Endp(S),0,) x (Endp(S),0y) (41)
of algebras with involution. Further ag maps [S,S] C Co(S,n) to o(n) x o(n).

Proof. We have 7, 0 £, (y) = €, o r,(y) = n(z) - y by Proposition 10. Thus the
existence of the map ag follows from the universal property of the Clifford algebra.
We refer to [KMRT, (35.1)] for a proof of the other claims. O

We get an (injective) homomorphism
agoad™: o(n) — o(n) x o(n) C Endp(S) x Endp(S). (42)

For any A € o(n), let
asoadt(A) = (AT, A7),

Theorem 43. For any A € o(n), the elements A\, A~ € o(n) satisfy
A(zxy)=Az)*xy+xx1"(y

AN (zxy)=AT(z)xy + 2y

Az xy) = A" (2) xy +zx X" (y),

),
)

)

for all z, y € o(n). Any of the above three relations determines the other two.
Further, the pair (AT, A7) is uniquely determined by any of the three relations.
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Proof. See [KMRT, §45]. O

Let pg (resp., ps) be the endomorphisms of o(n) defined by ps(A) = AT and
p's(X) = A~ for X € o(n), so that agoad™" = (ps, ps) € Endp (o(n)) xEndp (o(n)).
Theorem 43 leads to a description of local triality which is more symmetric than
the description given in Example 7.

Theorem 44. The endomorphisms ps and p'y are outer automorphisms of o(n)
and satisfy the relations p%‘ =, p::’g = 1. Hence pg generates a cyclic subgroup of
order 3 of Autp(o(n)). The Lie algebra of fixed points under pg is the Lie algebra
of derivations of (S,*). Moreover, if S°P is the opposite symmetric composition,
then pser = p%, so that ps and pger generate the same cyclic subgroup of order 3

of Autp(o(n)).

Proof. The fact that p% = ps and that pg generates a cyclic subgroup of order 3
of Autp(o(n)) follows from Theorem 43. The automorphism pg is not inner since
it permutes the three eight-dimensional representations of o(n) (the vector and
the two spin-representations). Another proof follows from the direct computations
given in the Appendix. The last claim readily follows from the definition of the
isomorphism ag. O

In view of Corollary 21 and Proposition 27 the fixed point Lie algebra of pg is
a simple Lie algebra of type Go if S is of type Gy and of type As if S is of type
As. Thus the automorphism pg is conjugate over an algebraic closure of F' (with
respect to the full group of automorphisms of o(n)) to the automorphism f, of
Theorem 6 if S is a Cayley algebra and to f; of Theorem 6 in the other case.
If the symmetric composition S is a para-Cayley algebra or is of type Ay for a
split algebra, the involution 7y of S induces an automorphism (of Lie algebras)
m: A +— moAmy of a(n) (the product moAm is taken in Endp(S)). Since mg is
an isometry of (S, n), mo induces an automorphism C(mg) of the Clifford algebra

C(S,n).

Lemma 45. For (‘g 2) € Endp(S @ S), we have

(as o C(mo) 0 a5") (‘(’; 2) = (ﬂ%g) w(o ))'

Proof. Since Cy (S, n) is generated by all products uv, u,v € S (the product is taken

in C(S,n)), it suffices to check the claim for (‘g 2) = ag(uv) € Endp(S @ S)

which is a straightforward computation. [

Theorem 46. If S is of type Go or is of type A for a split algebra, the relations
72 =1 and wo ps = p% o7 hold in Auty(o(n)) and {m,ps} generate a subgroup
of Autp(o(n)) isomorphic to Ss.

Proof. The first relation is obvious. We check the second one. Since mg is an
isometry of (S,n), mp induces an automorphism C(m) of the Clifford algebra
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C(S,n). We know that ado C(mg)o ad™" = 7 = Int () on o(n) by Proposition 39;
further, (as o ad™")(A) = (ps(A), p3(N)), so that

g © C 770 oag )(PS()\);P%‘()\))
aSoC’ 71'0 Oad )(/\)

(m(p5 (V). m(ps(N))) = (
=
(asoad oado C(m )oad_l)()\)
=
=

asoad ) (M)
ps(m(N), p§(m(N))).

