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Abstract. In nonlinear voter models the transitions between two states depend in a nonlinear manner
on the frequencies of these states in the neighborhood. We investigate the role of these nonlinearities
on the global outcome of the dynamics for a homogeneous network where each node is connected to
m = 4 neighbors. The paper unfolds in two directions. We first develop a general stochastic framework
for frequency dependent processes from which we derive the macroscopic dynamics for key variables,
such as global frequencies and correlations. Explicit expressions for both the mean-field limit and the
pair approximation are obtained. We then apply these equations to determine a phase diagram in the
parameter space that distinguishes between different dynamic regimes. The pair approximation allows us
to identify three regimes for nonlinear voter models: (i) complete invasion; (ii) random coexistence; and
– most interestingly – (iii) correlated coexistence. These findings are contrasted with predictions from
the mean-field phase diagram and are confirmed by extensive computer simulations of the microscopic
dynamics.

PACS. 87.23.Cc Population dynamics and ecological pattern formation – 87.23.Ge Dynamics of social
systems

1 Introduction

In biological systems, the survival of a species depends
on the frequencies of its kin and its foes in the environ-
ment [3,29]. In some cases, the chance of survival of a cer-
tain species improves as the frequency of its kind increases,
since this might enhance the chance for reproduction or
other benefits from group interaction. This is denoted as
positive frequency dependence. In other cases a negative
frequency dependence, that is the increase of the survival
chance with decreasing frequency, is observed. This is the
case, when individuals compete for rare ressources. More-
over, negative frequency dependence is known to be im-
portant for maintaining the genetic diversity in natural
populations [24,38].

Frequency dependent dynamics are not only found in
biological systems, but also in social and economic sys-
tems [2,8,21,26,34,39,42,52]. In democracies, a simple ex-
ample is a public vote, where the winning chances of a
party increase with the number of supporters [7,12]. In
economics, e.g. the acceptance of a new products may in-
crease with the number of its users [35]. In stock markets,
on the other hand, positive and negative frequency depen-
dencies may interfere. For instance, the desire to buy a cer-
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tain stock may increase with the orders observed from oth-
ers, a phenomenon known as the herding effect, but it also
may decrease, because traders fear speculative bubbles.

In general, many biological and socio-economic pro-
cesses are governed by the frequency dependent adoption
of a certain behavior or strategy, or simply by frequency
dependent reproduction. In order to model such dynam-
ics more rigorously (but less concrete), different versions
of voter models have been investigated. The voter model
denotes a simple binary system comprised of N voters,
each of which can be in one of two states (where state
could stand for opinion, attitude, or occupation etc.),
θi = {0, 1}. Here, the transition rate w(θ|θ′) from state θ′
to state θ is assumed to be proportional to the frequency
fθ. In this paper, we extend this approach by assuming a
nonlinear voter model, where the frequency dependence
of the transition rate, w(θ|θ′) = κ(f) fθ, includes an ad-
ditional nonlinearity expressed in terms of the (frequency
dependent) prefactor κ.

Linear voter models have been discussed for a long
time in mathematics [13,20,27,28]. Recently, they gained
more attention in statistical physics [5,6,9,10,14,16,26,30,
37,44,45,47,48,50] because of some remarkable features in
their dynamics described in Section 2.2. But voter models
also found the interest of population biologists [18,22,23,
29,33,36].
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Dependent on how the frequency fθ is estimated, one
can distinguish global from local voter models. In the lat-
ter case the transition is governed only by the local fre-
quency of a certain state in a given neighborhood. In con-
trast to global (or mean-field) models, this leads to local
effects in the dynamics, which are of particular interest
in the current paper. If space is represented by a two-
dimenional lattice and each site is occupied by just one
individual, then each species occupies an amount of space
proportional to its presence in the total population. Lo-
cal effects such as the occupation of a neighborhood by
a particular species or the adoption of a given opinion in
a certain surrounding, can then be observed graphically
in terms of domain formation. This way, the invasion of
species (or opinions) in the environment displays obvious
analogies to spatial pattern formation in physical systems.

Physicists have developed different spatial models
for such processes. One recent example is the so-called
“Sznajd model” [4,7,43] which is a simple cellular au-
tomata (CA) approach to consensus formation (i.e. com-
plete invasion) among two opposite opinions (described by
spin up or down). In [4], we have shown that the Sznajd
model can be completely reformulated in terms of a linear
voter model, where the transition rates towards a given
opinion are directly proportional to the frequency of the
respective opinion of the second-nearest neighbors and in-
dependent of the nearest neighbors.

Other spatial models are proposed for game-theoretical
interactions among nearest neighbors [32,49]. Here, the
dynamics are driven by local payoff differences of adjacent
players, which basically determine the nonlinearity κ(f).
Dependent on these payoff differences, we could derive a
phase diagram with five regimes, each characterized by a
distinct spatio-temporal dynamic [41]. The corresponding
spatial patterns range from complete invasion to coexis-
tence with large domains, coexistence with small clusters,
and spatial chaos.

In this paper, we are interested in the local effects of
frequency dependent dynamics in a homogeneous network,
where each site has m = 4 nearest neighbors. In this case,
the nonlinearity κ(f) can be simply expressed by two con-
stants, α1, α2. This is a special form of a nonlinear voter
model, which for α1 < α2 < 0.5 also includes majority
voting and for α1 > α2 > 0.5 minority voting. We inves-
tigate the dynamics of this model both analytically and
by means of computer simulations on a two-dimensional
stochastic CA (which is a special form of a homogeneous
network with m = 4). The latter one was already studied
in [29], in particular there was a phase diagram obtained
via numerical simulations. In our paper, we go beyond
that approach by deriving the phase diagram from an an-
alytical approximation, which is then compared with our
own simulations.

In Sections 2, 3.1 we introduce the microscopic model
of frequency dependent invasion and demonstrate in Sec-
tions 4.1, 4.5 the role of α1, α2 by means of characteris-
tic pattern formation. Based on the microscopic descrip-
tion, in Section 3.2 we derive the dynamics for the global
frequency x(t), which is a macroscopic key variable. An

analytical investigation of these dynamics is made possi-
ble by pair approximation, Section 3.3, which results in
a closed-form description for x(t) and the spatial corre-
lations c1|1(t). In Section 5.1, we verify the performance
of our analytical approximations by comparing them with
averaged CA computer simulations. The outcome of the
comparison allows us to derive in Section 5.2 a phase
diagram in the (α1, α2) parameter space, to distinguish
between two possible dynamic scenarious: (i) complete
invasion of one of the species, with formation of domains
at intermediate time scales; and (ii) random spatial coexis-
tence of two species. A third dynamic regime, the nonsta-
tionary coexistence of the two species on long time scales
together with the formation of spatial domains, can be
found in a small, but extended region that separates the
two dynamic regimes mentioned above. We further discuss
in Section 6 that the usual distinctions for the dynam-
ics, such as positive or negative frequency dependence,
do not necessarily coincide with the different dynamic
regimes. Instead, for positive frequency dependence, all
of the three different dynamic regimes (and the related
spatio-temporal patterns) are observed. In the Appendix,
calculation details for the pair approximation are given.

2 Formal approach to voter models

2.1 Defining the system

We consider a model of two species labeled by the index
σ = {0, 1}. The total number of individuals is constant,
so the global frequency xσ (or the share of each species in
the total population) is defined as:

N =
∑

σ

Nσ = N0 + N1 = const.

xσ =
Nσ

N
; x ≡ x1 = 1 − x0. (1)

In the following, the variable x shall refer to the global
frequency of species 1.

The individuals of the two species are identified by the
index i ∈ N and can be seen as nodes of a network. A
discrete value θi ∈ {0, 1} indicates whether the node is
occupied by species 0 or 1. The network topology (speci-
fied later) then defines the nearest neighbors ij of node i.
In this paper, we assume homogeneous networks where
all nodes have the same number m of nearest neighbors.
For further use, we define the local occupation θi of the
nearest neighborhood (without node i) as:

θi = {θi1 , θi2 , ..., θim}. (2)

A specific realization of this distribution shall be denoted
as σ, while the function η

i
(σ) assigns σ to a particular

neighborhood θi:

σ = {σ1, σ2, ..., σm}
η

i
(σ) = {θi1 =σ1, θi2 =σ2, ..., θim =σm}. (3)
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For later use, it is convenient to define these distributions
also for the nearest neighborhood including node i:

θ0
i = {θi, θi1 , θi2 , ..., θim} = θi ∪ {θi}

σ0 = {σ, σ1, σ2, ..., σm}
η0

i
(σ0) = {θi=σ, θi1 =σ1, θi2 =σ2, ..., θim =σm}. (4)

For m = 4, σ0 denotes a binary string, e.g. {01001}, where
the first value σ refers to the center node and the other
values σj ∈ {0, 1} indicate the particular values of the
nearest neighbors. The assignment of these values to a
particular neighborhood θ0

i of node i is then described by
η0

i
(σ0).
In the voter model described in the following section,

the dynamics of θi is governed by the occupation distribu-
tion of the local neighborhood. that surrounds each node i.
Using a stochastic approach, the probability pi(θi, t) to
find node i in state θi therefore depends in general on
the local occupation distribution θi of the neigborhood
(Eq. (2)), in the following manner:

pi(θi, t) =
∑
θ′

i

p(θi, θ
′
i, t). (5)

Hence, pi(θi, t) is defined as the marginal distribution of
p(θi, θi, t), where θ′i in equation (5) indicates the summa-
tion over all possible realizations of the local occupation
distribution θi, namely 2m different possibilities.

