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Abstract We present a new way to solve generalized Nash equilibrium problems.
We assume the feasible set to be compact. Furthermore all functions are assumed to be
polynomials. However we do not impose convexity on either the utility functions or the
action sets. The key idea is to use Putinar’s Positivstellensatz, a representation result
for positive polynomials, to replace each agent’s problem by a convex optimization
problem. The Nash equilibria are then feasible solutions to a system of polynomial
equations and inequalities. Our application is a model of the New Zealand electricity
spot market with transmission losses based on a real dataset.

Keywords Generalized nash equilibrium · Parametrized optimization ·
Real algebraic geometry · Nonconvex optimization · Electricity spot market ·
Transmission loss

1 Introduction

There has been a lot of interest in the computation of normalized Nash equilibria since
Rosen (1965) introduced them. In essence the approach is to reformulate the problem
either as a variational inequality or using penalty-functions or Nikaido-Isoda-type-
functions. The one thing all computational papers have in common is the assumption
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460 E. Couzoudis, P. Renner

of player-convexity on the utility functions of the players (Facchinei and Kanzow
2007).

There are some attempts in the literature to extend the solution approach to
quasi-convex problems. However error bounds are only provided under some strong
monotonicity assumptions (Aussel et al. 2011a; Aussel and Dutta 2011).

Unlike the usual approaches to generalized Nash equilibrium problems (GNEPs),
we do not need any convexity assumptions on our functions and sets. We are also not
restricted to normalized equilibria. However, since we employ tools from real algebraic
geometry we require every constraint and objective function to be polynomial. Note
that the KKT conditions do not provide sufficient conditions in the case of non-convex
function. Thus, instead of the usual approach, we replace each agent’s problem with the
convex relaxation obtained by Putinar’s Positivstellensatz. Each of these problems is
then a parametrized semi-definite optimization problem. The corresponding optimality
conditions however are a system of polynomial equations and inequalities. We show
that some equilibria are feasible points to this system and that any other feasible point is
almost optimal. In case where we have a representation for a non-negative polynomial,
only equilibria are feasible points. We find those points with the solver Ipopt.

We also could do this with just slight modification for rational functions. The
relevant theorems to apply this approach for rational functions can be found in Jibetean
and de Klerk (2006). Our attention is on a non-cooperative, single stage game in normal
form, a onetime situation without reoccurrence and a finite number of players who
move simultaneously.

Let N ∈ N be the finite number of players in the examined N -person game. Every
player ν ∈ I with I := {1, . . . , N } chooses his strategy xν from the strategy set
Xν(x−ν) ⊆ R

nν , where nν is a positive integer. For the sake of simplicity the strategy
set of all other players except ν is given by x−ν := (xν′

)N
ν′=1,ν′ �=ν

∈ R
n−ν . The

complete strategy vector of all players is specified with x := (xν)N
ν=1 ∈ R

n and
n := ∑N

ν=1 nν . Hence n−ν = n − nν and therefore the tuple of strategies for the
whole game has dimension n:

x := (
xν, x−ν

)T =
(

x1, . . . , xν−1, xν, xν+1, . . . , x N
)T ∈ R

n .

The scope of action Xν(x−ν) for every player ν in this game is influenced by the
strategies of the opponents x−ν . For ν = 1, . . . , N let Xν : R

n−ν ⇒ R
nν be a point-

to-set-mapping and for every fixed x−ν a subset of R
nν .The allowed strategy set of

the player ν has then the following form:

Xν(x−ν) := {
xν | (

xν, x−ν
) ∈ X

}
.

Thereby X ⊆ R
n is assumed to be nonempty and compact which implies the com-

pactness of every set Xν(x−ν). For this work X has the following structure

X := {
x ∈ R

n | gν(x) ≥ 0, hν(xν) ≥ 0 ∀ν = 1, . . . , N
}
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Computing generalized Nash equilibria 461

where the functions gν : R
n → R

lν are constraints influenced by other players,
hν : R

nν → R
mν are constraints specific to each player ν and lν, mν are positive

integers. Combining the two set declarations X and Xν gives us

Xν(x−ν) := {
xν | gν(xν, x−ν) ≥ 0, hν(xν) ≥ 0

} ∀ν = 1, . . . , N

and at the same time the possibility to define the feasible set for any point x ∈ R
n :

Ω(x) := X1(x−1) × · · · × X N (x−N ).