The second relation then follows from Theorem 44. Thus we get get a homomor-
phism S3 — Autp (o(n)) It is obviously injective since pg # 1. O

Remark 47. Let (S,*,m) be a symmetric composition and let (p1, p2) be the two
automorphisms of order 3 of the Lie algebra o(n) constructed in Theorem 44. If
(S,0,m) is another symmetric composition with the same underlying quadratic
space, we get a different pair of automorphisms (¢1,¢2) of order 3 of the Lie
algebra o(n) and it follows from the exact sequence (2) that, at least over an
algebraic closure of F' (and after renumbering ¢, ¢o if necessary), there exists
f,g € GO™(n) such that (¢1,¢2) = Int (f,g)(p1,p2). This also follows directly
from Theorem 43 and is valid over F'. Let

as: (Co(S,n),7) = (Endp(S),0,) x (Endp(S),0n)

be the isomorphism defined in (41) and let oy be the corresponding isomorphism
defined via o. Then a/yoag! is an automorphisrn of (Endp(S),0,) % (Endp(S), 0n)
and we may assume that o’y o ag’ Int (f,g) with (f,g) € GO*(n). Since
(p1,p2) = agoad ' and (41, d2) = a’goad " it follows that (a’yoad™')o(ado ag! =
Int (f7 ) and ((blad)Q) Int (f7 )(Pl,PQ)

6. Automorphisms of order 3 and composition algebras

A Lie algebra g of type D4 over F'is a form of og, i.e., there exists an isomorphism
B:g®p F 508 =03®p F,

where I is an algebraic closure of F. The following result is well known. We
include a proof via symmetric compositions for completeness.

Theorem 48. An orthogonal Lie algebra g of type Dy over F' admits an outer
automorphism of order 3 if and only if g is isomorphic to the orthogonal Lie
algebra of the norm form n of a Cayley algebra C over F.

Proof. The fact that the orthogonal Lie algebra of the norm form n of a Cay-
ley algebra admits an outer automorphism of order 3 follows for example from
Theorem 44. The proof of the converse relies on the following simple, but useful
principle, see [KMRT, (2.25)].
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Lemma 49. Let Q) and C be F-algebras, and let U C  be a vector subspace which
generates  as an F-algebra. Let f: U — C be an F-linear map. If there exists
a field extension K of F such that f @p K: U ®p K — C ®p K extends to a K-
algebra homomorphism fK: Qer K — C®p K, then f extends to an F-algebra
homomorphism f: Q—-C.

Proof. The restriction of fKAto Q is an F-algebra homomorphism Q — C ®p
K. Since the restriction of fx to U is f and U generates {2, the image of this
homomorphism is in fact contained in C. [

We return to the proof of Theorem 48. Let F be an algebraic closure of F' and
let (V,q) = (V,q) ®F F. Then (V,q) is isometric to the norm of the split Cayley

algebra (C,7) since both quadratic forms are hyperbolic over F'. Let
p: (V,q) = (C,m) (50)

be an isometry. We have an induced commutative diagram

0(7) 4 [V, V] —= Co(V, ) End#(V) x Endx(V)
U(ﬁ)j lCO(ﬁ) Co(B) llntﬁxlntﬁ
0(71) ~— [C,C] —= C(C. ) ——= End#(C) x End(C)

