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Abstract We compared the variability of the subjective
visual vertical (SVV) and static ocular counterroll (OCR),
and hypothesized a correlation between the measurements
because of their shared macular input. SVV and OCR were
measured simultaneously in various whole-body roll posi-
tions [upright, 45° right-ear down (RED), and 75° RED] in
six subjects. Gains of OCR were ¡0.18 (45° RED) and
¡0.12 (75° RED), whereas gains of compensation for body
roll in the SVV task were ¡1.11 (45° RED) and ¡0.96 (75°
RED). Normalized SVV and OCR variabilities were not
signiWcantly diVerent (P > 0.05), i.e., both increased with
increasing roll. Moreover, a signiWcant correlation
(R2 = 0.80, slope = 0.29) between SVV and OCR variabili-
ties was found. Whereas the gain of OCR is diVerent from
the gain of SVV, trial-to-trial variability of OCR follows
the same roll-dependent modulation observed in SVV vari-
ability. We propose that the similarities in variability reXect
a common otolith input, which, however, is subject to dis-
tinct central processing for determining the gain of SVV
and OCR.

Keywords Vestibular · Otolith organs · Eye movements · 
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Introduction

Self orientation, relative to gravity, is determined by com-
bining inputs from the vestibular system (utricular and sac-
cular macula, semicircular canals or SCC), proprioception,
and vision. Aligning a luminous line with the perceived
earth-vertical, i.e., the subjective visual vertical (SVV),
while being in a roll-tilted position requires compensation
for body roll by rotation of the line away from the body-
longitudinal axis by an angle � that represents estimated
body roll. This compensation, i.e., position gain, is nearly
perfect for small angles, but line settings tend to err toward
over-compensation (E-eVect) at moderate roll angles
(Mueller 1916) and toward under-compensation (A-eVect)
at larger roll angles (Aubert 1861). It was suggested that A-
and E-eVects are a consequence of how sensory inputs are
integrated into a uniWed percept of vertical (Mittelstaedt
1983).

Changes of head-roll orientation, relative to gravity,
modulate the shear forces acting on the otoliths (Schoene
1964) and evoke reXexive torsional eye movements in the
opposite direction, termed ocular counterroll (OCR) (Miller
and Graybiel 1962). Under static conditions, OCR is pre-
dominantly driven by inputs from the otoliths (Fernandez
et al. 1972; Tomko et al. 1981) and compensates only for a
small percentage (5–25%) of head roll (Diamond et al.
1979; Collewijn et al. 1985; Bockisch and Haslwanter
2001; Palla et al. 2006). OCR likely depends upon the inte-
gration of both utricular and saccular signals. Providing
identical inter-aural shear to the otoliths but varying cranio-
caudal shear by applying centrifugation or static head roll,
centrifugation was found to yield larger ocular torsion (OT)
(MacDougall et al. 1999), supporting a saccular contribu-
tion to OT in humans. De Graaf et al. (1996), based on a
variety of paradigms stimulating the otoliths, estimated that
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the utricular contribution to OCR is about three times
greater than the saccular contribution. Saccular input to the
equilibrium and to OT was also reported in cats (Tomko
et al. 1981), squirrel monkeys (Fernandez et al. 1972) and
rabbits (Maruta et al. 2008).

Subjective visual vertical variability increases with
increasing head roll (Mittelstaedt 1983; De Vrijer et al.
2008) and peaks around 120°–150° (Schoene and Udo de
Haes 1968; Udo de Haes 1970; Lechner-Steinleitner
1978). This pattern was explained by a “decreasing eVec-
tiveness” of the otolith organs with increasing roll
(Schoene and Udo de Haes 1968; Lechner-Steinleitner
1978), though the contribution of other sensory systems
and SVV decision processes cannot be discounted. Con-
sidering that estimating static head roll required for SVV
(Schoene and Udo de Haes 1968) and OCR (Fernandez
et al. 1972; Tomko et al. 1981) mainly originates from
the otoliths (Miller et al. 1968), we hypothesize that a
shared otolith input may be reXected in a signiWcant cor-
relation between the variabilities of SVV and OCR. In
other words, we expect that OCR variability also
increases with increasing head roll. DiVerent patterns of
SVV and OCR variability would suggest an extra-oto-
lithic contribution to the SVV (Udo de Haes 1970). For
example, the contribution of somatosensory inputs could
vary with roll position for the SVV and OCR, or decision
processes related to the SVV could produce changes in
variability. Previous studies provided evidence both for
(Haustein 1992) and against (Udo de Haes 1970) a roll-
angle dependent modulation of OCR variability. Since,
in these studies subjects completed multiple measure-
ments without changing their roll position and, therefore,
allowed for adaptive mechanisms of OCR over time
(Pansell et al. 2005), we repeated experiments by pseudo-
randomly changing the whole-body roll angle before
each measurement. This reWned protocol yielded OCR
and SVV variabilities devoid of adaptation, which in turn
could be correlated. We anticipate that variabilities of
SVV and OCR diVer, since the gain of compensatory
SVV roll (close to ¡1) and the gain of compensatory tor-
sional eye movements (¡0.05 to ¡0.25) are not in the
same range. However, after normalizing the distinct
noise levels of SVV and OCR, our hypothesis predicts
similar variabilities of both parameters.