For the time dependent change of pi(θi, t) we assume
the following master equation:

d

dt
pi(θi, t) =

∑
θ′

i

[
w(θi|(1−θi), θ′i) p(1−θi, θ

′
i, t)

−w(1−θi|θi, θ
′
i) p(θi, θ

′
i, t)
]

(6)

where w(θi|(1−θi), θi) denotes the transition rate for state
(1−θi) of node i into state θi in the next time step un-
der the condition that the local occupation distribution is
given by θi. The transition rate for the reverse process is
w(1−θi|θi, θi). Again, the summation is over all possible
realizations of θi, denoted by θ′i. It remains to specify the
transition rates, which is done in the following section.

2.2 Linear and nonlinear voter models

Our dynamic assumptions for the change of an individ-
ual state θi are taken from the so-called voter model (see
also Sect. 1), abbreviated as VM in the following. The dy-
namics is given by the following update rule: a voter, i.e.
a node i ∈ N of the network, is selected at random and
adopts the state of a randomly chosen nearest neighbor j.
After N such update events, time is increased by 1.

The probability to choose a voter with a given state σ
from the neighborhood ij of voter i is directly proportional
to the relative number (or frequency) of voters with that

particular state in that neigborhood. Let us define the
local frequencies in the neighborhood as:

fσ
i =

1
m

m∑
j=1

δσθij
; f

(1−σ)
i = 1 − fσ

i (7)

where δxy is the Kronecker delta, which is 1 only for
x = y and zero otherwise. Then the transition rate of
voter i to change its state θi does not explicitly depend
on the local distribution θi, but only on the occupation
frequency fσ

i , i.e. on the number of nodes occupied by ei-
ther 0 or 1 in the neighborhood of size m. Hence, the VM
describes a frequency dependent dynamics: the larger the
frequency of a given state in the neighborhood, the larger
the probability of a voter to switch to that particular state
if it is not already in that state. I.e. the transition rate
w(1−θi|θi =σ, fσ

i ), to change state θ increases only with
the local frequency of opposite states, f1−σ

i , in the neigh-
borhood:

w(1−θi|θi =σ, fσ
i ) = γf1−σ

i . (8)

The prefactor γ determines the time scale of the transi-
tions and is set to γ = 1. Equation (8), describes the dy-
namics of the linear VM because, according to the above
update rule, the rate to change the state is directly pro-
portional to the frequency.

The linear (or standard) VM has two remarkable fea-
tures. First, it is known that, starting from a random dis-
tribution of states, the system always reaches a completely
ordered state, which is often referred to as consensus in
a social context, or complete invasion in a population bi-
ology context. As there are individuals with two differ-
ent states, the complete ordered state can be either all 0
or all 1. Which of these two possible attractors of the
dynamics is eventually reached, depends (in addition to
stochastic fluctuations) on the initial global frequency, i.e.
x(t = 0). It has been shown that, for an ensemble aver-
age, the frequency of the outcome of a particular consen-
sus state 1 is equal to the initial frequency x(t = 0) of
state 1. This second remarkable feature is often denoted
as conservation of magnetization, where the magnetiza-
tion is defined as M(t) = x1(t)−x0(t) = 2x(t)−1. Hence,
consensus means |M | = 1. Thus we have the interesting
situation that, for a single realization, the dynamics of
the linear VM is a fluctuation driven process that, for fi-
nite system sizes, always reaches consensus, whereas on
average the outcome of the consensus state is distributed
as x(0).

The (only) interesting question for the linear VM is
then how long it may take the system to reach the con-
sensus state, dependent on the system size N and the
network topology. The time to to reach consensus, Tκ, is
obtained through an average over many realizations. As
the investigation of Tκ is not the focus of our paper (see
[19,25,48]), we just mention some known results for the
linear VM: one finds for one-dimensional regular lattices
(d = 1) Tκ ∝ N2 and for two-dimensional regular lattices
(d = 2) Tκ ∝ N log N . For d > 2 the system does not al-
ways reach an ordered state in the thermodynamic limit.
In finite systems, however, one finds Tκ ∼ N .
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While the linear VM has some nice theoretical proper-
ties, it also has several conceptual disadvantages when ap-
plying the model to a social or population biological con-
text. First of all, the “voters” do not vote in this model,
they are subject to a random (but frequency based) as-
signment of an “opinion”, without any choice. Secondly,
the state of the voter under consideration does not play
any role in the dynamics. This can be interpreted in a
social context as a (blind) herding dynamics, where the
individuals just adopt the opinion of the majority. In a
population model of two competing species, it means that
individuals from a minority species may be replaced by
those from a majority species without any resistance.

In order to give voter i at least some weight compared
to the influence of its neighbors ij, one can simply count
its state θi into the local frequency fσ

i , i.e. instead of equa-
tions (2), (3) we may use equation (4). Using for voter i the
notation θi ≡ θi0 (i.e. j=0), we can still use equation (8)
for the transition rates, with the noticeable difference that
the local frequency fσ

i of equation (7) is now calculated
from a summation that starts with j = 0. The explicit
consideration of θi thus has the effect of adding some in-
ertia to the dynamics. In fact, extending the summation
to j = 0 multiplies the transition rate, equation (8), by a
factor m/(m+1), where m is the number of nearest neigh-
bors. I.e., for m = 4 a local configuration σ0 = {01001}
would lead to a transition rate w(1|0) = 0.5 without the
additional inertia, but w(1|0) = 0.4 by counting in the
state of voter i. I.e., taking into account the state of voter i
considerably reduces the transition rate towards the op-
posite state.

We find it useful for conceptual reasons to include some
resistance into the model and therefore will use from now
on the description which takes the current state of voter i
into account. This also has the nice advantage that for
the case m = 4, which describes e.g. square lattices, we
avoid stalemate situations, w(1 − θ|θ) = 0.5. However,
we note that the addition of the constant resistance does
not change the dynamics of the model, as it only adjusts
the time scale towards a new factor γ′ = (m/m + 1) γ.
So, keeping m constant and equal for all voters, we can
rescale γ′ = 1.

We note that there are of course other ways to give
some weight to the opinion of voter i. In [45,46], we have
discussed a modified VM, where voters additionally have
an inertia νi ∈ [0, 1] which leads to a decrease of the tran-
sition rate to change their state:

wR(1 − θi|θi) = (1 − νi) w(1 − θi|θi) (9)

here w(1−θ|θ) is given by the linear VM, equation (8). The
individual inertia νi is evolving over time by assuming that
it increases with the persistence time τi the voter has been
keeping its current state. While this inertia may slow down
the microscopic dynamics of the VM and thus may in-
crease the time to reach consensus, Tκ, we found the coun-
terintuitive result that under certain circumstances a de-
celerated microdynamics may even accelerate the macro-
dynamics of the VM, thus decreasing Tκ compared to the
linear VM.

10 0.4 0.6 0.80.2

κ

minority voting

(majority voting)
linear VM

against the trend

(f) f 1−

f 1−

σ

σ

Fig. 1. Different nonlinear frequency dependencies for equa-
tion (10). Note the piecewise linear functions, as the number
of neighbors m and thus the frequencies f have mostly discrete
values.

The addition of a nonlinear inertia to the VM, equa-
tion (9), is a special case for turning the linear VM into
a nonlinear one (whereas the fixed resistance would not
change the linear VM). In general, nonlinear VM can be
expressed as

w(1−θi|θi =σ, fσ
i ) = κ(f) f1−σ

i (10)

where κ(f) is a nonlinear, frequency dependent function
describing how voter i reacts on the occurrence of op-
posite “opinions” in its immediate neighborhood. Fig-
ure 1 shows some possible examples which have their spe-
cific meaning in a social context. Whereas any function
κ(f) = const. > 0 describes the linear VM, i.e. a major-
ity voting or herding effect, a decreasing κ(f) means mi-
nority voting, i.e. the voter tends to adopt the opinion of
the minority. Nonmonotonous κ(f) can account for voting
against the trend, i.e. the voter adopts an opinion as long
as this is not already the ruling opinion – a phenomenon
which is important e.g. in modeling the adoption of fash-
ion. An interpretation of these functions in a population
biology context will be given in Section 4.1

In conclusion, introducing the nonlinear response func-
tion κ(f) will allow us to change the global dynamics of
the linear VM. Instead of reaching always consensus, i.e.
the exclusive domination of one “opinion” or species, we
may be able to observe some more interesting macroscopic
dynamics, for example the coexistence of both states. It
is one of the aims of this paper to find out, under which
specifications of κ(f) we may in fact obtain a dynamic
transition that leads to a a structured, but not fully or-
dered state instead of a completely ordered state.

3 Stochastic dynamics of the voter model

3.1 Microscopic dynamics

In order to give a complete picture of the dynamics of the
nonlinear VM, we have to derive the stochastic dynamics
for the whole system of N nodes, whereas equation (6)
gives us “only” the local dynamics in the vicinity of a



F. Schweitzer and L. Behera: Nonlinear voter models: the transition from invasion to coexistence 305

particular voter i. For N voters, the distribution of states
is given by

Θ = {θ1, θ2, ..., θN}. (11)
Note that the state space Ω of all possible configurations
is of the order 2N . In a stochastic model, we consider the
probability p(Θ, t) of finding a particular configuration
at time t. If t is measured in discrete time steps (gen-
erations) and the network is synchronously updated, the
time-dependent change of p(Θ, t) is described as follows:

p(Θ, t + Δt) =
∑
Θ′

p(Θ, t + Δt|Θ′, t)p(Θ′, t) (12)

where Θ′ denotes all possible realizations of Θ and p(Θ, t+
Δt|Θ′, t) denote the conditional probabilities to go from
state Θ′ at time t to Θ at time t + Δt. Equation (12) is
based on the Markov assumption that the dynamics at
time t + Δt may depend only on states at time t. With
the assumption of small time steps Δt and the definition
of the transition rates

w(Θ|Θ′, t) = lim
Δt→0

p(Θ, t + Δt|Θ′, t)
Δt

(13)

equation (12) can be transferred into a time-continuous
master equation as follows:

d

dt
p(Θ, t) =

∑
Θ′

[
w(Θ|Θ′) p(Θ′, t) − w(Θ′|Θ) p(Θ, t)

]
.