Let (f1, f5) be the two components of the map 0(g) to o(q) x 0(g) given by the
composition (Int 8 x Int 3)~! o agz o Cy(B) oioad™'. By Theorem 43, (f{, f4) is a
pair of outer automorphisms of 0(g). Let f; be an outer automorphism of order
3 of 0(q) and let fo = f2. In view of Remark 47 (and renumbering f; and fo if
necessary), there exist inner automorphisms Int hy, Int o of 0(g) such that

fi=Inthyo fi, fo=TInthyo fi.
The composition
(Int hy x Int he) o (Int B x Int B) " 0 az o Co(B)

maps the algebra Cy(V, ¢) to Endz=(V) x Endz(V) and its restriction to [V, V] has as
image the image of (f1, f2) which is contained in 0(q) x0(q) C Endp(V)xEndg(V).
Since 0(q) = [V, V] generates Co(V,q) as an algebra, it follows from Lemma 49
that (f1, f2) o ad™! extends to isomorphism ~v: Co(V,q) = Endr(V) x Endg(V).
Replacing g by a multiple Aq if necessary, we may assume that there is an element
e € V such that g(e) = 1. Let

V=F-elU.

For any u € U, let y(eu) = (¢u, ) € Endp(V) x Endp(V). Since eu + ue = 0
in Co(q)7 we have 2eu = [e,u] € [V,V] and (¢y, %) € 0(q) X 0(g), moreover
(Gu: ¥u)? = y(ew)? = —q(u) - (1,1) and

) -
by (Bu(y), pu(2)) = —bg(d2(y), 2) = a(u)by(y, 2) (51)
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forallu e U, y,z € V. Let x = Ae +u € V. Tt follows from (51) that the bilinear
product on V given by

roy =My + du(y), yev,

satisfies
bq(z Y y7 x < y) = Q(I)bq(yv Z)7

hence defines a composition algebra on (V] ¢). By Proposition 9 ¢ is the norm form
of a Cayley algebra. O

A result corresponding to Theorem 48 for projective groups of similitudes is
proved in [WO] with a quite settled geometric argument.

Theorem 52. Let o(n) be the orthogonal Lie algebra relative to a 3-Pfister form n.

(1) The cyclic subgroups G(f) and G(g) of Aut(o(n)) generated by two outer
automorphisms f,g of o(n) of order 3 are conjugate and only if they have
isomorphic fized point subalgebras.

(2) Each conjugacy class of a cyclic subgroup G(f) of Aut (o(n)), generated by
an outer automorphism f of order 3, is the class of a subgroup G(fs) for
an automorphism fs induced by some symmetric composition (S,x). The
Lie algebra Der(S, ) is the fixed point algebra of the group G(fs). Up to
isomorphism the conjugacy class of G(fs) is uniquely determined by the
pair {S, S°P}.

Proof. (1) If G(f) and G(g) are conjugate and for example g = ¢ o f o ¢~ with
¢ € Aut(o(n)), then ¢ restricts to an isomorphism Fix(G(f)) = Fix(G(g)).
Conversely, let g = Fix (G(f)) and h = Fix(G(g)) be isomorphic Lie algebras. By
Theorem 6, g and h are both of type G or of type As. If they are both of type
G2, they are isomorphic to derivation algebras of Cayley algebras C; and Cy. In
view of Corollary 21 we may assume that C; = C2 = C, where C is the (up to
isomorphism) unique Cayley algebra with norm n. Moreover, we can assume that
Der(C) is canonically embedded in o(n). Let ¢1: g = Der(C) and ¢2: b = Der(C)
be isomorphisms. In view of Corollary 22, the isomorphisms ¢; and ¢ can be
extended to inner automorphisms s; of o(n). Conjugating f by sfl and g by
sy ' we are reduced to the case where f and g have the same fixed point algebra
Der(C). It then follows from Remark 47 that f o g~! or f20 ¢! is an inner
automorphism s = Int (t), t € GO (n). Let C=C° L F-1. The image of Der(C)
in o(n) C Endp(C) lies in Endp(C%) and ¢ commutes with this image. Thus ¢ is of
the form - 1go + A - 1p, A, p € FX. The multiplier of ¢ is equal to A\? and to 2,
so that A = 4. Since t is proper, the case A = —pu cannot occur and s = Int (¢) is
the identity on o(n). A similar proof, using Proposition 26 and Corollary 30, holds
if both fixed point algebras are of type Az. Observe that in this case, we only get
conjugation up to automorphisms, not necessarily inner automorphisms.