The last and yet missing basic element is the payoff. The assessment of the player’s
strategy set Xν and therefore the choice of action xν of player ν depends on the
corresponding utility or payoff function θν : R

n → R. A finite N -person game is
defined by the triple (I, (Xν)ν∈I , (θν)ν∈I ).

Furthermore a theoretical construct is needed to decide which player choices are
rational and optimal. In this case the payoff function θν is assumed to be a cost or loss
function. Every player ν tries to minimize his loss given the exogenous decision of
the competition:

Rv(x−ν) : min
xν∈Rnν

θν

(
xν, x−ν

)

s.t. xν ∈ Xν

(
x−ν

)
.

The solution set mapping Rv is also the best-response mapping of player ν.

Definition 1 A strategy x� ∈ Ω(x�) is a generalized Nash equilibrium (GNE), if and
only if x�,ν satisfies the following inequality:

θν

(
x�,ν, x�,−ν

) ≤ θν

(
xν, x�,−ν

) ∀xν ∈ Xν(x�,−ν), ∀ν ∈ {1, . . . , N }.

The Nash Equilibrium is therefore, for any player ν, the optimal decision given the
expected choice x�,−ν of the fellow players.

2 The model

“The [Electricity] Authority [of New Zealand] is responsible for ensuring the
effective day-to-day operation of the electricity system and markets through the
operation of core system and market services in accordance with the [Electric-
ity Industry Participation] Code [2010].”1 The corresponding tasks are assigned
to these market operation service providers: Registry Manager, Reconciliation
Manager, Pricing Manager, Clearing Manager, Information System Manager, Sys-
tem Operator and Inter-island Financial Transmission Rights Manager.2 Our focus
here lies on the Independent System Operator (ISO) and on Part 13 of the

1 Electricity Authority NZ (2012).
2 Electricity Authority NZ (2012).
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Electricity Industry Participation Code 2010 which sets out the trading arrange-
ments.

New Zealand consists of two main islands, the energy demanding north and the
energy producing south with a high voltage direct current (HVDC) Link between
them. Our highly abstract network is therefore composed of only two nodes and
two directed edges. The arc t1 is directed from the north island to the south
island and t2 is the inverted arc of t1. The power flow capacity of both arcs
is t̄ .

“Each [Energy Producer (EP) or] generator . . . must submit an offer to the system
operator for each trading period in the schedule period, under which the genera-
tor is prepared to sell electricity to the clearing manager, and ensure that the sys-
tem operator receives an offer at least 71 trading periods before the beginning of
the trading period to which the offer applies.”3 An offer submitted by a generator
may have a maximum of 5 price bands for each trading period and may not exceed,
for each trading period, the generators reasonable estimate of the quantity of elec-
tricity capable of being supplied at that node. The price offered in each band must
increase progressively from band to band as the aggregate quantity increases. An
exception are intermittent generators with a maximum of 1 price band for each trading
period and co-generators with a maximum of 2 price bands for each trading period.4

“For each price band, an . . . offer must specify a quantity expressed in megawatt
[MW] to not more than 3 decimal places. The minimum quantity that may be bid or
offered in a price band for a trading period is 0.000 MW.”5 “Prices in . . . offers must
be expressed in dollars and whole cents per megawatthour [MWh] . . . There is no
upper limit on the prices that may be specified and the lower limit is $0.00 per MWh
. . . .”6

It is clear that the inverse supply function of the power producers would be piece-
wise linear and an extension to the here presented model is straightforward. In the
literature the approach for the New Zealand electricity spot market is to make an
quadratic approximation of the inverse supply function. This is shown in Aussel et al.
(2011b) which in turn is based on Hobbs et al. (2000) and yields in Aussel’s example
depending on the control variables quadratic or even non-convex cubic polynomials
as revenue functions.