(14)
In equation (14), the transition rates depend on the whole
distribution Θ. However, in the frequency dependent dy-
namics introduced in Section 2.1, only the occupation dis-
tribution of the local neighborhood of node i needs to be
taken into account. Therefore, it is appropriate to think
about some reduced description in terms of lower order
distributions, such as the local occupation θi, equation (2).
In principle, there are two different ways to solve this
task. The first one, the top-down approach starts from
the global distribution Θ in the whole state space and then
uses different approaches to factorize p(Θ, t). However, a
Markov analysis [31] can only be carried out exactly for
small N , because of the exponential N -dependence of the
state space. Thus, for larger N suitable approximations,
partly derived from theoretical concepts in computer sci-
ence need to be taken into account.

In this paper, we follow a second way which is a bottom-
up approach based on the local description already given
in Section 2.1. I.e. starting from node i and its local neigh-
borhood, we want to derive the dynamics for some ap-
propriate macroscopic variables describing the nonlinear
VM. Instead of one equation for p(Θ, t) in the top-down
approach, in the bottom-up approach we now have a set of
N stochastic equations for pi(θi, t), equation (14), which
are locally coupled because of overlapping neighborhoods,
θi. In order to solve the dynamics, we need to discuss suit-
able approximations for these local correlations. As we are
interested in the macroscopic dynamics, these approxima-
tions will be done at the macroscopic level. In order to
do so, we first derive a macroscopic equation from the
stochastic equation (6), which is carried out in the follow-
ing section.

3.2 Derivation of the macroscopic dynamics

The key variable of the macroscopic dynamics is the global
frequency xσ(t), defined in equation (1). In order to com-
pare the averaged computer simulations with results from
analytical approximations later in Section 5, we first de-
rive an equation for the expectation value 〈xσ〉. We do this
without an explicit determination of the transition rates
and wish to emphasize that the formal approach presented
in Section 3 remains valid not just for the voter model, but
also for other dynamic processes which depend on neigh-
bor interactions (not only nearest neighbors) in various
network topologies.

For the derivation of the expectation value we start
from the stochastic description given in Section 3.1, where
p(Θ, t) denoted the probability to find a particular distri-
bution Θ, equation (11), at time t and Θ′ denoted all
possible realizations of Θ equation (14). On one hand:

〈xσ(t)〉 =
1
N

∑
Θ′

(
N∑

i=1

δσθi

)
p(Θ′, t)

=
1
N

∑
Θ′

Nσ p(Θ′, t) =
〈Nσ(t)〉

N
(15)

and on the other hand:

〈xσ(t)〉 =
1
N

N∑
i=1

∑
Θ′

δσθi p(Θ′, t)

=
1
N

N∑
i=1

pi(θi =σ, t). (16)

By differentiating equation (16) with respect to time and
inserting the master equation (6), we find the following
macroscopic dynamics for the network:

d

dt
〈xσ(t)〉 =

1
N

N∑
i=1

∑
θ′

i

[
w(σ|(1−σ), θ′i)

×p(θi =(1−σ), θ′i, t)

−w(1−σ|σ, θ′i) p(θi =σ, θ′i, t)
]
. (17)

For the further treatment of equation (17), we consider a
specific distribution of states on m+1 nodes defined by σ0.
This distribution is assigned to a particular neighborhood
of node i by η0

i
(σ0) (Eq. (4)). Since we are interested in

how many times a special realization of a specific distribu-
tion σ0 is present in the population, we define an indicator
function

χ(η0
i
) ≡ χσ0(η0

i
(σ0)) = δθiσ

0 (18)

that is 1 if the neighborhood of node i has the distribution
σ0, and 0 otherwise. Therefore, we write the frequency of
the n-tuplet σ0 in the population as:

xσ0(Θ) :=
1
N

N∑
i=1

χ(η0
i
). (19)
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The expectation value is〈
xσ0(t)

〉
=
∑
Θ′

xσ0(Θ′) p(Θ′, t). (20)

Inserting equation (19) into equation (20), we verify that

〈
xσ0(t)

〉
=

1
N

N∑
i=1

∑
Θ′

χ(η0
i
) p(Θ′, t)

=
1
N

N∑
i=1

p(η0
i
, t) (21)

because of the definition of the marginal distribution. Us-
ing the identity p(η0

i
, t) = p(σ, η

i
, t), we may rewrite equa-

tion (17) by means of equation (21) to derive the macro-
scopic dynamics in the final form:

d

dt
〈xσ(t)〉 =

∑
σ′

[
w(σ|(1−σ), σ′)

〈
x(1−σ),σ′(t)

〉

− w(1−σ|σ, σ′)
〈
xσ,σ′(t)

〉 ]
(22)

σ′ denotes the 2m possible configurations of a specific oc-
cupation distribution σ, equation (3). In the following, we
use 〈x〉 ≡ 〈x1〉 = 1 − 〈x0〉. Then, the dynamic for 〈x〉
reads:

d

dt
〈x(t)〉 =

∑
σ′

[
w(1|0, σ′)

〈
x0,σ′(t)

〉

− w(0|1, σ′)
〈
x1,σ′(t)

〉 ]
. (23)

The solution of equation (23) would require the computa-
tion of the averaged global frequencies

〈
x1,σ

〉
and

〈
x0,σ

〉
for all possible occupation patterns σ, which would be
a tremendous effort. Therefore, in the next section we
will introduce two analytical approximations to solve this
problem. In Section 5.1 we will further show by means of
computer simulations that these approximations are able
to describe the averaged dynamics of the nonlinear VM.

3.3 Mean-field limit and pair approximation

As a first approximation of equation (23), we investigate
the mean-field limit. Here the state of each node does not
depend on the occupation distribution of its neighbors,
but on m randomly chosen nodes. In this case the occu-
pation distribution factorizes:

〈
xσ0

〉
= 〈xσ〉

m∏
j=1

〈
xσj

〉
. (24)

For the macroscopic dynamics, equation (23), we find:

d

dt
〈x(t)〉 =

∑
σ′

[
w(1|0, σ′) (1 − 〈x〉)

m∏
j=1

〈
xσj

〉

− w(0|1, σ′) 〈x〉
m∏

j=1

〈
xσj

〉 ]
. (25)

For the calculation of the 〈x〉σj
we have to look at each

possible occupation pattern σ for a neighborhood m. This
will be done in detail in Section 4.1. Before, we discuss
another analytical approximation which solves the macro-
scopic equation (23) with respect to correlations. This is
the so-called pair approximation, where one is not inter-
ested in the occupation distribution of a whole neighbor-
hood σ0, equation (4) but only in pairs of nearest neighbor
nodes, σ, σ′ with σ′ ∈ {0, 1}. That means the local neigh-
borhood of nearest neighbors is decomposed into pairs, i.e.
blocks of size 2 that are called doublets.

Similar to equation (19), the global frequency of dou-
blets is defined as:

xσ,σ′ =
1
N

N∑
i=1

m∑
j=1

1
m

χ(θi = σ, θij = σ′). (26)

The expected value of the doublet frequency is then given
by 〈xσ,σ′ 〉 in the same way as in equation (20). We now
define the correlation term as:

cσ|σ′ :=
〈xσ,σ′〉
〈xσ′〉 (27)

neglecting higher order correlations. Thus cσ|σ′ can be
seen as an approximation of the conditional probability
that a randomly chosen nearest neighbor of a node in state
σ′ is in state σ. Using the above definitions, we have the
following relations:

〈xσ′〉 cσ|σ′ = 〈xσ〉 cσ′|σ;
∑

σ′∈{0,1}
cσ′|σ = 1. (28)

For the case of two species σ ∈ {0, 1}, c1|1 and c0|0 are the
inter-species correlations, while c1|0 and c0|1 denote the
intra-species correlations. Using 〈x〉 ≡ 〈x1〉, these corre-
lations can be expressed in terms of only c1|1 and 〈x〉 as
follows:

c0|1 =1 − c1|1

c1|0 =
〈x〉 (1 − c1|1)

1 − 〈x〉
c0|0 =

1 − 2 〈x〉 + 〈x〉 c1|1
1 − 〈x〉 . (29)

Now, the objective is to express the global frequency of a
specific occupation pattern

〈
xσ0

〉
, equation (20), in terms

of the correlation terms cσ|σ′ . In pair approximation, it is
assumed that the states θij are correlated only through
the state θi and uncorrelated otherwise. Then the global
frequency terms in equation (22) can be approximated as
follows: 〈

xσ0

〉
= 〈xσ〉

m∏
j=1

cσj |σ. (30)

For the macroscopic dynamics, equation (23), we find in
pair approximation:

d

dt
〈x(t)〉 =

∑
σ′

[
w(1|0, σ′) (1 − 〈x〉)

m∏
j=1

cσj |σ

− w(0|1, σ′) 〈x〉
m∏

j=1

cσj |(1−σ)

]
. (31)
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Note that the cσj |σ can be expressed in terms of c1|1 by
means of equation (29). Thus, equation (31) now depends
on only two variables, 〈x〉 and c1|1. In order to derive a
closed form description, we need an additional equation
for ċ1|1. That can be obtained from equation (27):

dc1|1
dt

= −c1|1
〈x〉

d

dt
〈x〉 +

1
〈x〉

d

dt
〈x1,1〉 . (32)

Equation (32) also requires the time derivative of the
global doublet frequency 〈x1,1〉. Even in their lengthy
form, the three equations for 〈x〉, c1|1, 〈x1,1〉 can easily
be solved numerically. This gives the approach some com-
putational advantage compared to averaging over a num-
ber of microscopic computer simulations for all possible
parameter sets.