(2) Let f be an outer automorphism of order 3 of o(n) and let Fix(f) = g. Then
g is of type G2 or Ay. Assume first that g ~ Der(C) for a Cayley algebra C. Let
fc be an outer automorphism of o(n) induced through the para-Cayley algebra C
(see Theorem 44). In view of (1) G(f) and G(f¢) are conjugate. If g is of type Ay
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we know by descent that g ~ Skew(B,7)? for B central simple of degree 3 over
a quadratic extension K/F. In view of Corollary 30, K must be isomorphic to
Flz]/(2? + 3). Let (S,*,n) be the symmetric composition associated with (B, 7).
The fixed point algebra of the corresponding automorphism fg of order 3 of o(n)
is isomorphic to Fix(f). Hence by (1) the cyclic subgroups G(f) and G(fs) are in
the same conjugacy class. Unicity follows from Proposition 35. [J

In view of the classification of symmetric compositions we have the following
classification of outer automorphisms.

Corollary 53. Let n be a 3-Pfister form over a field F of characteristic zero and
let Conj(n) be the set of conjugacy classes of order 3 outer automorphisms of the
orthogonal algebra o(n).

(1) If F does not contain a primitive cubic root of 1, then Conj(n) is in bijection
with the set consisting of the isomorphism class of a Cayley algebra with
normn and all F(\/—3)-isomorphism classes of pairs consisting of a central
simple algebra of degree 3 over F(v/—3)/F and an involution of the second
kind such that the cohomological invariant of the involution is the class
of n.

(2) If F contains a primitive cubic root of 1 and n is hyperbolic, then Conj(n)
s in bijection with the set consisting of the isomorphism class of the split
Cayley algebra and the isomorphism classes of central simple algebras of
degree 3 over F'.

(3) If F contains a primitive cubic root of 1 and n is anisotropic, then Conj(n)
reduces to the isomorphism class of a Cayley algebra with norm n.

Proof. (1) If the composition algebra S admits an involution og, then by The-
orem 46 fs and f2 = fser are conjugate in Aut(a(n)). Thus in this case the
conjugacy class is determined by S. The left cases are where the central simple
algebra B of degree 3 is not split. Then B and B°P are not isomorphic so that
S and S°P are not isomorphic either. The claim then follows from the fact that
the form n determines the isomorphism type of the involution of the second kind
on B. Claims (2) and (3) follow from (1) and the fact that n is hyperbolic if F'
contains a primitive cubic root of unity (see Proposition 32). O

Remark 54. As observed in [HKRT], given an algebra B of degree 3 with an involu-
tion of the second kind and given a norm form n, B does not necessarily admits an
involution of the second kind with invariant n. However, since any central simple
algebra B of degree 3 with an involution of the second kind admits a distinguished
involution, there is at least one class of outer automorphisms of order 3 for each
isomorphism class of central simple algebras B of degree 3 admitting an involution
of the second kind over the extension F[z]/(z? + 3).

Example 55. Over R, there are two 3-Pfister forms, the hyperbolic form and
the identity form, hence two isomorphism classes of orthogonal Lie algebras ad-
mitting outer automorphisms of order 3. For each one there is a conjugacy class
of outer automorphisms of order 3 given by the corresponding Cayley algebra.
Moreover, we have two classes of involutions of the second kind on M3(C) (see
Example 34). For the Hermitian transpose 7, the invariant is the identity form.
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The other class of involutions is given by the distinguished involution Int (u) o 7,
where u = diag(—1,1,1) (see Example 34). Thus we have two classes of outer
automorphisms of order 3 for each of the two 3-Pfister forms.