Materials and methods

Subjects

We studied seven healthy human subjects (2 females; 27–
43 years old). One subject had to be excluded due to poor
OCR and SVV responses due to sleepiness. Informed

consent of all subjects was obtained after full explanation
of the experimental procedure. The protocol was approved
by a local ethics committee and was in accordance with the
ethical standards laid down in the 1964 Declaration of
Helsinki for research involving human subjects.

Experimental setup

All experiments were performed on a motor-driven turnta-
ble (Acutronic, Jona, Switzerland). Subjects were seated
upright and secured with a safety belt. The head was
restrained in the natural straight ahead position with a ther-
moplastic mask. A turntable-Wxed coil frame surrounded
the head and generated three orthogonal magnetic Welds.
Three-dimensional movements of the right eye were
recorded with a dual scleral search coil (Skalar Instruments,
Delft, The Netherlands) at a frequency of 1,000 Hz. To
minimize torsional eye movement artifacts by mechanical
interaction of the nasally exiting wire, modiWed search coils
with the wire exiting inferiorly were used (Bergamin et al.
2002). An arrow with a length of 9.5° was projected on a
spherical surface situated 1.5 m in front of the subject’s
eyes. A short, 0.8° long line bisected the arrow, providing a
straight-ahead Wxation point. The arrow roll orientation had
a resolution of 0.1°. A remote control box allowed the sub-
jects to rotate the arrow and to conWrm the completion of
each adjustment.

Experimental protocol

Recording sessions were limited to »40 min due to possi-
ble corneal edema and blurred vision. We restricted the par-
adigm to a few discrete roll angles and obtained enough
trials to calculate reliable trial-to-trial variabilities. To col-
lect data at roll positions that were over- or under-compen-
sated in the SVV-task (Aubert 1861; Mueller 1916), 45°
right-ear down (RED) and 75° RED were chosen. With the
exception of the luminous arrow or dot, the visual sur-
rounding was completely dark. Before each trial, subjects
were placed upright and were asked to look straight-ahead
at a laser dot. The 3D eye position during this visual Wxa-
tion was deWned as the reference zero position. In total, 120
trials (40 trials each in all roll positions) were collected in a
single session. In each trial, subjects were brought from
upright to a roll position that was upright, 45° RED, or 75°
RED with a constant turntable acceleration of §10°/s2. This
resulted in peak turntable velocities of »§20°/s (45° posi-
tion shifts) and »§26°/s (75° position shifts), respectively.
The arrow projection started »5 s after the turntable came
to a full stop and the arrow starting position deviated
pseudo-randomly between 28° and 82° clockwise (CW) or
counterclockwise (CCW) from the gravity vector. Rota-
tions with accelerations above the threshold of the SCC
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inXuence errors in SVV (Jaggi-Schwarz and Hess 2003;
Pavlou et al. 2003). To quantify the contribution of the
SCC, we checked for post-rotatory torsional ocular drift
and nystagmus in our paradigms. Average torsional eye
velocity at the time subjects conWrmed arrow adjustments
was found to be small (0.10 § 0.06°/s). Moreover, average
deviations in horizontal and vertical eye positions at this
moment were within §4.5° from straight ahead, making
eye torsion resulting from eye eccentricity within Listing’s
plane (Haustein 1989) unlikely.

Data analysis

Three-dimensional eye positions were computed and digi-
tally Wltered (Gaussian Wlter with a width of 51 samples,
zero-phase forward and reverse Wltering). CW torsion, as
seen by the subject, was positive. Although we used modi-
Wed search coils, small torsional coil slips were not totally
excluded. To further reduce possible slip-related errors, we
analyzed OT relative to the previous reference zero position
determined before each trial. Average (§1 standard devia-
tion or SD) arrow roll orientations and torsional eye posi-
tions in diVerent roll positions in a head-Wxed reference
frame were calculated. For the SVV, we determined the
arrow roll angle �SVV which compensates the angle of
whole-body roll and its gain. A gain of ¡1 indicates perfect
compensation; a gain <¡1 under-compensation (A-eVect),
and a gain >¡1 over-compensation (E-eVect). The same
nomenclature is used for OCR, for which we determined
OCR angle �OCR and its gain. Data points were considered
as outliers if they were more distant from the average than
three SD. In total, <0.5% of all data points were outliers
and were discarded before statistical analysis.