Although the approach derived so far is quite general
in that it can be applied to different network topologies
and neighborhood sizes, specific expressions for these three
equations of course depend on these. Therefore, in the
Appendix, these three equations are explicitly derived for
a 2d regular lattice with neighborhood m = 4 using the
specific transition rates introduced in the next section. In
Section 5.1, we further show that the pair approximation
yields some characteristic quantities such as 〈x(t)〉 for the
2d regular lattice in very good agreement with the results
of computer simulations.

4 Invasion versus coexistence

4.1 Nonlinear response functions

So far, we have developed a stochastic framework for (but
not restricted to) nonlinear voter models in a general way,
without specifying two of the most important features,
namely (i) the network topology which defines the neigh-
borhood, and (ii) the nonlinearity κ(f) which defines the
response to the local frequencies of the two different states.
For (i), let us choose a regular network with m = 4, i.e.
each voter has 4 different neighbors. We note explicitly
that our modeling framework and the general results de-
rived hold for all homogeneous networks, but for the vi-
sualization of the results it will be most convenient to
choose a regular square lattice, where the neighbors ap-
pear next to a node. This allows us to observe the forma-
tion of macroscopic ordered states in a more convenient
way, without restricting the general case. Eventually, to il-
lustrate the dynamics let us now assume a population biol-
ogy context, where each node is occupied by an individual
of either species 0 or 1. The spreading of one particular
state is then interpreted as the invasion of that respective
species and the local disappearance of the other one, while
the emergence of a complete ordered state is seen as the
complete invasion or domination of one species together
with the extinction of the other one.

Keeping in mind that we also consider the state of
node i itself, we can write the possible transition rates,
equation (10), for the neighborhood of n = m+1 = 5 and

θi = σ in the following explicit way (cf. also [29]):

fσ
i f

(1−σ)
i w(1−θi|θi =σ, fσ

i )
1 0 α0

4/5 1/5 α1

3/5 2/5 α2

2/5 3/5 α3 = 1−α2

1/5 4/5 α4 = 1−α1

0 5/5 α5 = 1−α0

(33)

Equation (33) means that a particular node i currently
in state θi = σ, or occupied by an individual of species
σ where σ is either 0 or 1, will be occupied by an in-
dividual of species (1−σ) with a rate w(1−θi|θi =σ, fσ

i )
that changes with the local frequency fσ

i in a nonlinear
manner. The different values of αn denote the products
κ(f)f1−σ

i for the specific values of f given. I.e., the αn

define the piecewise linear functions shown in Figure 1.
The general case of six independent transition rates

αn (n = 0, ..., 5) in equation (33) can be reduced to three
transition rates α0, α1, α2 by assuming a symmetry of
the invasion dynamics of the two species, i.e. α2 +α3 = 1,
α1+α4 = 1 and α0+α5 = 1. Further, assuming a pure fre-
quency dependent process, we have to consequently choose
α0 = 0, because in a complete homogeneous neighbor-
hood, there is no incentive to change to another state
(there are no other species around to invade).

We recall that if the transition rates α1, α2 are directly
proportional to f (1−σ), i.e. α1 = 0.2 and α2 = 0.4, this
recovers the linear VM, equation (8). (Note that without
the resistance of node i discussed in Section 2.2 the linear
voter point would read as α1 = 0.25 and α2 = 0.5 instead.)
Dependent on the relation of the two essential parameters
α1, α2, we also find different versions of nonlinear VM,
which have their specific meaning in a population biology
context:

(pf) 0 ≤ α1 ≤ α2 ≤ (1 − α2) ≤ (1 − α1) ≤ 1

(nf) 1 ≥ α1 ≥ α2 ≥ (1 − α2) ≥ (1 − α1) ≥ 0

(pa) 0 ≤ α1 ≤ α2, α2 ≥ (1 − α2),

(1 − α2) ≤ (1 − α1) ≤ 1

(na) 1 ≥ α1 ≥ α2, α2 ≤ (1 − α2),

(1 − α2) ≥ (1 − α1) ≥ 0. (34)

Note, that the parameters α1, . . . , α4 can be ordered
in 24 different ways. These reduce to 8 inequalities un-
der the conditions α3 = 1 − α2 and α4 = 1 − α1. In
equation (34), (pf) means (pure) positive frequency depen-
dent invasion, where the transition rate increases with an
increasing number of individuals of the opposite species
(1−σ) in the neighborhood, and (nf) means (pure) nega-
tive frequency dependent invasion because the transition
rate decreases. The two other cases describe positive (pa)
and negative (na) allee effects [29]. These regions are de-
scribed by 3 inequalities each, all of which show the same
relative change in parameter values, if going from α1 to
α4. Similar to the drawings in Figure 1 this can be roughly
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Fig. 2. Four different parameter regions for frequency de-
pendent invasion, according to equation (34). The linear voter
point is indicated by •.

visualized as an up-down-up change in region (pa) and a
down-up-down change in region (na). The different param-
eter regions are shown in Figure 2. On a first glimpse, one
would expect that the dynamics as well as the evolution
of global variables may be different in these regions. Thus,
one of the aims of this paper is to investigate whether or
to what extent this would be the case.

4.2 Mean-field analysis

In order to find out about the influence of the nonlinear
response function κ(f), which is specified here in terms of
α1, α2, let us start with the mean-field approach that lead
to equation (25). As we outlined in Section 3.3, the calcu-
lation of the

〈
xσj

〉
in equation (25) requires to look at each

possible occupation pattern σ for a neighborhood m, for
instance, σ = {0010}. The mean-field approach assumes
that the occurence of each 1 or 0 in the pattern can be
described by the global frequencies x and (1−x), respec-
tively (for simplicity, the abbreviation x ≡ 〈x〉 will be used
in the following). For the example of string σ = {0010}
we find

∏〈
xσj

〉
= x(1−x)3. The same result yields for

σ = {0100} and for any other string that contains the
same number of 1 and 0, i.e. there are exactly

(
4
1

)
differ-

ent possibilities. For strings with two nodes of each species,(
4
2

)
times the contribution

∏〈
xσj

〉
= x2(1−x)2 results,

etc. Inserting Eq. (33) for the transition rates, we find with
α0 = 0 the equation for the mean-field dynamics:

dx

dt
= (1 − x)

[
4α1x(1 − x)3 + 6α2x

2(1 − x)2

+ 4(1 − α2)x3(1 − x) + (1 − α1)x4
]

− x
[
(1 − α1)(1 − x)4 + 4(1 − α1)x(1 − x)3

+ 6α2x
2(1 − x)2 + 4α1x

3(1 − x)
]
. (35)
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Fig. 3. Phase diagram of the invasion dynamics in the mean-
field case. For the different areas see text. The functions β1 = 0
and β2 = 0 are given by equation (36). The areas in lighter gray
indicate imaginary solutions of x(4,5), equation (36) while the
areas in darker gray (color: yellow) indicate solutions of x(4,5)

outside the {0, 1} interval. The linear voter point is indicated
by •. Note that the physically relevant solutions x1,2,3 are the
same in the lighther gray and darker gray (color: yellow) areas,
however their stability is different in (a, b) and (d, e).

The fixed points of the mean-field dynamics can be calcu-
lated from equation (35) using ẋ = 0. We find:

x(1) = 0; x(2) = 1; x(3) = 0.5

x(4,5) = 0.5 ±
√

β1/4β2

β1 ≡ α2 + 1.5α1−0.7; β2 ≡ α2−0.5α1−0.3. (36)

The first three stationary solutions denote either a com-
plete invasion of one species or an equal share of both
of them. “Nontrivial” solutions, i.e. a coexistence of both
species with different shares of the total population, can
only result from x(4,5), provided that the solutions are
(i) real and (ii) in the interval {0, 1}. The first require-
ment means that the two functions β1, β2 are either both
positive or both negative. The second requirement addi-
tionally results in α1 ≤ 0.2 if α2 ≥ 0.4 and α1 ≥ 0.2 if
α2 ≤ 0.4. This leads to the phase diagram of the mean-
field case shown in Figure 3.

In order to verify the stability of the solutions, we have
further done a perturbation analysis (see also Sect. 4.4).
The results can be summarized as follows:

– in the regions a and b of the mean-field phase diagram,
Figure 3, xstat = 0 and xstat = 1 are the only stable
fixed points of the dynamics, while x = 0.5 is an un-
stable fixed point (cf. also Fig. 4 top). Species 1 with
x(t=0) < 0.5 will most likely become extinct, while
it will remain as the only survivor for x(t=0) > 0.5.
Thus, the region (a, b) can be characterized as the re-
gion of invasion;

– in region c, the mean-field limit predicts the three sta-
ble fixed points 0, 1 and 0.5. The attractor basin for
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Fig. 4. Bifurcation diagram of the stationary solutions depen-
dent on α1 and α2. (top) α1 = 0.1, (bottom) α2 = 0.1. The
solid lines refer to stable solutions, the dashed lines to unsta-
ble ones. The notations a–f refer to the respective areas in the
phase diagram, Figure 3.