7. Appendix (in collaboration with Larissa Cadorin)

Using adequate multiplication tables of symmetric compositions, one can use
Theorem 43 to give explicit descriptions of trialitarian actions defined through
symmetric compositions. Computations of this kind were done in [KPS] and [C].
We first consider the case of a split para-Cayley algebra Cs. Let Qs = M2 (F) be
the split quaternion algebra, with basis v1 = 1, vs, v3, v4 = vov3 and relations
v% = v% = 1 and wvovs + vsve = 0. Let x — T be the conjugation in Q5. We set
Cs = Qs + v5Qs and define the multiplication in Cs by

(a+vsb)(a’ +vsb') = (aa’ + b'b) + vs(ab’ + a'b) for a,a’,b, b’ € Q.

The norm n of Cs with respect to the basis (v1, ..., v4, V5, Vg = U5V2, V7 = V5U3, Vg =
vsvr) is the diagonal form (1,—1,...,1,—1). It is more convenient to work with
the basis

e1=3(va—vs), e2=3(—v2a+uve), es=3z(—vstuvr), es=3%(v1+vs),
fi=3wi+vs), f2=3(va+ve), fa =% (vs +v7), fa=3(v1 —vs),

which is hyperbolic for n. The multiplication table for the corresponding para-
Cayley algebra is given in Table 1.

TABLE 1.

x|l er fi | e fo|les fs| e fy
(&3] 0 —f4 f3 0 —fg 0 0 —€1
Ji|—e O 0 €3 0 —e|—-fi O
ez | —fs 0 0 —fa| N 0 0  —e
fg 0 —€3 —€4 0 0 €1 —fQ 0
es | f2 0O |-fi O 0 —fa| 0 —e3
f3 0 €9 0 —€1 —€4 0 *fg 0
€4 —e1 0 —€9 0 —€3 0 f4 0
f4 0 —f1 0 —f2 0 —f3 0 €4

We have 1 = e4 + f4 and conjugation in Cy is given by m(e;) = —e;, w(fi) = —fi
fori=1,...,3 and 7(eq) = fs. The following relations hold in the Clifford algebra
C(Cs,n):

eiej+eje; = fifi+ fifi=0 and  eif; + fies =0y (56)

~

for all i,5 = 1,...,4. A computation shows that the isomorphism ad™': og =
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[Cs,Cs] C Co(Cs,m) of Lemma 38 is given by

G?; = Ei,j+4 - Ej7i+4 — eiej,
GY = Eivag — Bjraiva = fifs,
Gij = Eij— Bjraiva = eifj,
GX =Eii—FEitaiya  —eifi— 1,

The image of a generic skew-symmetric matrix

e
AN CIN A
A SN A

.

A S

Rl

e /ANY/AN

N
.

X Y Z
X = E a:ijGZ-j + E yi]‘Gij + E ZijGij
1<i,j<4 1<i<j<4 1<i<j<4
Tl T2 T13 T4 0 Y12 Y13 Y14
T21 Z22 x23 24 | —Y12 0 Y23 Y24
31 T32 X33 T34 | —Y13  —Y23 0 Y34
_ T4l T4z T4z Taa | —Y14  —Y24  —Y34 0
0 212 213 214 | —%11 —x21 —T31 —T41
—Z12 0 223 224 | —T12 —X22 —XT32 —T42
—z13 —223 O 234 | —T13 —T23 —T33 —T43
—214 —224 —234 0 | —%14 —Tos4 —T3a —Tus
under the map ac, oad™" of (42) is
agoad™H(X)
4
_ Z Tij (LeLng 0 > + Zx” |:(L€1RfL 0 >
A 0 Re, Ly — 0 R, Ly,
%]
L. R.. 0 L+R 0
aw < 07 Ron,)t 2 w0 R
— e;Le; — filef;
1<i<j<4 1<i<j<4