For this proof of concept we restrict the offers from energy producers to one price
band with a lower level of zero and a static demand δN for the north island and δS

for the south island. Hence, in this scenario there are only two kinds of players, the
Independent System Operator and the Energy Producers. The price per Gigawatt-hour
[GWh] of each EP is denoted by aν and qν is the maximum amount of power offered
in GWh. The ISO can choose for any energy offer qν the effective fraction cν . Then
the revenue function for each EP is given by aνcνqν . All terms are with respect to one

3 (Electricity Authority NZ 2010b, 13.6).
4 (Electricity Authority NZ 2010b, 13.9, 13.12).
5 (Electricity Authority NZ 2010b, 13.16).
6 (Electricity Authority NZ 2010b, 13.15).
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Computing generalized Nash equilibria 463

time period which is one day. This is in accordance to the pricing manager who sets
the final prices on a daily basis.

The ISO wants to achieve the social optimum in minimizing the expenditure for
the needed energy and the loss through transporting energy.

min
cν , t1, t2

N∑

ν=1

aνcνqν

s.t.
i∑

ν=1

cνqν − t1 − λ(t1)
2 + t2 − λ(t2)

2 − δN ≥ 0

N∑

ν=i+1

cνqν − t2 − λ(t2)
2 + t1 − λ(t1)

2 − δS ≥ 0

0 ≤ cν ≤ 1 ∀ν = 1, . . . , N

t̄ ≥ t1 ≥ 0, t̄ ≥ t2 ≥ 0.

(1)

The objective function is linear and the constraint set is convex, so the ISO problem
is clearly convex. Both network constraints are pretty self explanatory except for the
quadratic terms λ(t{1,2})2. Transmitting power is not lossless hence we form a term
for the arising heat loss using Joule’s and Ohm’s laws (Tipler et al. 2000):

P = U I
Ploss = I 2 R

}

Ploss = R ·
(

P

U

)2

= R′ · l ·
(

P

U

)2

= R′ · l

U 2 · P2.

The unit of P is watt and not equal to watt hour unit of t{1,2} thus a conversion is
necessary:

R′ · l

U 2 ·
(

Ph

24

)2

· 24 = R′ · l

U 2 · 24
· (Ph)2 = λ · (Ph)2 .

The meanings of the different terms are:

P : power R : electrical resistivity at20◦C

U : voltage R′ : electrical resistivity/km at20◦C

I : current l : length of transmission line.

For the cost function of the EPs we seek a technology-driven approach. If something
is burned up, the produced heat can be measured in Joule [J]. The heat conversion rate
ην now answers the question how much of that heat can be converted into electric
energy. This principle can of course be extended into non heat based technologies.
The player-specific cost function for the EPs has now the following form:
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Cν(q
ν) =

G J/GW h×GW h
︷ ︸︸ ︷(
ην · qν

) · (φν + τν)︸ ︷︷ ︸
fuel price: $/G J

+
$/GW h
︷︸︸︷
oν qν .

The parameter ην is technology dependent. The fuel price consists of the commodity
price φν and the delivery costs τν . The coefficient for other variable costs such as
operation and maintenance is denoted as oν . Furthermore each EP ν has a limited
power generating capacity κν given in GW h. The optimization problem for the profit
maximizing EPs is then as follows:

max
aν , qν

aνcνqν − (
ηνcνqν

)
(φν + τν) − oνcνqν

s.t. κν ≥ qν ≥ 0,

aν − ην(φν + τν) − oν ≥ 0,

N∑

i �=ν

ai ci qi − aνcν
N∑

i=1

ci qi ≥ 0,

N∑

i=1

qi − λ
(
(t1)

2 + (t2)
2
)

− δN − δS ≥ 0.

(2)

A static upper bound on the price is an invitation to a price agreement. All producers
would settle at this upper bound. On the other hand competitive behavior is to underbid
your opponents, as long as your price is above your marginal costs, and given you are
chosen by the ISO. So the two constraints on aν do exactly that. The last constraint is
introduced to avoid the infeasibility of the ISO’s problem.

Obviously the constraint set is compact. The Eigenvalues of the Hessian of the
objective function are {−cν, cν} with cν ∈ [0, 1]. Thus the Hessian is indefinite for
non trivial cν and therefore this simple model does not have a distinct curvature. With
this game we can obviously take full advantage of our approach.