0.5 is the largest as Figure 4 (top) indicates. The sepa-
ratices are given by the unstable solutions x(4,5), equa-
tion (36). In this parameter region, the mean-field limit
predicts either coexistence of both species with equal
shares, or invasion of one species, dependent on the
initial condition x(t=0);

– in the regions d and e, only one stable fixed point
xstat = 0.5 can be found, while the solutions 0 and 1
are unstable (cf. also Fig. 4 bottom). Thus, the mean-
field approach predicts the coexistence of both species
with equal share.

– finally, in region f the solutions 0, 1 and 0.5 are un-
stable fixed points , but the two remaining solutions
x(4,5), equation (36) are stable fixed points (cf. Fig. 4
bottom). Thus, this region is the most interesting one,
since it seems to enable “nontrivial” solutions, i.e. an
asymmetric coexistence of both species with different
shares. We note again, that this is a prediction of the
mean-field analysis. At the intersection of regions f
and a, these two solutions approach 0 and 1, while at
the intersection of regions f and e they both converge
to 0.5.

We will compare these mean-field predictions both with
computer simulations and analytical results from the pair
approximations later in this paper. Before, in Sections 4.3,
4.4 we would like to point to some interesting (α1, α2)
combinations in this phase diagram where the mean-field
analysis does not give a clear picture of the dynamics.

4.3 Deterministic limit

The first set of interesting points are (α1, α2) combina-
tions of values 0 and 1, such as (α1, α2) = (0, 0) etc.
These cases are special in the sense that they describe
the deterministic limit of the nonlinear voter dynamics.
Whereas for 0 < αn < 1 always a finite probability ex-
ist to change to the opposite state, for (0, 0) the state of
node i never changes as long as at least half of the nearest
neighbor nodes are occupied by the same species. On the
other hand, it will always change if more then half of the
neighboring nodes are occupied by the other species. This
refers to a deterministic positive frequency invasion pro-
cess. Similarly, a deterministic negative frequency invasion
process is described by (1, 1).

The deterministic dynamics, as we know from various
other examples, may lead to a completely different out-
come as the stochastic counterpart. In order to verify that
we have conducted computer simulations using a cellu-
lar automaton (CA), i.e., a two-dimensional regular lat-
tice with periodic boundary conditions and synchronous
update of the nodes. The latter one can be argued, but
we verified that there are no changes in the results of
the computer simulations if the sequential update is used.
The time scale for the synchronous update is defined by
the number of simulation steps. If not stated otherwise,
the initial configuration is taken to be a random distribu-
tion (within reasonable limits) of both species, i.e. initially
each node is randomly assigned one of the possible states,
{0, 1}. Thus, the initial global frequency is x(t=0) = 0.5.
Figure 5 shows snapshots of computer simulations of the
deterministic dynamics taken in the (quasi-)stationary dy-
namic regime.

If we compare the snapshots of the deterministic voter
dynamics with the mean-field prediction, the following ob-
servations can be made:

1. a spatial coexistence of both species is observed for
the (α1, α2) values (0, 0), Figure 5a, (1, 0), Figure 5d,
(1, 1), Figure 5b, where the global frequency in the
stationary state is xstat = 0.5. This contradicts with
the mean-field prediction for (0, 0), which is part of
region (a) and thus should display complete invasion;

2. a complete invasion of one species is observed for
(α1, α2) = (0, 1), Figure 5a. This would agree with
the mean-field prediction of either coexistence or inva-
sion. A closer look at the bifurcation diagram, Figure 4
(top), however tells us that for the given intial condi-
tion x(t = 0) = 0.5 the stationary outcome should be
coexistence, whereas the deterministic limit shows al-
ways invasion as was verified by numerous computer
simulations with varying initial conditions;
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Fig. 5. Spatial snapshots of a deterministic frequency depen-
dent invasion process for different combinations of (α1, α2).
The pictures are taken after t = 102 time steps, except for (a),
where t = 104. Lattice size: 80 × 80. In all pictures black dots
refer to species 1.

3. for the deterministic frequency dependent processes
(0, 0), (1, 0) the spatial pattern becomes stationary af-
ter a short time. For the negative frequency depen-
dence (1, 1) the pattern flips between two different con-
figurations at every time step. So, despite a constant
global frequency xstat = 0.5 in the latter case, local
reconfigurations prevent the pattern from reaching a
completely stationary state, but it may be regarded as
(quasi-)stationary, i.e. the macroscopic observables do
not change but microscopic changes still occur;

4. in both – positive and negative – deterministic fre-
quency dependence cases, individuals of the same
species tend to aggregate in space, albeit in different
local patterns. For the positive frequency dependence,
we see the occurence of small clusters, Figure 5c, or
even complete invasion, Figure 5a, based on the local
feedback within the same species. For the negative fre-
quency dependence however we observe the formation
of a meander-like structure that is also known from
physico-chemical structure formation [40]. It results
from the antagonistic effort of each species to avoid
individuals of the same kind, when being surrounded
by a majority of individuals of the opposite species.

In conclusion, the mean-field analysis given in this section
may provide a first indication of how the nonlinearities
may influence the voter dynamics. This, however, cannot
fully extended to the limiting cases given by the determin-
istic dynamics.

4.4 Perturbation analysis of the linear voter point

The other interesting (α1, α2) combination is the linear
voter point (0.2, 0.4) where all different regions of the
mean-field phase diagram, Figure 3, intersect. Inserting
(0.2, 0.4) into equation (35) yields dx/dt = 0 regardless of
the value of x, i.e. x(t) = x(t = 0) for all initial condi-
tions. This important feature of the linear VM was already
discussed in Section 2.2. We recall that, while on the one
hand the microscopic realizations always reach consensus
(complete invasion of one species) in the long term, on the
other hand an averaged outcome over many realizations
shows that the share of the winning species is distributed
as x(t = 0). To put it the other way round, the mean-field
limit discussed failes here because it does not give us any
indication of the fact that there is a completely ordered
state in the linear VM. The averaged outcome, for ex-
ample x = 0.5, can result both from complete invasion of
species 1 (50 coexistence of the two species). Both of these
outcomes exist in the immediate neighborhood of the lin-
ear voter point as Figure 3 shows. In order to get more
insight into this, we will later use the pair approximation
derived in Section 3.3. Here, we first follow a perturbation
approach, i.e. we add a small perturbation to the solu-
tion describing the macroscopic ordered state of complete
invasion (consensus). In terms of the nonlinear response
function κ(f), expressed by the αn in equation (33), this
means a nonzero value of α0 = ε, i.e. a small parame-
ter indicating the perturbation. With this, we arrive at a
modified mean-field equation:

dxp

dt
= ε
[
(1 − x)5 − x5

]
+

dx

dt
(37)

where dx/dt is given by the nonperturbated mean-field
equation (35) and the index p shall indicate the presence
of the perturbation ε. Consequently, this changes both the
value of the fixed points, previously given by equation (36)
and their stability. Instead of a complete analysis in the
(ε, α1, α2) parameter state, we restrict the investigations
to the vicinity of the linear voter point (α1, α2) = (0.2, 0.4)
where dx/dt = 0. Equation (37) then returns only one
real stationary solution, xstat

p = 0.5, which is indepen-
dent of ε and stable. Consequently, any finite perturba-
tion will destroy the characteristic feature of reaching an
ordered state in the linear VM, i.e. complete invasion, and
leaves only coexistence of both species as a possible out-
come. This is little surpising because adding an α0 > 0
to the dynamics transforms the former attractor x → 0, 1
into a repellor, i.e. it prevents reaching the ordered state.
More interesting the question is, how the perturbated lin-
ear voter dynamics looks in detail. This is investigated in
the next section by means of computer simulation, and in
Section 5.1 by means of the pair approximation approach.

4.5 Computer simulations of the perturbated CA

For further insight into the dynamics of the nonlinear VM,
we perform some computer simulations using the CA ap-
proach already described in Section 4.3. Is important to
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Fig. 6. Spatial snapshots of a positive frequency dependent
invasion process with α1 = 0.24, α2 = 0.30, ε = 10−4 (non-
stationary, correlated coexistence). (a) t = 101, (b) t = 102,
(c) t = 103, (d) t = 104. Note that a simulation using the
parameters of the linear VM, α1 = 0.2, α2 = 0.4, would look
statistically similar, and also the fluctuations of the global fre-
quencies shown in Figure 7 are quite similar.

notice that we have chosen different sets of the parameters
α1, α2 from the region of positive frequency dependence,
as defined in Figure 2. I.e., the transition towards the op-
posite state strictly increases with the number of neigh-
bors in that state (majority voting). So one would naively
expect a similar macroscopic dynamics in that region as
done in [29] This however is not the case as the following
simulations indicate. A thorough analysis is presented in
Section 5.2

In order to study the stability of the global dynam-
ics for the different α1, α2 settings in the vicinity of the
linear voter point, we have added a small perturbation
α0 = ε. As the investigations of Section 4.4 have indi-
cated, we should no longer expect consensus for the per-
turbated linear VM, but some sort of coexistence. In fact,
we observe an interesting nonstationary pattern forma-
tion we call correlated coexistence. Figure 6 (obtained for
another range of parameters α1, α2) shows an example
of this. We find a long-term coexistence of both species,
which is accompanied by a spatial structure formation.
Here, the spatial pattern remains always nonstationary
and the global frequency randomly fluctuates around a
mean value of x=0.5, as shown by Figure 7.