Let ag, oad™1(C,) =
straightforward to show that p(X) is given by

(p(X), p?(X)). Using the multiplication table (Table 1), it is

+—-——+ T2 13 —Y14 0 —T43 T42 —Z223
o1  —+—+ x93 —Yo4 T43 0 —T41 z13
x31 Tzz ——++ Y4 —T42 T41 0 —212
214 224 234 ~— = —— 223 —213 212 0
0 T34 — o4 —y23 | —++— -T2 —31 —Z214
—T34 0 T14 Y13 —r12 +—+— —T32 —Z224
T24 —T14 0 —Y12 —13 —T23 ++—— —zZm
Y23 —Y13 Y12 0 Y14 Y24 Y4  ++++
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+—-—— 212 13 223 0 —234 224 —T14
To1  — 4+ —— T3 —213 234 0 —214 —T24
31 T3z ——+— 212 —Z224 214 0 —T34
—Y23 Y13 —y12  +++-— T14 T24 X34 0
0 —Y34 Y24 T41 —+++ -z —I31 Yo3
Y34 0 —Y14 T42 -T2 +—++ —x32 —Y13
—Y24 Y14 0 T43 —13 —r23 ++—+ Y2
—T41 —T42 —T43 0 —Z223 213 —212 —— —+

where +/— are the signs of %(9:11 + x99 + x33 + Ta4).
The automorphism p restricts to an automorphism of the Cartan subalgebra b
which we used already in Section 2; the action is given by the matrix

1 -1 -1 1
1[-1 1 -1 1
X=5l-1 1 1 1

-1 -1 -1 -1

with respect to the basis u; = Ej; — Ejya j+4, j =1,...,4 of h. We recall (see (5))
that the matrix P of the automorphism f, induced on h by the corresponding
automorphism of the Dynkin diagram is

1 1 1 -1

1 1 -1 1
=511 1 1 1

1 -1 -1 -1
Obviously we have X = YRY ~! with Y = diag(—1,1,1,1). This shows explicitly
that both actions p and f, are conjugate.

Similar computations can be made for all actions constructed with symmetric

compositions. We sketch the case of the split algebra of type As. We represent
M3(F) as a cyclic algebra with generators x,y and relations

Yr = wry, x° = 1, y3 =1,

where w is a primitive cubic root of 1. The monomials x'y’, (i,5) # (0,0) >
0,4, < 2 have trace 0 and form a basis of M3(F)". The basis

2,2
er = —x, ez = —y, €3 = —wry, eq = —w 'z,

fl _an f2 = _y27 f3 = —wx2y2, f4 = —w2y$27

is hyperbolic and the multiplication * has the following nice multiplication table
(Table 2)(see [E]).
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TABLE 2.
* €1 fi €2 fa €3 f3 €4 fa
er|—fi O 0 Ja 0 f2 0 I3
f1 0 —€1 €4 0 €9 0 €3 0
ea | e3 0 |—f2 O fa 0 0 e
fQ 0 f3 0 —E€2 0 €4 fl 0
ez | e4 0 0 e1r |—fs 0 f2 0
f3 0 f4 fl 0 0 —€3 0 €2
€4 €2 0 f3 0 0 e1 —f1 0
Ja] O f2 0 es | f1 0 0 —eq

Since the norm form is hyperbolic we choose the same Cartan subalgebra $ of
0g as above and similar computations give a trialitarian action p’. The image of
the generic skew-symmetric matrix (57) under p’ is

—+++ Y3 Y34 —Y24 0 T41 Z21 31
—223 ———1+ T4 43 —x41 0 —213 Z12
—234 Tag —+—— T3 —Ta1 z13 0 —Z214
224 T34 T3z ——+— | —@31 —212 214 0
0 —T14 —T12 —x13 |+——— 223 —234 —Z224 ’
L14 0 —Y13 Y12 —Y23 +++— —x2 —34
T12 Y13 0 —Y14 —Y34 —T4o +—++ —u32
T13 —Y12 Y14 0 Y24 —T43 —x23 ++—+

where +/— are as above the signs of %(xu + 299 + w33 + 244). Here again the
action restricts to an automorphism of the Cartan algebra, given by the matrix

-1 1 1 1

1({-1 -1 =1 1

I—_

X_2 -1 1 -1 -1
-1 -1 +1 -1

Since tr(X’) = —2 and tr(X) = 1, X and X’ are clearly not conjugate.

€]
[E]
[EM]

[F]
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