Since both OCR and SVV variabilities depended on
whole-body roll, and so were measured with error, princi-
pal component analysis (PCA) was chosen in order to eval-
uate for the proposed correlation. This procedure is
equivalent to Orthogonal Linear Regression or Total Least
Squares, which minimizes the perpendicular distances from
the data points to the Wtted model (Van HuVel and Vandew-
alle 1991). Multiple least square linear regression diVers
from PCA in that it implies that one variable, i.e., the inde-
pendent variable, is known without error. Conversely, PCA
appropriately adjusts for errors along all axes. This correla-
tion method requires normalization, which is achieved by
dividing individual values by the standard error of the
whole data population. As a measure of the goodness of Wt
we provide the R2 value. To estimate the sampling distribu-
tion of the slope of the Wt obtained by PCA, we used boot-
strapping to construct 1,000 resamples and calculated the
95% conWdence interval (CI). The correlation between
SVV and OCR variability was considered signiWcant when-
ever the CI did not include zero. To compensate for the

distinct noise levels of SVV and OCR variability observed,
we compared the normalized variability values, obtained by
dividing individual values through the standard error of the
whole data population. We used analysis of variance
(ANOVA) with Tukey’s correction for multiple compari-
sons of SVV and OCR at diVerent roll angles. In some
sections, the statistical analysis was solely based on
paired t tests with Holm’s correction for multiple compari-
sons (Holm 1979).

Results

Absolute values of SVV and OCR

Since no statistically signiWcant (ANOVA, P > 0.05) main
eVect of the direction of arrow rotation was found for both
SVV and OCR, trials with starting CW and CCW arrow
orientation oVsets were pooled. In upright position, SVV
did not deviate signiWcantly from earth-vertical (t test,
0.4 § 1.9°, P > 0.05). At 45° RED, average (§1 SD) com-
pensatory angle �SVV was ¡50.0° (§6.5°) relative to the
whole-body roll orientation, indicating slight roll over-
compensation with a position gain of ¡1.11. At 75° RED,
average �SVV was ¡72.3° (§9.4°), showing a tendency
toward roll under-compensation and yielding a gain of
¡0.96. At both 45° and 75° RED, �SVV values of the sub-
jects tested were not signiWcantly (t test, P > 0.05) diVerent
from perfect compensation.

In contrast to �SVV, the compensatory eye torsion �OCR,
i.e., static OCR reached only a fraction of whole-body roll.
At 45° RED �OCR averaged ¡8.2°, yielding a gain of
¡0.18. OCR was slightly increased at 75° RED (¡8.8°),
which corresponds to a gain of 0.12. At this whole-body
roll position, the inter-individual SD was larger (75° RED:
1.1°; 45° RED: 0.5°).

Trial-to-trial variability of SVV and OCR

Figure 1a shows the average trial-to-trial variability for
both SVV and OCR as a function of whole-body roll. Since
there was no signiWcant (ANOVA, P > 0.05) main eVect of
the direction of arrow rotation for both SVV and OCR, tri-
als with CW and CCW arrow rotations were pooled. Abso-
lute values of SVV and OCR variabilities were in diVerent
ranges, yielding SVV-to-OCR ratios of 3.5 (45° RED) and
4.0 (75° RED). For direct comparison of SVV and OCR,
we performed normalization by dividing individual vari-
ability values by the standard error of the whole data popu-
lation. Normalized average (§1 SD) SVV variability was
signiWcantly smaller (ANOVA, P < 0.001) in upright posi-
tion (5.4 § 1.7) than in roll-tilted positions (45° RED:
14.7 § 3.6; 75° RED: 16.8 § 4.4). Compared to upright
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(7.5 § 2.3), normalized OCR variability was signiWcantly
(ANOVA, P < 0.001) larger both at 45° RED (14.8 § 5.3)
and 75° RED (14.9 § 6.4). After normalization, variability
values of SVV and OCR were found to be of similar magni-
tude. Moreover, the diVerence between SVV and OCR
variabilities at a given whole-body roll angle was not sig-
niWcantly diVerent from zero (t test, Holm’s corrected,
P > 0.05).

To explore the hypothesis that the intra-individual trial-
to-trial variabilities of OCR and SVV may rely on a com-
mon otolith input, OCR variabilities were plotted against
SVV variabilities in Fig. 1b. The goodness-of-Wt using
PCA was high (R2 = 0.80); the slope of the linear regression
was 0.29 (95% CI 0.22–0.38), indicating that the variability

in SVV is scaled by a factor of »3 relative to the OCR
variability.