In more specific terms, the regime defined as ‘corre-
lated coexistence’ is a paramagnetic phase with finite do-
main length, typical of partially phase-separated systems.
We mention that such a regime was also observed in some
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Fig. 7. Global frequency of species 1 vs. time (a) for the linear
voter model, α1 = 0.2, α2 = 0.4, ε = 10−4, and (b) for the same
setup and parameters as in Figure 6. The initial frequency is
x(t = 0) = 0.5 for both runs.

related investigations of the VM and other nonlinear spin
models with Ising behavior [15,16]. Also, a similar tran-
sition was observed in the Abrams-Strogatz model [1],
where the transition rate is a power a of the local field.
The stability of the solutions then changes at a = 1, from
coexistence for a < 1 to dominance for a > 1.

In order to find out about the range of parameters in
the nonlinear VM resulting in the quite interesting phe-
nomenon of correlated coexistence, we have varied the pa-
rameters α1, α2 within the region of positive frequency de-
pendence. Figure 6 actually shows results from a set picked
from region (f) in Figure 3, where the mean-field analysis
predicts an asymmetric coexistence of both species. Obvi-
ously, the nonstationarity results from the perturbation ε.

However, for other sets α1, α2 in the positive frequency
dependence region the perturbation does not prevent the
system from reaching a global ordered state, i.e. invasion
of one species as Figure 8 verifies. This process is accom-
panied by a clustering process and eventually a segrega-
tion of both species indicated by the formation of spatial
domains. Figure 9 depicts the evolution of the global fre-
quency x(t) of species 1 for different initial frequencies
x(t=0). In every case, one species becomes extinct. For
x(t=0) > 0.5 species 1 is the most likely survivor, while
for x(t=0) < 0.5 it is most likely to become extinct. For
x(t=0) = 0.5, random events during the early stage de-
cide about its outcome.

On the other hand, the perturbation also does not in-
duce an ordered state as the random coexistence in Fig-
ure 10 shows, which was again obtained from parameter
settings in the region of positive frequency dependence.
So, we conclude that computer simulations of positive fre-
quency dependent processes show three different dynamic
regimes (dependent on the parameters α1, α2): (i) com-
plete invasion; (ii) random coexistence; and (iii) correlated
coexistence. While for (i) and (ii) the outcome is in line
with the mean-field prediction shown in Figure 4, this
does not immediately follows for (iii). So, we are left with
the question whether the interesting phenomenon of cor-
related coexistence is just because of the perturbation of
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Fig. 8. Spatial snapshots of a positive frequency dependent
invasion process with α1 = 0.1, α2 = 0.3, ε = 10−4 (complete
invasion). (a) t = 101, (b) t = 102 (c) t = 103, (d) t = 104.

Fig. 9. Global frequency of species 1 vs. time for the same
setup and parameters as in Figure 8. The initial frequencies
x(t = 0) of the four different runs are: (a) 0.6, (b) 0.5, (c) 0.5,
(d) 0.4.

some ordered state, or whether it may also exist inspite
of ε.

We just add that for negative frequency dependent in-
vasion, equation (34), the the spatial pattern remains ran-
dom, similar to Figure 10. Furthermore, regardless of the
initial frequency x(t=0), on a very short time scales, a
global frequency xstat = 0.5 is always reached. That means
we always find coexistence between both species. We con-
clude that for negative frequency dependence xstat = 0.5
is the only stable value, which is in agreement with the
mean-field prediction, whereas for positive frequency de-
pendence the situation is not as clear.

Fig. 10. Spatial snapshots of a positive frequency dependent
invasion process with α1 = 0.3, α2 = 0.4, ε = 10−4 (random
coexistence). The snapshot shown at t = 105 is statistically
equivalent to the initial random state.

5 Derivation of a phase diagram

To answer the question what ranges of α1, α2 eventu-
ally lead to what kind of macroscopic dynamics, we now
make use of the pair approximation already derived in Sec-
tion 3.3 as a first correction to the mean-field limit. Here,
we follow a two-step strategy: first, we investigate how well
the pair approximation, equations (38), (43), (44) of the
macroscopic dynamics, equation (23), predict the global
quantities 〈x〉 and c1|1. In order to specify the network
topology, we use again the CA described above. Second,
we use the pair approximation to derive a phase diagram
in the case of local interaction. Eventually, we test whether
these findings remain stable against perturbations of the
ordered state. All predictions are tested by comparison
with computer simulations of the microscopic model, from
which we calculate the quantities of interest and average
them over 50 runs.

5.1 Global frequencies and spatial correlations

Here we have to distinguish between the three different
dynamic regimes already indicated in Section 4.5.

Regime (i), complete invasion, is characterized by fixed
points of the macroscopic dynamics of either {〈x〉 , c1|1} =
{1, 1} or {〈x〉 , c1|1} = {0, 0}. The CA simulations as well
as also the pair approximation of the dynamics quickly
converge to one of these attractors, dependent on the ini-
tial conditions.

Regime (ii), random coexistence, has only one fixed
point, {〈x〉 , c1|1} = {0.5, 0.5}, to which the CA simula-
tions quickly converge. The pair approximation converges
to 〈x〉 = 0.5 after some initial deviations from the CA sim-
ulation, i.e. it relaxes on a different time scale (t > 40),
but is correct in the long run. The approximation of the
local correlation c1|1 shows some deviations from the pre-
dicted value, c1|1 = 0.5. We have tested the case of random
coexistence for various parameter values and found values
for c1|1 between 0.4 and 0.6. The discrepancy is under-
standable, since in the case of long-term coexistence some
of the spatial patterns flip between two different random
configurations with high frequency. Thus, while the global
frequency settles down to 0.5, the microscopic dynamics
is still nonstationary.
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Fig. 11. Global frequency 〈x〉 with min-max deviations (top)
and spatial correlation c1|1 (bottom) for the case of correlated
coexistence. The two curves shown in the bottom part result
from averaging over 50 CA simulations (black dotted line) and
from the pair approximation (green solid line). The parameters
are as in Figures 6, 7 (top).

Regime (iii), correlated coexistence, the most interest-
ing one, is chacterized by an average global frequency of
〈x〉 = 0.5 again, however the existing local correlations
lead to a much higher value of c1|1 > 0.6. This is shown
in Figure 11, where we find c1|1 ≈ 0.7 from the CA simu-
lations and c1|1 ≈ 0.65 from the pair approximation. I.e.,
for the case of spatial domain formation the long-range
correlations can be well captured by the pair approxima-
tion, whereas this was less satisfactory for the short-range
correlations of the random patterns.

5.2 Determining the phase boundary

The insights into the dynamics of the nonlinear VM de-
rived in this paper are now summarized in a phase diagram
that identifies the different parameter regions (α1, α2) for
the possible dynamic regimes identified in the previous
sections. In order to find the boundaries between these
different regimes, we carried out CA simulations of the
complete parameter space, 0 ≤ (α1, α2) ≤ 1. Precisely, for
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Fig. 12. Phase diagram of the nonlinear voter model: (top)
CA simulations, averaged over 50 runs (c1|1 = 0.7), (bot-
tom) pair approximation. Phase boundaries for ε = 0 result-
ing from c1|1 = 0.65 (upper limit): left – red solid line, right
– black solid line, for comparison phase boundaries resulting
from c1|1 = 0.60 (lower limit): left – red solid line (identi-
cal with c1|1 = 0.65), right – red solid line on the far right.
Dashed red lines indicate the shift of the phase boundaries for
c1|1 = 0.60 if ε = 0.02. The linear voter point (0.2, 0.4) is indi-
cated by •. Further, � marks those three parameter sets from
the positive frequency dependence region where CA simula-
tions are shown in Figures 8, 6, 10 (see also global frequency
〈x〉 and local correlation c1|1 in Figs. 7, 9, 11). The straight
dashed lines mark the different parameter areas given in equa-
tion (34) which are also shown in Figure 2.

every single run the long-term stationary values of x and
c1|1 were obtained and then averaged over 50 simulations.
As described above, the three different regimes could be
clearly separated by their {〈x〉 , c1|1} values, which were
used to identify the phase boundary between the differ-
ent regimes. The outcome of the CA simulations is shown
in the phase diagram of Figure 12 (top) and should be
compared with Figure 3, which results from the mean-
field analysis in Section 3.3 and thus neglects any kind of
correlation.
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Instead of the six regions distinguished in Figure 3,
in the local case we can distinguish two different regions
divided by one separatrix: the parameter region left of
the separatrix refers to the complete invasion of one of
the species, with high local correlations during the evolu-
tion. In the CA simulations, we observe the formation of
domains that grow in the course of time until exclusive
domination prevails. Asymptotically, a stationary pattern
is observed, with 〈x〉 = 1 (or 0) and c1|1 = 1 (or 0) (cf.
the simulation results show in Figs. 8, 9). I.e., the system
converges into a ‘frozen’ state with no dynamics at all.
The region to the right of the separatrix refers to random
coexistence of both species with 〈x〉 = 0.5 and no local
correlations, i.e. c1|1 = 0.5. In the CA simulations, we
observe nonstationary random patterns that change with
high frequency (cf. Fig. 10).

Both regions are divided by a separatrix. As shown in
Figure 12 (top), the separatrix is divided into two pieces
by the linear voter point, (0.2, 0.4). Above that point,
the separatrix is very narrow, but below the voter point
it has in fact a certain extension in the parameter space.
Looking at the dynamics on the separatrix, we find that
the mean frequency is 〈x〉 = 0.5 both above and below the
voter point (see also Fig. 11, top). The local correlation
c1|1 = 0.7 holds within the whole extended area of the
separatrix which identifies it as the region of correlated
coexistence (see also Fig. 11, bottom).