3 Sum of squares optimization

In outlining the theory behind our solution approach we follow Laurent (2009) and
Lasserre (2010b). We will use the following notations:

– R[x1, . . . , xn] the ring of polynomials in n variables over the real numbers.
– x = (x1, . . . , xn) as shorthand notation.
– f ∈ R[x], f (x) = ∑

α aαxα where α ∈ N
n and xα = xα1

1 · · · xαn
n . Then deg( f ) =

max{α|aα �=0} |α| = max{α|aα �=0}
∑

i αi .

– For any polynomial g ∈ R[x] denote dg =
⌈

deg(g)
2

⌉
.
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3.1 Basic definitions and theorems

First we will introduce the class of convex optimization problems that is of interest to
us here. To do this we need a few basic notions from linear algebra.

Definition 2 A symmetric matrix Q ∈ R
n×n is called positive semidefinite, if and

only if wT Qw ≥ 0 for all w ∈ R
n . It is denoted Q � 0.

In the next proposition we recall a condition for a matrix to be positive semi-
definite.

Proposition 1 Let Q ∈ R
n×n be a symmetric matrix with rank m. Then the following

statements are equivalent

(a) Q is positive semidefinite.
(b) There exists a lower triangular matrix L ∈ R

n×n with nonnegative diagonal such
that Q = L LT .

Note here that the equivalent statement for positive semidefiniteness can be
expressed by polynomial equations and inequalities.

Now we introduce some basic notions from real algebraic geometry.

Definition 3 Let g1, . . . , gk ∈ R[x]. We call the set

K = {x | g1(x) ≥ 0, . . . , gk(x) ≥ 0}

a basic semi-algebraic set.

Definition 4 (a) A polynomial σ ∈ R[x] of degree 2d is called a sum of squares, if
and only if there exists polynomials p1, . . . , pm ∈ R[x] such that σ = ∑

i p2
i .

(b) Let Σ[x] ⊂ R[x] denote the set of sum of squares.
(c) Let Σ2d [x] ⊂ R[x] denote the set of sum of squares up to degree 2d.

Since a sum of squares is always a nonnegative function it is easy to see that a
polynomial can only be a sum of squares if it has even degree. The question whether
a positive polynomial is a sum of squares however is much more involved. There is
the following representation result.

Theorem 1 (Putinar’s Positivstellensatz) (Lasserre 2010b, Th.2.14) Let f, g1 . . . , gm

∈ R[x] be polynomials and

K = {
x ∈ R

n | g1(x) ≥ 0, . . . , gm(x) ≥ 0
} ⊂ R

n

a semi-algebraic set such that one of the following holds,

– gi are affine and K is a bounded polyhedron.
– For some j the set

{
x ∈ R

n | g j (x) ≥ 0
}

is compact.

If f is strictly positive on K then

f = σ0 +
m∑

i=1

σi gi (3)
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for some σ0, . . . , σm ∈ Σ[x].
The conditions for this theorem to hold are not as restrictive as it might seem at

first glance. If we know an N such that ‖x‖2 ≤ N for all x ∈ K , we then can add
the redundant ball constraint

∑
i x2

i ≤ N 2. The problem with the theorem is that we
do not know the degrees of the coefficients σi . There exist bounds on their degree
(Lasserre 2010b, Th.2.16), however for practical purposes these are of no use to us.

In an example below we will later see that we can use this kind of representation
even without the compactness assumption. Additionally in many models one has an
intuitive idea about the form of the solution and can pick an N accordingly.

3.2 Optimization of polynomials over semialgebraic sets

Let p, g1, . . . , gm ∈ R[x] and K = {x | g1(x) ≥ 0, . . . , gm(x) ≥ 0} . We want to
solve the following optimization problem

inf
x∈K

p(x). (4)

Assuming the supremum over the empty set is −∞, this is equivalent to the fol-
lowing semi infinite optimization problem

sup
ρ

ρ

s.t. p(x) − ρ > 0 ∀x ∈ K
(5)

In general this is a difficult problem. However there are several representation results
for positive polynomials over basic semi-algebraic sets. If K satisfies the conditions
of Theorem 1 then we can reformulate the problem into

sup
ρ,σ0,σ1,...,σm

ρ

s.t. p − ρ = σ0 +
∑

i

σi gi

σ0, σi ∈ �[x].

(6)

Note that the equality here means equality as polynomial functions. This is equivalent
to the coefficients on the left and on the right hand side being equal.