Discussion

Increasing whole-body roll resulted in increasing trial-
to-trial variabilities of both the SVV and OCR. The high
correlation between these variabilities and the fact that,
after normalization, they were not signiWcantly diVerent at
given roll positions support our hypothesis of a common
otolith signal driving both SVV and OCR and their trial-
to-trial variability. Our observations are consistent with an
experimental human study by Haustein (1992), in which a
signiWcant decrease in OCR precision at 90° ear-down posi-
tion relative to upright was reported. Conversely, our Wnd-
ings are in contrast to Wndings by Udo de Haes (1970), who
reported no modulation of OCR variability, but increasing
SVV variability with increasing head roll. DiVerences in
the experimental setup may explain this discrepancy of
OCR results. Whereas Udo de Haes placed two subjects in
prone position with their head bent back, we roll-tilted sub-
jects en-bloc while sitting. However, no direct comparison
of elicited OCR under these two conditions is available. As
shown in Figure 6 of the publication, both the average vari-
ability and the spread of individual trial-to-trial OCR vari-
abilities in roll-tilted positions were increased compared to
upright position. Possibly, the considerable spread and the
small number of subjects included (n = 2) by Udo de Haes
masked the systematic roll-dependent modulation of OCR-
variability that was found in our study. Furthermore, Udo
de Haes ran repetitive trials without changing the subject’s
roll position between trials at a given roll position, whereas
we brought subjects back to upright position after each trial
avoiding drift of OCR over time, which has been described
by others (Pansell et al. 2005).

Subjective visual vertical and OCR, although relying on
shared otolith input, depend on diVerent central circuits.
Perception of vertical emerges from integrating multiple
sensory inputs, including proprioceptive, visual, and vestib-
ular input within vestibular cortical areas (Brandt and
Dieterich 1999; Angelaki and Cullen 2008). OCR is gener-
ated by brainstem circuits (Crawford et al. 2003) mainly
relying on vestibular input. In case of bilateral vestibular
loss, OCR is reduced (Miller et al. 1968) and the contribu-
tion of extra-vestibular sensors to the residual OCR is
greater (Miller and Graybiel 1963; Krejcova et al. 1971; De
Graaf et al. 1992). In paradigms investigating the contribu-
tion of otolith signals to verticality perception, propriocep-
tive input is usually also available. However, verticality
perception is not systematically altered by water immer-
sion, which greatly reduces proprioceptive input (Graybiel
et al. 1968; Jarchow and Mast 1999). On the other hand,

Fig. 1 a Average (§1 SD) non-normalized (in gray) and normalized
(in black) trial-to-trial variability of SVV (circles) and OCR (squares)
plotted against head-roll angle. b Non-normalized trial-to-trial SVV
variabilities are plotted against non-normalized variabilities of OCR.
Symbols (CW/CCW arrow rotations): diamonds/plus upright position,
circles/squares 45° RED, triangles/inverted triangles 75° RED. Black
line linear regression
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bilateral vestibular deWcits lead to a shift from E- to A-eVects
at small roll angles (Graybiel et al. 1968) and to an increase
of the A-eVect at larger roll angles (Miller et al. 1968;
Bronstein et al. 1996), while impaired somatosensory func-
tion decreases the A-eVect (Yardley 1990; Anastasopoulos
et al. 1999; Bronstein 1999). Based on these observations,
vestibular cues may play a central role in counterbalancing
visually and proprioceptive mediated biases on the percep-
tion of verticality (Bronstein et al. 1996).

The roll-angle dependent modulation of both gravity
perception and OCR has been investigated previously, but
the reported relationships between perceived visual hori-
zontal/vertical and OCR are contradictory. On the one
hand, both Mast (2000) and Merker and Held (1981) failed
to show a relationship between the magnitudes of OCR
and SVV. Furthermore, Miller et al. (1968) demonstrated
E-and A-eVects in patients with bilateral vestibular loss
(i.e., whose eyes do not tort), again suggesting that SVV
and OCR modulate independently. On the other hand, De
Graaf et al. (1992), Wade and Curthoys (1997) and Goon-
etilleke et al. (2008) reported a correlation between OCR
and the subjective visual horizontal in healthy human
subjects. In comparison to the modulation of the compen-
satory angle in SVV, however, both the gain and the roll-
angle dependent modulations of OCR are clearly distinct
as observed here and reported previously (Udo de Haes
1970; Mast 2000).

By studying SVV and OCR over a larger range of roll
angles, diVerences in central processing between SVV and
OCR become evident as roll over-compensation in SVV
switches to roll under-compensation around 60° whole-
body roll (Aubert 1861; Howard 1982; Van Beuzekom and
Van Gisbergen 2000), whereas OCR increases further and
peaks around 90° whole-body roll, showing an approxi-
mately sinusoidal modulation (Udo de Haes 1970; Palla
et al. 2006). Despite this diVerence in central processing,
the common otolith input remains reXected in similar roll-
dependent SVV and OCR variabilities.
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