The question is how well this phase diagram can be
predicted by using the pair approximation of the dynam-
ics, described by equations (38), (44). For a comparison,
the coupled equations were numerically solved to get the
asymptotic solutions for {〈x〉 , c1|1} (which looks compli-
cated but is numerically very fast and efficient). In order to
distinguish between the three regimes, we have to define a
critical c1|1 value for the correlations. Whereas in the CA
simulations c1|1 = 0.7 indicated a correlated nonstation-
ary coexistence, this value was never reached using the
pair approximation (see Fig. 11, bottom), so c1|1 ≤ 0.65
could be regarded as an upper limit for the case of corre-
lated coexistence. Random coexistence, on the other end,
yielded c1|1 = 0.5 in the CA simulations and a value be-
tween 0.4 and 0.6 in the pair approximation. So, given
suitable initial conditions, we can regard c1|1 ≥ 0.6 as a
lower limit, to identify correlated coexistence. The results
are shown in Figure 12 (bottom) which shall be compared
with the phase diagram above (Fig. 12, top).

Figure 12 (bottom) shows the influence of the c1|1
threshold value. With the lower limit, we find a quite
broad region of correlated coexistence, which for exam-
ple also includes the point (0.3, 0.4) for which a random
coexistence in the CA simulations was shown in Figure 10.
Using the upper limit c1|1 = 0.65 results in a much smaller
region of correlated coexistence. Comparing this with the
CA simulations above, we can verify that the pair ap-
proximation correctly predicts the extended region below
the voter point and also shows how it becomes more nar-
row above the voter point. One should note that the left
border of the separatrics is not affected by the threshold
value, whereas the right border shifts considerably. The

left border also contains the voter point (independent of
the c1|1 threshold value), for which a complete invasion
can be observed.

Therefore, it is quite interesting to look into changes
of the phase diagram if additional perturbations are con-
sidered (see also Sect. 4.4). Figure 12 (bottom) shows (for
the threshold c1|1 = 0.6) that this does not affects the
existence of the three dynamic regimes and most notably
of the extended separatrix below the voter point, but only
shifts the boundaries toward the left, dependent on the
value of α0 = ε (this can be also verified for c1|1 = 0.65
but is omitted here, to keep the figure readable). Thus,
the consideration of perturbations in the phase diagram
reveals that it is indeed the nonlinearity in the voter model
which allows for the interesting phenomenon of the corre-
lated coexistence and not just the perturbation.

A closer look into Figure 12 (bottom) also shows that
in the perturbated phase diagram the voter point no
longer lies on the boundary towards the region of com-
plete invasion but clearly within the region of correlated
coexististence. This is in agreement with the findings in
Section 4.4 which showed that for the linear VM complete
invasion is an unstable phenomenon and changes into cor-
related coexistence for finite ε.

6 Discussion and conclusions

In this paper, we investigated a local model of frequency
dependent processes, which for example models the dy-
namics of two species {0, 1} in a spatial environment. In-
dividuals of these species (also called ‘voters’) are seen
as nodes of a network assumed as homogeneous in this
paper (i.e. all nodes have the same number of neighbors,
m). The basic assumption for the microscopic dynamics
is that the probability to occupy a given node with either
species 0 or 1 depends on the frequency of this species
in the immediate neighborhood. Different from other in-
vestigations, we have counted in the state of the center
node as well (see Sect. 2.2) and have further considered a
nonlinear response of the voters to the local frequencies.

Studies of a nonlinear version of the traditional voter
model (without counting the state of the central node and
with sequential dynamics) have already been analyzed be-
fore. Reference [29], as pointed out before, is closest to our
investigations, but restricted itself to the mean-field anal-
ysis and computer simulations of the 2d case, to obtain
a phase diagram similar to Figure 12 (top). [31], on the
other hand, have provided a Markov analysis which is re-
stricted only to very small CA. The two-parameter model
in [15] is for y = 1 a nonlinear voter model that exhibits
at the voter point (x = 1/2) a transition from a ferromag-
netic phase, i.e. invasion, for x > 1/2 to a paramagnetic
phase (correlated coexistence) for x < 1/2. Also the case
of the ‘perturbated linear voter model’ is included in the
model, for x = 1/2 and y < 1. Similar results are also
presented in [17], which points out relations to random
branching processes, and in [11], where the emphasis is
on investigations of the interface density, to describe the
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coarsening process. A recent paper [51] also shows for spin
systems with two symmetric absorbing states (such as the
VM) that the macroscopic dynamics only depends on the
first derivatives of the spin-flip probabilities.

In our paper, we set out for a formal approach that
allows to derive the dynamics on different levels: (i) a
stochastic dynamics on the microlevel, which is used for
reference computer simulations but also allows a deriva-
tion of the (ii) macroscopic dynamics for the key variables,
given in terms of differential equations. This macroscopic
dynamics is then analysed by two different approxima-
tions, (i) a mean-field approximation that neglects any
local interaction in the network, and (ii) a local approxi-
mation considering correlations between pairs of nearest
neighbors. In order to test the validity of these approxi-
mations, we compare their predictions with the averaged
outcome of the microscopic computer simulations. We like
to emphasize that our approach is general enough to be
applied to various forms of frequency dependent processes
on homogeneous networks with different number of neigh-
bors. Even if a two-dimensional regular lattice is used
to illustrate the dynamics, the approach is not restricted
to that.

Our main result, in addition to the general framework
for nonlinear frequency dependent processes, is the deriva-
tion of a phase diagram using the pair approximation de-
rived in this paper. This approach predicts correctly both
the type of the dynamics and the asymptotic values of the
key variables dependent on the possible nonlinearities for
the case of local interaction, m = 4. The predicted phase
diagram was verified by comparison with extensive micro-
scopic computer simulations rastering the whole parame-
ter space. While the structure of the phase diagram was
already known from previous computer simulations pre-
sented in [29] we could demonstrate that the pair approx-
imation works very well both for predicting the correct
phase boundaries and the dynamics within these phases.
It should be noticed that the pair approximation is a valu-
able tool, particularly with respect to computational ef-
forts. The computer simulations are much more timecon-
suming, since the results of the different runs have to be
averaged afterwards. The pair approximation, on the other
hand, is based on only 2 coupled equations and therefore
needs less computational effort. In the following, we dis-
cuss some of the interesting findings.

The region of correlated coexistence: analysing the non-
linear VM with local interaction has shown that there
are in fact only three different dynamic regimes depen-
dent on the nonlinearities (α1, α2): (i) complete invasion,
(ii) random coexistence, and (iii) correlated coexistence.
The first one is already known as the standard behavior of
the linear VM. Consequently the only interesting feature,
namely the time to reach the ordered state dependent on
the network size and topology, has been the subject of
many investigations [9,47,48]. Number (ii), on the other
hand, only leads to trivial results as no real dynamics is
observed. Thus, the most interesting regime is (iii) corre-
lated coexistence, which can be found in a small, but not
negligible parameter region below the voter point. This re-

gion separates the two dominant regimes (i) and (ii) and
therefore was called a separatrix here. Going over from
the right to the left side of the phase diagram in that re-
gion, we notice a transition from 0.5 to 1.0 (or 0.0 respec-
tively) in the mean frequency, and from 0.5 to 0.7 to 1.0
in the local correlations. Thus, in fact c1|1 separates the
two dynamic regimes (i) and (ii) (below the voter point).
For parameters chosen from that region, we find in the CA
simulations a long-term and nonstationary coexistence be-
tween the two species as on the right side of the phase dia-
gram. But we also find the long-range spatial correlations
that lead to the formation of spatial domains as shown
e.g. in Figure 6 – which is characteristic for the left side of
the phase diagram. The spatial pattern formation is also
indicated by large fluctuations of 〈x〉 shown in Figure 11
(top). A single run, as shown in Figure 7, clearly indicates
the long-term nonstationary coexistence of both species.

We emphasize that the separatrix between the two dy-
namic regimes is well predicted by the macroscopic dy-
namics resulting from the pair approximation (as can be
clearly seen in Fig. 12). Most importantly, we could ver-
ify that the correlated coexistence of both species is not
simply the effect of an additional perturbation, but results
from the nonlinear interaction.

Comparison with the mean-field phase diagram: in our
paper, the mean-field approximation plays the role of a
reference state used to demonstrate the differences of the
local analysis. The phase diagram of Figure 3 distinguishes
between six different regions, whereas the one in the lo-
cal case, Figure 12 (top) shows only three. Comparing
the two phase diagrams, we realize that the most inter-
esting regions in Figure 3, namely (c) and (f), have sim-
ply collapsed into the separatrix shown in Figure 12. The
region (c) of unstable asymmetric coexistence or multi-
ple outcome, respectively (see Sect. 4.2), relates to the
separatrix line above the voter point. It should be no-
ticed that the phase diagram for local interaction, Fig-
ure 12, correctly predicts that the deterministic behav-
ior for (α1, α2) = (0, 1) leads to complete invasion (see
Sect. 5.2 and Fig. 5a).

The region (f) of stable asymmetric coexistence relates
to the extended area of the separatrix shown below the
voter point in Figure 12, where we still see a coexistence
of both species – but the asymmetry between the two
species relates to their changing dominance over time, as
Figures 7, 11 (top) clearly illustrate. We conclude that in
the local case no regions of stationary and asymmetric co-
existence between the two species exist, as was predicted
by the mean-field analysis. However, we find a (small but
extended) region on the separatrix that shows the non-
stationary and asymmetric coexistence of the two species
for single realizations (which results in a symmetric coex-
istence averaged over runs, 〈x〉 = 0.5, see Fig. 11, top).