Since Putinar’s Positivestellensatz does not give a degree bound on the coefficients
we have to look at a relaxation of the previous problem. Fix d ∈ N

ρd = sup
ρ,σ0,σ1,...,σm

ρ

s.t. p − ρ = σ0 +
∑

i

σi gi

σ0 ∈ �2d [x], σi ∈ �2(d−dgi )
[x].

(7)
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Let wk be the vector of monomials up to degree k in the variables x then (7) can be
formulated as the following semidefinite program (SDP)7

sup
ρ,M0,M1,...,Mm

ρ

s.t. p − ρ = wT
d M0wd +

∑

i

wT
d−dgi

Miwd−dgi
gi

M0 ∈ R(n+d
d ), Mi ∈ R

(
n+d−dgi

d−dgi
)×(

n+d−dgi
d−dgi

)

M0 � 0, Mi � 0.

(8)

Again note that the equality in (8) is an equality as functions. Thus we have only
to compare coefficients. The equality constraints we obtain this way are linear. In
particular x is not a variable in the above optimization problem.

The relaxation (8) gives in general a lower bound on the objective of (4). We have
the following theorem relating the solutions of (8) to (6).

Theorem 2 (Lasserre 2010b, Th.5.6) Let the assumptions of Putinar’s Positivstellen-
satz hold. Then the optimal solution of the relaxed problem ρd converges for d → ∞
to the optimal solution.

4 Reformulating the GNEP

We now return to the GNEP problem from Sect. 1. We have to deal with the parame-
trized optimization problem of each agent. In Lasserre (2010a) the dual problem is
considered.

Fix ν and d ∈ N sufficiently large. We look at player ν’s optimization problem

min
xν

θν(xν, x−ν)

s.t. hν(xν) ≥ 0, gν(xν, x−ν) ≥ 0
(9)

We now regard x−ν as a parameter and formulate a relaxation as in (7). We obtain the
following parametrized optimization problem

sup
ρν,Mν

i ,N ν
j

ρν

s.t. θν(∗, x−ν) − ρν = wT
d Mν

0 wd +
∑

i

wT
d−dgν,i

Mν
i wd−dgν,i

gν,i (∗, x−ν)+
∑

j

wT
d−dhν, j

N ν
j wd−dhν, j

hν, j (∗)

Mν
0 ∈ R(n+d

d ), Mν
i ∈ R

(
n+d−dgν,i

d−dgν,i
)×(

n+d−dgν,i
d−dgν,i

)
, Mν

i � 0,

N ν
j ∈ R

(
n+d−dhν,i

d−dhν,i
)×(

n+d−dhν,i
d−dhν,i

)
, N ν

i � 0.

(10)

7 See e.g. Boyd and Vandenberghe (2004).
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Note that, since x−ν is regarded as a parameter, dhν, j only refers to the degree
of hν, j in the xν . Furthermore in an abuse of notation let wk denote the monomials
in the variables xν up to degree k. The ∗ signifies an equality as functions in the
entries it replaces. Here this means that we compare the coefficients of the variables
xν which themselves depend on the parameters x−ν . In particular those equations are
polynomials in the variables Mν

i , N ν
j , ρ

ν and x−ν .
Now we use Proposition 1 and perform a change of coordinates replacing Mν

i with

Lν
i

(
Lν

i

)T and N ν
j with T ν

j (T ν
j )T , where Lν

i and T ν
j are lower triangular matrices with

nonnegative diagonal. This results in a system of polynomial equations and inequalities
in the variables ρν, Lν

i , T ν
j and x−ν .

For each ν we now have a problem of the form (10) but without the positive
semidefinite constraint. To find an equilibrium we need an optimality condition or a
relaxation thereof to replace the optimization. We propose the following:

Theorem 3 Let the assumptions of Putinar’s Positivstellensatz hold and ε > 0, d ∈ N

sufficiently large. Furthermore let (x−ν, ρν, Lν
i , T ν

j ) for all ν, j, i be values in R

satisfying the following polynomial system of equations and inequalities

θν(∗, x−ν) − ρν
d = wT

d Lν
0

(
Lν

0

)T
wd+

∑

i

wT
d−dgν,i

Lν
i

(
Lν

i

)T
wd−dgν,i

gν,i (∗, x−ν)+
∑

j

wT
d−dhν, j

T ν
j

(
T ν

j

)T
wd−dhν, j

hν, j (∗)