The role of positive frequency dependence: the possi-
ble nonlinear responses in frequency dependent processes
can be distinguished in four parameter areas of positive
and negative frequency dependence and positive and neg-
ative allee effects, as Figure 2 shows. Previous investi-
gations [29] assigned a dynamic leading to invasion to a
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positive frequency dependence, while associating a spatial
coexistence with negative frequency dependence. Our in-
vestigations have shown that such an assignment does not
unambiguously hold. In particular, a random coexistence
can be found for negative frequency dependent dynamics
as well as for positive frequency dependence, which was so
far assigned to complete invasion only [29]. On the other
hand, complete invasion is not observed only for positive
frequency dependence, but also for positive and negative
allee effects. A random spatial coexistence can be found
for positive and negative allee dynamics as well. The only
case where just one dynamic regime can be observed is the
case of negative frequency dependence. We note, however,
that the nonstationary long-term coexistence with spatial
pattern formation occurs both for the positive frequency
dependence and the negative allee dynamics, given that
the parameters are chosen from the most interesting zone
of the separatrix below the voter point.

In conclusion, the region of positive frequency depen-
dence bears in fact a much more richer dynamics, as it is
transected by the separatrix we identified in the local anal-
ysis and thus shows all three types of dynamics we could
identify for nonlinear voter models, namely (i) complete
invasion of one of the species via the formation of large
domains; (ii) long-term coexistence of both species with
random distribution; (iii) long-term coexistence of both
species with formation of nonstationary domains. How-
ever, the most interesting regime (iii) is not restricted to
positive frequency dependent processes, but can be also
found for some negative allee effects.

We summarize our findings by pointing out that non-
linear VM show indeed a very rich dynamics which was
not much investigated yet. In addition to the phenomenon
of complete invasion (or consensus) which occurs also be-
yond the linear VM, we find most interesting that certain
parameter settings lead to a dynamics with nonstation-
arity and long-term correlations. Thinking about possible
applications of the VM, we see that in particular this re-
gion has the potential to model relevant observations, be
it the temporal dominance of certain species in a habitat
or the temporal prevalence of certain opinions (or political
parties) in a social system. The nonstationarity observed
gives rise to the prediction that such dominance may not
be the end, and change happens (even without additional
perturbation).

The authors want to thank Thilo Mahnig and Heinz
Mühlenbein for discussions on an early version of this paper.

Appendix

Here we derive some explicit expressions for the three
equations of the pair approximation discussed in Sec-
tion 3.3, for the global frequency 〈x〉 (Eq. (31)), the dou-
blet frequency 〈x1,1〉 and the correlation term c1|1, equa-
tion (32). The equations are derived for the neighborhood
m = 4. We use the notation x ≡ 〈x〉. Using equation (29)

and the transition rates of equation (33), we find for 〈x〉,
equation (31) in pair approximation:

dx

dt
= ε
[ 1
(1 − x)3

(1 − 2x + xc1|1)4 − xc1|14
]

+ 4α1

[
x

(1 − x)3
(1 − 2x + xc1|1)3(1 − c1|1)

− x(1 − c1|1)c1|13
]

+ 6α2

[
x2

(1 − x)3
(1 − 2x

+ xc1|1)2(1 − c1|1)2 − x(1 − c1|1)2c1|12
]

+ (1 − α1)
[

x4

(1 − x)3
(1 − c1|1)4 − x(1 − c1|1)4

]

+ 4(1 − α2)
[

x3

(1 − x)3
(1 − 2x + xc1|1)(1 − c1|1)3

− x(1 − c1|1)3c1|1
]
. (38)

We note that c1|1 = c1|0 = x and c0|0 = c0|1 = 1 − x in
the mean-field limit, in which case equation (38) reduces
to equation (35).

In order to calculate the time derivative of the doublet
frequency 〈x1,1〉 we have to consider how it is affected by
changes of σ in a specific occupation pattern of size m = 4,
σ0 = {σ, σ1, σ2, σ3, σ4}, considering the σj as constant.
Again, in a frequency dependent process it is assumed that
the transition does not depend on the exact distribution
of the σj , but only on the frequency of a particular state
σ in the neighborhood. Let Sσ,q describe a neighborhood
where the center node in state σ is surrounded by q nodes
of the same state σ. For any given q ≤ m, there are

(
m
q

)
such occupation patterns. The global frequency of neigh-
borhood Sσ,q is denoted as xσ,q with the expectation value
〈xσ,q〉. Obviously, xσ,q can be calculated from the global
frequencies xσ,σ′ of all possible occupation distributions
σ′ (Eq. (3)), that match the condition

zσ =
m∑

j=1

δσ,σj := q (39)

i.e. it is defined as

xσ,q =
∑

σ′,zσ′ =q

xσ,σ′ . (40)

Regarding the possible transitions, we are only interested
in changes of the doublet (1, 1), i.e. transitions (1, 1) →
(0, 1) or (0, 1) → (1, 1). The transition rates shall be
denoted as w

(
(0, 1)|(1, 1), Sσ,q

)
and w

(
(1, 1)|(0, 1), Sσ,q

)
respectively, which of course depend on the local neigh-
borhood Sσ,q. With this, the dynamics of the expected
doublet frequency can be described by the rate equation:

d

dt
〈x1,1〉 (t) =

m∑
q=0

[
w
(
(1, 1)|(0, 1), S0,q

) 〈x0,q〉

− w
(
(0, 1)|(1, 1), S1,q

) 〈x1,q〉
]
. (41)
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In order to specify the transition rates of the doublets
w
(
(σ′, 1)|(σ, 1), Sσ,q

)
, with σ′ = 1 − σ and σ ∈ {0, 1}, we

note that there are only 10 distinct configurations of the
neighborhood. Let us take the example σ0 = {1, 1, 1, 1, 1}.
A transition 1 → 0 of the center node would lead to the ex-
tinction of 4 doublets (σ, σj) = (1, 1). On the other hand,
the transition rate of the center node is ε as known from
equation (33). This would result in w

(
(0, 1)|(1, 1), S1,4

) ∝
4ε. However, for a lattice of size N the number of dou-
blets is 2N , whereas there are exactly N neighborhoods
σ0. Therefore, if we apply the transition rates of the sin-
gle nodes, equation (33), to the transition of the doublets,
their rates have to be scaled by 2. Similarly, if we take the
example σ0 = {0, 1, 1, 1, 0}, a transition of the center node
0 → 1 would occur at the rate 1 − α2 and would create 3
new doublets. Applying the scaling factor of 2, we verify
that w

(
(1, 1)|(0, 1), S0,1

)
= 3/2 (1−α2). This way we can

determine the other possible transition rates:

w
(
(0, 1)|(1, 1), S1,4

)
= 2ε

w
(
(0, 1)|(1, 1), S1,3

)
=

3
2
α1

w
(
(0, 1)|(1, 1), S1,2

)
= α2

w
(
(0, 1)|(1, 1), S1,1

)
=

1
2
(1 − α2)

w
(
(0, 1)|(1, 1), S1,0

)
= 0

w
(
(1, 1)|(0, 1), S0,4

)
= 0

w
(
(1, 1)|(0, 1), S0,3

)
=

1
2
α1

w
(
(1, 1)|(0, 1), S0,2

)
= α2

w
(
(1, 1)|(0, 1), S0,1

)
=

3
2
(1 − α2)

w
(
(1, 1)|(0, 1), S0,0

)
= 2(1 − α1). (42)

Note that two of the transition rates are zero, because
the respective doublets (1, 1) or (0, 1) do not exist in the
assumed neighborhood. Finally, we express the 〈xσ,q〉 in
equation (41) by the

〈
xσ,σ′

〉
of equation (40) and apply

the pair approximation, equation (30), to the latter one.
This way, we arrive at the dynamic equation for 〈x1,1〉:

d 〈x1,1〉
dt

= − 2εxc1|14 + 2α1

[
x

(1 − x)3
(1 − x

+ xc1|1)3(1 − c1|1) − 3x(1 − c1|1)c1|13
]

+ 6α2

[
x2

(1−x)3
(1−x + xc1|1)2(1−c1|1)2c2

1|1

− x(1 − c1|1)2
]

+ 2(1 − α1)
[

x4

(1 − x)3

× (1 − c1|1)4 − x(1 − c1|1)3
]

+ 2(1 − α2)
[

x3

(1 − x)3
3(1 − 2x + xc1|1)

× (1 − c1|1)3 − x(1 − c1|1)3c1|1
]
. (43)

The third equation, equation (32), for the correlation
term c1|1 can be obtained in explicte form by using equa-
tion (38) for 〈x〉 and equation (43) for 〈x1,1〉:
dc1|1
dt

= − ε

(
c1|1

x(1 − x)3
(1 − 2x + xc1|1)4 + c1|15 − 2c1|14

)

+ α1(1 − c1|1)
[
c1|13(4c1|1 − 6)

− 2
1

(1 − x)3
(1 − x + xc1|1)3(2c1|1 − 1)

]

+ 6α2(1 − c1|1)3
[

x

(1 − x)3
(1 − x + xc1|1)2 − c1|1

]

+ (1 − α1)(1 − c1|1)4
[

x3

(1 − x)3
(2 − c1|1) + c1|1

]

+ (1 − α2)(1 − c1|1)3
[
2c1|1(2c1|1 − 1)

+
x2

(1 − x)3
(1 − 2x + xc1|1)(6 − 4c1|1)

]
. (44)
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