(11)

ε ≥ θν(xν, x−ν) − ρν (12)

gν,i (xν, x−ν) ≥ 0

hν, j (xν) ≥ 0

(T ν
j )l,l ≥ 0, (Lν

i )k,k ≥ 0

Lν
0 ∈ R(n+d

d ), Lν
i ∈ R

(
n+d−dgν,i

d−dgν,i
)×(

n+d−dgν,i
d−dgν,i

)
,

T ν
j ∈ R

(
n+d−dhν,i

d−dhν,i
)×(

n+d−dhν,i
d−dhν,i

)
,

Lν
0, Lν

i , T ν
j lower triangular.

Then for all ν the point x = (x1, . . . , x N ) satisfies the following inequality

|θν

(
xν, x−ν

) − min
y∈Xν (x−ν )

θν

(
y, x−ν

) | ≤ ε (13)

Additionally let x be any equilibrium then there exists k ∈ N and ρν, Lν
i , T ν

j for all ν

such that x is a solutions to the above system of equations and inequalities.
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Computing generalized Nash equilibria 469

Proof For any feasible point x̂ν, ρ̂ν
d , L̂ν

i , T̂ ν
j we have that ρ̂ν

d is a lower bound on the
optimum of θν(xν, x̂−ν). So

ρ̂ν
d ≤ min

xν∈Xν(x̂−ν)
θν

(
xν, x̂−ν

) ≤ θν

(
x̂ν, x̂−ν

)
.

Since ε ≥ θν(x̂ν, x̂−ν) − ρ̂ν
d , constraint (12), we obtain the following

0 ≤ min
xν∈Xν(x̂−ν)

θν

(
xν, x̂−ν

) − ρ̂ν
d ≤ θν

(
x̂ν, x−ν

) − ρ̂ν
d ≤ ε.

Thus we know that θν(x̂ν, x̂−ν) satisfies the inequality (13).
If x is an equilibrium, then due to Theorem 2 we know that for any ε > 0 and

any ν there exists a kν such that θν(y, x−ν) − ρν
kν

has a Putinar representation with
| miny∈Xν (x−ν ) θν(y, x−ν)−ρν

kν
| < ε and relaxation order kν . Now we just have to set

k to the maximum of the kν and then x is feasible. ��
Once we computed a feasible point we can check whether it is a true equilibrium.

To accomplish this we solve the polynomial optimization problem for each player to
global optimality. We use Gloptipoly (Henrion et al. 2007) a program written for Mat-
lab that employs the moment relaxation approach to solving polynomial optimization
problems. This is the dual approach to the here presented sum of squares method.

Next we want to illustrate how to reformulate a GNEP into a system of equations
and inequalities using our approach.

Example 1 We are looking at a simplified version of our model. To avoid confusion
with exponents, we will write the players’ number in the index. Let the number of
players be two with objective function

max
aν ,qν

aνqν − kνqν

s.t. g(a1, q1, a2, q2) ≥ 0,
(14)

where (k1, k2) = (1, 1
2 ) and g(a1, q1, a2, q2) = 1 − a2

1 − q2
1 − a2

2 − q2
2 . We obtain

a relaxation of order 1, i.e. the degree of σ0 and giσi does not exceed 2. Therefore the
multiplier of our constraint is just a nonnegative real number denoted my mν . We look
at the following equation.

− a1q1 + k1q1 − ρ1 = wT
1 L LT w1 + m1g(a1, q1, a2, q2) (15)

−a2q2 + k2q2 − ρ2 = wT
2 M MT w2 + m2g(a1, q1, a2, q2), (16)

where L =
⎛

⎝
L1,1 0 0
L2,1 L2,2 0
L3,1 L3,2 L3,3

⎞

⎠ , M =
⎛

⎝
M1,1 0 0
M2,1 M2,2 0
M3,1 M3,2 M3,3

⎞

⎠ and wν =
⎛

⎝
1
aν

qν

⎞

⎠ .
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We write out Eq. (15).

−q1 + a1q1 + ρ1 + L2
1,1 + 2a1L1,1L2,1 + a2

1 L2
2,1 + a2

1 L2
2,2

+2q1L1,1L3,1 + 2a1q1L2,1L3,1 + q2
1 L2

3,1 + 2a1q1L2,2L3,2

+q2
1 L2

3,2 + q2
1 L2

3,3 + m1 − a2
2m1 − a2

1m1 − q2
2 m1 − q2

1 m1 = 0

Comparing coefficients in a1, q1 and adding the other constraints gives for player one
the following equations and inequalities.

ρ1 + L2
1,1 + 2m1 − a2

2m1 − q2
2 m1 = 0

−1 + 2L1,1L3,1 = 0

2L1,1L2,1 = 0

L2
3,1 + L2

3,3 − m1 = 0

L2
2,1 + L2

2,2 − m1 = 0

1 + 2L2,1L3,1 + 2L2,2 L3,2 = 0

m1 ≥ 0

g(a1, q1, a2, q2) ≥ 0

a1q1 − q1 + ρ1 = 0

For ε = 0 and relaxation order 1, we obtain the following equilibrium

a1 = 0.5, q1 = 0.86602, a2 = 0.00002, q2 = 0.00323.

5 Computational results

We now return to the model of the New Zealand electricity spot market. First we
present a real data set, second solve the model and lastly verify the solutions. All
terms are with respect to a single time period which is a day.

The specific data for the HVDC Link in New Zealand are as follows: The power flow
capacity of both arcs is t̄ = 16.8 GWh. Given the value of the electrical resistivity/km
at 20◦C of 0.0139 �/km, the length of transmission line of 607 km and the operating
voltage of 350,000 V the result is λ = 0.0689 for t{1,2} in GWh. Listed in Table 1 are all
the coefficients for our electricity spot market model of New Zealand which are based
on the Electricity Authority NZ (2011, 2010a). The demands and the capacities for
the climate-based technologies corresponds to the average of the daily data of 2011.

We set ε = 0 and d = 2. We solve the model with the Ipopt solver in GAMS with a
residual of 10−9. The running time is 17.45 s on an Intel E3-1290 with 8 GB of RAM.
The results for bid, production and profit can be found in Table 2. We verified the
results using GloptiPoly and SeDuMi.

With a homogeneous good one would usually expect a Bertrand competition. In
contrast to this our simple model has a constant demand and so the consumer’s demand
is perfectly inelastic with respect to the price. Additionally we are capacity constrained
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Table 1 Coefficients for the New Zealand electricity spot market model based on real data

Technology κν [GWh] ην [GJ/GWh] φν [$/GJ] τν [$/GJ] oν [$/GWh] δ [GWh]

North 93.09 65.67

Coal 16.84 10, 500 4.006 0 9, 600

Diesel 0.15 11, 000 25.000 0 9, 600

Gas 33.74 7, 686.626 6.500 1.0625 5, 076

Geothermal 16.72 12, 000 1.000 0 6, 174

Hydro 20.18 3, 600 1.000 0 0

Wind 4.52 3, 600 1.000 0 12, 038

Wood waste 0.93 12, 000 2.000 0 11, 800

South 47.02 38.69

Hydro 46.54 3, 600 1.000 0 0

Wind 0.47 3, 600 1.000 0 16, 000

Total 140.12 104.46

Table 2 Solution for the New Zealand electricity spot market model

Technology Price offer
[$/GWh]

Prod. offer
[GWh]

Cleared
[GWh]

Profit
[M $]

Transport to
[GWh]

North 2.42

Coal 63,206.1 16.8 9.33 0.11

Diesel 28,233.1 0 0 0

Gas 63,206.1 28.99 14.64 0

Geothermal 35,127.3 16.72 16.72 0.28

Hydro 34,159 20.18 20.18 0.62

Wind 63,206.1 4.52 2.79 0.13

Wood waste 30,714.1 0 0 0

South 0

Hydro 31,645.5 46.54 41.51 1.16

Wind 32,260.5 0 0 0

and so price equal marginal costs is out of question. Basically we are looking at a
continuum of non obvious Cournot Equilibria where always some of the EPs do not
offer their marginal costs.

The consumption-weighted average price of the here presented equilibrium is
40,712.3 $/GWh and is of the same magnitude as the reference node Stratford
(SF D2201) with a consumption-weighted average price of 43,130.1 $/GWh.
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